\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 46, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/46\hfil Uniform estimate and strong convergence] {Uniform estimate and strong convergence of minimizers of a $p$-energy functional with penalization} \author[B. Wang, Y. Cai \hfil EJDE-2016/46\hfilneg] {Bei Wang, Yuze Cai} \address{Bei Wang \newline School of mathematics and information technology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, China} \email{jsjywang@126.com} \address{Yuze Cai \newline Department of Basic Science, Shazhou Professional Institute of Technology, Zhangjiagang, Jiangsu 215600, China} \email{caibcd@163.com} \thanks{Submitted January 20, 2015. Published February 10, 2016.} \subjclass[2010]{35B25, 35J70, 49K20, 58G18} \keywords{p-energy functional; p-energy minimizer; $W^{1,p}$ uniform estimates} \begin{abstract} This article concerns the asymptotic behavior of minimizers of a $p$-energy functional with penalization as a parameter $\varepsilon$ approaches zero. By establishing $W^{1,p}$ uniform estimates, we obtain $W^{1,p}$ convergence of the minimizer to a p-harmonic map. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Let $G \subset \mathbb{R}^2$ be a bounded and simply connected domain with smooth boundary $\partial G$, and $B_1=\{x \in \mathbb{R}^2;x_1^2+x_2^2<1\}$. Denote $S^1=\{x \in \mathbb{R}^3;x_1^2+x_2^2=1,x_3=0\}$ and $S^2=\{x \in \mathbb{R}^3;x_1^2+x_2^2+x_3^2=1\}$. Sometimes we write the vector value function $u=(u_1,u_2,u_3)$ as $(u',u_3)$. Let $g=(g',0)$ be a smooth map from $\partial G$ into $S^1$ satisfying $d=\deg(g',\partial G) \neq 0$. Without loss of generality, we may assume $d>0$. Consider the energy functional $$ E_\varepsilon(u,G)= \frac{1}{p}\int_G|\nabla u|^p dx +\frac{1}{2\varepsilon^p}\int_G u_3^2 dx,\quad p>2 $$ with a small parameter $\varepsilon >0$. From the direct method in the calculus of variations it is easy to see that the functional achieves its minimum in the function class $W_g^{1,p}(G,S^2)$. Obviously, the minimizer $u_{\varepsilon}$ on $W_g^{1,p}(G,S^2)$ is a weak solution of $$ -\operatorname{div}(|\nabla u|^{p-2}\nabla u) =u|\nabla u|^p+ \frac{1}{\varepsilon^p}(uu_3^2-u_3e_3),\quad \text{on } G, $$ where $e_3=(0,0,1)$. Namely, for any $\psi \in W_0^{1,p}(G,\mathbb{R}^3)$, $u_{\varepsilon}$ satisfies \begin{equation} \label{1.1} \int_G|\nabla u|^{p-2}\nabla u\nabla \psi dx=\int_Gu\psi |\nabla u|^p dx+\frac{1}{\varepsilon^p}\int_G\psi (uu_3^2-u_3e_3)dx. \end{equation} Without loss of generality, we assume $u_3\geq 0$, otherwise we may consider $|u_3|$ in view of the expression of the functional. When $p=2$, the functional $E_{\varepsilon}(u,G)$ was introduced in the study of some simplified model of high-energy physics, which controls the statics of planner ferromagnets and antiferromagnets (see \cite{KP,PS}). The asymptotic behavior of minimizers of $E_{\varepsilon}(u,G)$ has been considered by Fengbo Hang and Fanghua Lin in \cite{HL-01}. When the term $\frac{u_3^2}{2\varepsilon^2}$ replaced by $\frac{(1-|u|^2)^2}{4\varepsilon^2}$ and $S^2$ replaced by $\mathbb{R}^2$, the problem becomes the simplified model of the Ginzburg-Landau theory for superconductors and was well studied in many papers such as \cite{BBH-93, BBH-94,Lin,Stru}. These works enunciate that the study of minimizers of the functional with some penalization terms is connected tightly with the study of harmonic maps with $S^1$-value. When $p>2$, it also shows an enlightenment, namely, the properties (such as the partial regularity, the properties of singularities) of p-harmonic maps can be seen via studying the asymptotic properties of minimizers of some p-energy functional with penalization (cf. \cite{ABGS-09,ABGS-11,Lei-04,Lei,Lei-07,Lei-10,Wang}). In this article, as in \cite{BBH-93,BBH-94,HL-01}, we concern with the asymptotic behavior of minimizers of functional $E_\varepsilon(u,G)$ on $W_g^{1,p}(G,S^2)$ where $p>2$ as $\varepsilon \to 0$. \begin{theorem}[{\cite[Theorem 1.1]{Lei-08}}] \label{thm1.1} Assume $u_{\varepsilon}$ is a minimizer of $E_{\varepsilon}(u,G)$ on \\ $W_g^{1,p}(G,S^2)$. Then all the zeros of $|u'_{\varepsilon}|$ are included in finite, disintersected discs $B(x_j^{\varepsilon},h\varepsilon), j=1,2,\dots ,N_1$ where $N_1$ and $h>0$ do not depend on $\varepsilon \in (0,1)$. \end{theorem} As $\varepsilon \to 0$, there exists a subsequence $x_i^{\varepsilon_k}$ of the center $x_i^{\varepsilon}$ and $a_i \in \overline{G}$ such that $x_i^{\varepsilon_k} \to a_i$, $i=1,2,\dots ,N_1$. Perhaps there may be at least two subsequences converging to the same point, we denote by $a_1,a_2,\dots ,a_N$, $N\leq N_1$, the collection of distinct points in $\{a_i\}_{i=1}^{N_1}$. Although the relationship between $N$ and $d$ is unknown, the integer $N$ is independent of $\varepsilon \in (0,1)$. By virtue of Theorem \ref{thm1.1}, we see that all the zeros of $|u'_\varepsilon|$ converge to $a_1,a_2,\dots ,a_N$ as $\varepsilon$ tends to $0$. In addition, (2.3) in \cite{Lei-08} shows \begin{equation} \label{1.2} |u'_\varepsilon| \geq 1/2 \quad\text{on }K, \end{equation} where $K$ is an arbitrary compact subset of $G \setminus\cup_{i=1}^N\{a_i\}$. \begin{theorem}[{\cite[Theorem 1.2]{Lei-08}}] \label{thm1.2*} Assume $u_{\varepsilon}$ is a minimizer of $E_{\varepsilon}(u,G)$ on \\ $W_g^{1,p}(G,S^2)$. $K$ is an arbitrary compact subset of $\overline{G}\setminus \cup_{j=1}^N\{a_j\}$. Then there exists a subsequence $u_{\varepsilon_k}$ of $u_{\varepsilon}$ such that as $k \to \infty$, $$ u_{\varepsilon_k} \to u_p=(u'_p,0),\quad\text{weakly in } W^{1,p}(K,\mathbb{R}^3), $$ where $u'_p$ is a map of the least p-energy $\int_K|\nabla u|^p dx$ in $W^{1,p}(K,\partial B_1)$. \end{theorem} We shall give the uniform $L_{\rm loc}^p$ estimate of $\nabla u_{\varepsilon}$ in $\S3$. Recalling the case that the parameter $p$ equals to the dimension $2$, we know it is available to estimate the upper bound and the lower bound of $\int|\nabla u_{\varepsilon}|^2 dx$ since we can use the property of conformal transformation of $\int|\nabla u_{\varepsilon}|^2 dx$ (the idea of which can be seen in \cite{BBH-94,HL-96,HL-01,Hong}). In fact, when scaling $x=y\varepsilon$ in $E_{\varepsilon}(u,G)$, there is a coefficient $\varepsilon^{\lambda}$ appearing in the scaled energy functional. when $p=2$, it can be derived that the exponent $\lambda$ of $\varepsilon$ is zero. Therefore, the estimate of the upper bound $$ E_\varepsilon(u_\varepsilon,G) \leq C_1 \ln\frac{1}{\varepsilon}+C $$ and the lower bound $$ \frac{1}{2}\int_{G\setminus\cup_{i=1}^dB(a_i,h\varepsilon)} |\nabla u'_\varepsilon|^2dx\geq C_2\ln\frac{1}{\varepsilon}-C $$ can be obtained, where $C_1=C_2=\pi d$ (cf. \cite[\S4]{HL-01}). The uniform estimate is deduced at once. When $p>2$, the property of conformal transformation of $\int|\nabla u_{\varepsilon}|^p dx$ is invalid. Therefore, $\lambda\neq 0$. It is impossible to derive such results as the case $p=2$ if the idea of estimating the upper and the lower bounds of $\int|\nabla u_{\varepsilon}|^p dx$ is adopted. In fact, the upper bound $$ E_\varepsilon(u_\varepsilon,G) \leq C_3 \varepsilon^{2-p}+C $$ and the lower bound $$ \frac{1}{p}\int_{G\setminus\cup_{i=1}^NB(a_i,h\varepsilon)} |\nabla u'_\varepsilon|^pdx\geq C_4 \varepsilon^{2-p}-C, $$ are also obtained. However, the relationship between $C_3$ and $C_4$ is not clear except that $C_4$ may be smaller. In \cite{Lei-08}, a comparison method was used to obtain a uniform estimate where the average functions come into plays. Here, we use the iteration technique introduced in \cite{Lei-06} to obtain the uniform $L^p$ estimate of $\nabla u_\varepsilon$. In fact, the term $\int_K|\nabla u_{\varepsilon}|^p dx$ of the functional $E_{\varepsilon}(u_{\varepsilon},K)$ can be divided into three terms, $\int_K|\nabla |u'_{\varepsilon}||^p dx$, $\int_K|\nabla u_3|^p dx$ and $\int_K|u'_\varepsilon|^p|\nabla \frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}|^p dx$. We will prove that $\int_K|\nabla |u'_{\varepsilon}||^p dx+\int_K|\nabla u_3|^p dx +\frac{1}{\varepsilon^p} \int_K u_{\varepsilon 3}^2 dx$ may be bounded by $O(\varepsilon^{\lambda})$ with $\lambda > 0$ as $\varepsilon \to 0$. Using this estimate we will prove $$ \int_K|\nabla u_{\varepsilon}|^p dx\leq C +O(\varepsilon^{\lambda}). $$ Based on the Theorem \ref{thm1.2*}, we will prove in \S3 that the p-harmonic map $u_p$ is a map of least p-energy $\int_K|\nabla u|^p dx$, and the convergence is also in strong $W_{\rm loc}^{1,p}$ sense. \begin{theorem} \label{thm1.2} Assume $u_{\varepsilon}$ is a minimizer of $E_{\varepsilon}(u,G)$ on $W_g^{1,p}(G,S^2)$. $K$ is an arbitrary compact subset of $\overline{G}\setminus \cup_{j=1}^N\{a_j\}$. Then there exists a subsequence $u_{\varepsilon_k}$ of $u_{\varepsilon}$ such that as $k \to \infty$, $$ u_{\varepsilon_k} \to u_p=(u'_p,0),\quad in \quad W^{1,p}(K,\mathbb{R}^3), $$ where $u'_p$ is the map in Theorem \ref{thm1.2*}. \end{theorem} \section{Uniform estimate} The following inverse H\"older inequality will be applied later. \begin{proposition} \label{prop2.1} Assume that $p>1$, and $u_{\varepsilon}$ is a minimizer of $E_{\varepsilon}(u,G)$ on \\ $W_g^{1,p}(G,S^2)$. Then there exist constants $t, R_0 \in (0,1/2)$ and $C>0$ which is independent of $\varepsilon$, such that for any $B_R \subset G$ $(2R0$ be a small constant such that $B(x,2R) \Subset G\setminus \cup_{j=1}^N\{a_j\}$. There exist constant $\varepsilon_0>0$ and $C_j>0$, and $R_j=2R-\frac{jR}{[p]+1}$ such that for $j=2,3,\dots ,[p]$, \begin{equation} \label{2.1} E_{\varepsilon}(u_{\varepsilon},B_j)\leq C_j\varepsilon^{j-p} \end{equation} where $\varepsilon \in (0,\varepsilon_0), B_j=B(x,R_j)$, and $[p]$ is the integer part of $p$. \end{theorem} For $j=2$, the inequality \eqref{2.1} is follows from \cite[Proposition 2.1]{Lei-08}. Suppose that \eqref{2.1} holds for all $j\leq m$. Then we have, in particular, \begin{equation} \label{2.2} E_{\varepsilon}(u_{\varepsilon},B_m)\leq C_m\varepsilon^{m-p}. \end{equation} If $m=[p]$, then we are done. Suppose $m<[p]$, we want to prove \eqref{2.1} for $j=m+1$. Applying \eqref{1.2} we have $\frac{1}{2}\leq |u'_{\varepsilon}(y)|\leq 1$, for all $y \in B(x,2R)$. Using the integral mean value theorem we know that there exists $r \in [R_{m+1/2},R_m]$ such that $$ E_{\varepsilon}(u_{\varepsilon},B_m\setminus B_{m+1/2})=C_0(r)\int_{\partial B(x,r)} [\frac{1}{p}|\nabla u_{\varepsilon}|^p +\frac{1}{4\varepsilon^p}u_{\varepsilon 3}^2] d\xi, $$ and applying \eqref{2.2}, we see that \begin{equation} \label{2.3} \int_{\partial B(x,r)}|\nabla u_{\varepsilon}|^pd\xi +\frac{1}{\varepsilon^p} \int_{\partial B(x,r)}u_{\varepsilon 3}^2d\xi \leq C_0^{-1}(r)C_m\varepsilon^{m-p}. \end{equation} We denote $B=B(x,r)$, and introduce two propositions. \begin{proposition} \label{prop2.3} If $\rho_1$ is a minimizer of the functional $$ E(\rho,B)=\frac{1}{p} \int_B(|\nabla \rho|^2+1)^{p/2} dx +\frac{1}{2\varepsilon^p} \int_B(1-\rho)^2 dx, $$ on $W_{|u'_{\varepsilon}|}^{1,p}(B,\mathbb{R}^+\cup\{0\})$. Then $E(\rho_1,B)\leq C\varepsilon^{m-p+1}$. \end{proposition} \begin{proof} Obviously, the minimizer $\rho_1$ exists and satisfies \begin{gather} \label{2.4} -\operatorname{div}(v^{(p-2)/2}\nabla \rho) =\frac{1}{\varepsilon^p}(1-\rho) \quad\text{on } B, \\ \label{2.5} \rho|_{\partial B}=|u'_{\varepsilon}|, \end{gather} where $v=|\nabla \rho|^2+1$. Since $1/2\leq |u'_{\varepsilon}|\leq 1$, it follows from the maximum principle that on $\overline{B}$, \begin{equation} \label{2.6} \frac{1}{2}\leq \rho_1\leq 1. \end{equation} Applying \eqref{2.2} and noting $(1-|u'|)^2 \leq u_3^2$, we see easily that \begin{equation} \label{2.7} E(\rho_1,B)\leq E(|u'_{\varepsilon}|,B) \leq CE_{\varepsilon}(u_{\varepsilon},B) \leq C\varepsilon^{m-p}. \end{equation} Multiplying \eqref{2.4} by $\partial_\nu \rho$, where $\rho$ denotes $\rho_1$, and integrating over $B$, we have \begin{equation} \label{2.8} \begin{aligned} &-\int_{\partial B}v^{(p-2)/2}(\partial_\nu \rho)^2d\xi +\int_Bv^{(p-2)/2}\nabla \rho \nabla (\partial_\nu \rho)dx\\ &=\frac{1}{\varepsilon^p} \int_B(1-\rho)(\partial_\nu \rho)dx, \end{aligned} \end{equation} where $\nu$ denotes the unit outside norm vector on $\partial B$. Using \eqref{2.7} we obtain \begin{equation} \label{2.9} \begin{aligned} \big|\int_Bv^{(p-2)/2}\nabla \rho \cdot \nabla (\partial_\nu \rho)dx\big| &\leq C\int_Bv^{(p-2)/2}|\nabla \rho|^2dx +\frac{1}{p}\big|\int_B \nu \cdot \nabla (v^{p/2})dx\big|\\ & \leq C\varepsilon^{m-p}+\frac{1}{p}\int_{\partial B}v^{p/2}d\xi. \end{aligned} \end{equation} Combining \eqref{2.3}, \eqref{2.5} and \eqref{2.7} we also have $$ \big|\frac{1}{\varepsilon^p} \int_B(1-\rho)(\partial_\nu \rho)dx\big| \leq \frac{1}{2\varepsilon^p} |\int_B(1-\rho)^2div\nu dx -\int_{\partial B}(1-\rho)^2d\xi| \leq C\varepsilon^{m-p}. $$ Substituting this result and \eqref{2.9} into \eqref{2.8} yields \begin{equation} \label{2.10} \big|\int_{\partial B}v^{(p-2)/2}(\partial_\nu \rho)^2d\xi\big| \leq C\varepsilon^{m-p} +\frac{1}{p}\int_{\partial B}v^{p/2}d\xi. \end{equation} Applying \eqref{2.3}, \eqref{2.5}, \eqref{2.10} and the Young inequality, we obtain that for any $\delta \in (0,1)$, \begin{align*} \int_{\partial B} v^{p/2}d\xi &=\int_{\partial B}v^{(p-2)/2}[1+(\partial_\nu \rho)^2 +(\partial_\tau \rho)^2]d\xi\\ &\leq \int_{\partial B}v^{(p-2)/2}d\xi +\int_{\partial B}v^{(p-2)/2} (\partial_\nu \rho)^2d\xi\\ &\quad +\Big(\int_{\partial B}v^{p/2}d\xi\Big)^{(p-2)/p} \Big(\int_{\partial B} (\tau \cdot \nabla |u_{\varepsilon}|)^pd\xi\Big)^{2/p}\\ &\leq C(\delta)\varepsilon^{m-p}+(\frac{1}{p} +2\delta)\int_{\partial B}v^{p/2}d\xi, \end{align*} where $\tau$ denotes the unit tangent vector on $\partial B$. Therefore, it follows by choosing $\delta>0$ sufficiently small that \begin{equation} \label{2.11} \int_{\partial B}v^{p/2}d\xi \leq C\varepsilon^{m-p}. \end{equation} We multiply both sides of \eqref{2.4} by $(1-\rho)$ and integrate over $B$. Then $$ \int_Bv^{(p-2)/2} |\nabla \rho|^2dx+\frac{1}{\varepsilon^p} \int_B(1-\rho)^2 dx=-\int_{\partial B} v^{(p-2)/2}(\nu \cdot \nabla \rho)(1-\rho)d\xi, $$ whose left hand side is proportional to $E(\rho_1,B)$. Thus $$ E(\rho_1,B)\leq C\big| \int_{\partial B}v^{(p-2)/2}(\nu \cdot \nabla \rho)(1-\rho)d\xi\big|. $$ Applying Holder's inequality and \eqref{2.3}, \eqref{2.5}, \eqref{2.6} and \eqref{2.11}, we obtain \begin{equation} \label{2.12} \begin{aligned} E(\rho_1,B) &\leq C|\int_{\partial B} v^{p/2}d\xi|^{(p-1)/p} \Big|\int_{\partial B}(1-\rho^2)^2d\xi\Big|^{1/p}\\ &\leq C\varepsilon^{(m-p)(p-1)/p} \Big|\int_{\partial B} u_{\varepsilon 3}^2 d\xi\Big|^{1/p} \leq C\varepsilon^{m-p+1}. \end{aligned} \end{equation} The proof is complete. \end{proof} \begin{proposition} \label{prop2.4} Denote $h=|u'_\varepsilon|$. Then there is $t \in (0,1/2)$ such that for any $\delta \in (0,1/2)$, \begin{equation} \label{2.13} \begin{aligned} & \frac{1}{p}\int_B|\nabla h|^pdx+\frac{1}{p}\int_B|\nabla u_3|^pdx+\frac{1}{4\varepsilon^p}\int_B(1-h^2)^2dx\\ & \leq C\varepsilon^{m-p+1} +\delta\int_B|\nabla u_{\varepsilon}|^p dx +C\Big(\int_{B(x,2r)} |\nabla u_{\varepsilon}|^pdx+1\Big)\\ &\quad\times \Big[\int_B(1-h^2)^2dx\Big]^{t/(p+t)}. \end{aligned} \end{equation} \end{proposition} \begin{proof} Let $U=(\sqrt{2\rho_1-\rho_1^2} w,1-\rho_1)$ on $B$; $U=u_{\varepsilon}$ on $G\setminus B$, where $w=w_\varepsilon=\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}$. Then $U \in W_g^{1,p}(G,S^2)$. Since $u_{\varepsilon}$ is a minimizer of $E_{\varepsilon}(u,G)$, we have $$ E_{\varepsilon}(u_{\varepsilon},G) \leq E_{\varepsilon}(U,G) =E_{\varepsilon}(U,B) +E_{\varepsilon}(u_{\varepsilon},G\setminus B), $$ which means $E_{\varepsilon}(u_{\varepsilon},B) \leq E_{\varepsilon}(U,B)$. Using \eqref{2.12} it is not difficult to see that for any $\delta>0$, \begin{align*} \int_B|\nabla \rho_1|^2|\nabla w|^{p-2} dx &\leq (\int_B|\nabla \rho_1|^pdx)^{2/p} (\int_B|\nabla w|^pdx)^{\frac{p-2}{p}}\\ &\leq \delta\int_B|\nabla u_{\varepsilon}|^pdx +C\varepsilon^{m+1-p}. \end{align*} By using \eqref{2.6} and the mean value theorem, \begin{align*} & \int_B(\frac{(1-\rho_1)^2}{2\rho_1-\rho_1^2}|\nabla \rho_1|^2 +(2\rho_1-\rho_1^2)|\nabla w|^2)^{p/2}dx -\int_B((2\rho_1-\rho_1^2)|\nabla w|^2)^{p/2}dx\\ &\leq C\int_B(|\nabla \rho_1|^p +|\nabla \rho_1|^2|\nabla w|^{p-2})dx, \end{align*} and noting $2\rho-\rho^2-1=-(1-\rho)^2 \leq 0$, we have \begin{align*} E_{\varepsilon}(u_{\varepsilon},B) &\leq E_{\varepsilon}(U,B)\\ &\leq \frac{1}{p} \int_B((2\rho_1-\rho_1^2)|\nabla w|^2)^{p/2}dx +C\int_B(|\nabla \rho_1|^p +|\nabla \rho_1|^2|\nabla w|^{p-2})dx \\ &\quad +\frac{1}{4\varepsilon^p} \int_B(1-\rho_1)^2dx\\ &\leq \frac{1}{p} \int_B|\nabla w|^pdx+\delta\int_B|\nabla u_{\varepsilon}|^p dx+C\varepsilon^{m+1-p}+CE(\rho_1,B). \end{align*} From this result and \eqref{2.12}, we deduce \begin{equation} \label{2.14} E_{\varepsilon}(u_{\varepsilon},B) \leq \frac{1}{p} \int_B|\nabla w|^pdx+C\varepsilon^{m+1-p} +\delta\int_B|\nabla u_{\varepsilon}|^pdx. \end{equation} By Jensen's inequality and \eqref{2.14}, we obtain \begin{equation} \label{2.15} \begin{aligned} &\frac{1}{p}\int_B|\nabla h|^pdx +\frac{1}{p}\int_B(h^p-1)|\nabla w|^pdx +\frac{1}{p}\int_B|\nabla u_3|^pdx\\ &+\frac{1}{4\varepsilon^p}\int_B(1-h^2)^2dx\\ &\leq E_{\varepsilon}(u_{\varepsilon},B) -\frac{1}{p}\int_B|\nabla w|^p dx\\ &\leq C\varepsilon^{m-p+1}+\delta\int_B|\nabla u_{\varepsilon}|^p dx. \end{aligned} \end{equation} Since $h \geq 1/2$ and Proposition \ref{prop2.1}, there exists a $t \in (0,1/2)$ such that \begin{equation} \label{2.16} \begin{aligned} &\frac{1}{p} \int_B(1-h^p)|\nabla w_\varepsilon|^p dx\\ &\leq \frac{2^p}{p}\int_B(1-h^p)|\nabla u_{\varepsilon}|^pdx\\ &\leq C\Big(\int_B |\nabla u_{\varepsilon}|^{p+t}dx\Big)^{p/(p+t)} \Big(\int_B(1-h^p)^{(p+t)/t}dx\Big)^{t/(p+t)}\\ &\leq C\Big(\int_{B(x,2r)} |\nabla u_{\varepsilon}|^pdx+1\Big) \Big(\int_B(1-h^2)^2dx\Big)^{t/(p+t)}. \end{aligned} \end{equation} Combining this with \eqref{2.15} we complete the proof. \end{proof} \subsection*{Proof of Theorem \ref{thm2.2}} \quad \noindent\textbf{Step 1.} Since $|u'_{\varepsilon}|\geq 1/2$, there exists $\phi \in W^{1,p}(B(x,3R)$,$[0,2\pi))$ such that $w=\frac{u'_\varepsilon}{|u'_\varepsilon|}=(\cos \phi,\sin\phi)$. Obviously, $|\nabla w|^2=|\nabla \phi|^2$. Substituting this into \eqref{1.1} with the test function $(\psi,0)$ yields \begin{align*} &\int_{B(x,3R)}|\nabla u|^{p-2}(w\nabla h+h\nabla w)\nabla \psi dx\\ &=\int_{B(x,3R)}hw|\nabla u|^p \psi dx +\frac{1}{\varepsilon^p}\int_{B(x,3R)}hw\psi (1-h^2) dx \end{align*} where $\psi \in W_0^{1,p}(G,\mathbb{R}^2)$. Let $e^{i\phi}=\cos \phi +i \sin \phi$. Then \begin{align*} &\int_{B_{3R}(x)}he^{i\phi}|\nabla u|^p \psi dx+\frac{1}{\varepsilon^p} \int_{B_{3R}(x)}h\psi e^{i \phi}(1-h^2)dx\\ &=\int_{B_{3R}(x)}|\nabla u|^{p-2}(e^{i \phi}\nabla h +h ie^{i\phi}\nabla \phi)\nabla \psi dx. \end{align*} Taking $\psi=e^{-i\phi} \zeta$, where $\zeta \in W_0^{1,p}(B(x,3R),\mathbb{R}^2)$, we obtain \begin{gather} \label{2.17} \begin{aligned} &\frac{1}{\varepsilon^p} \int_{B(x,3R)}h(1-h^2)\zeta dx\\ &=\int_{B(x,3R)}|\nabla u|^{p-2}(\nabla h \nabla \zeta +h(|\nabla \phi|^2-|\nabla u|^2)\zeta)dx. \end{aligned} \\ \label{2.18} 0=\int_{B(x,3R)}|\nabla u|^{p-2} (h\nabla \phi \nabla \zeta -\zeta\nabla h\nabla \phi)dx. \end{gather} Taking $\zeta=h\xi$ in \eqref{2.18}, where $\xi \in W_0^{1,p}(B(x,3R),\mathbb{R}^2)$, we have \begin{equation} \label{2.19} 0=\int_{B(x,3R)}|\nabla u|^{p-2}h^2\nabla \phi\nabla \xi dx. \end{equation} Assume $\rho$ is an arbitrary constant in $(0,3R/2)$. Let $\zeta \in W_0^{1,p}(B(x,2\rho),[0,1])$, and $\zeta=1$ on $B(x,\rho)$. Taking $\xi=\phi \zeta^2$ in \eqref{2.19} and using the Young inequality, for any $\eta \in (0,1)$ we obtain $$ \int_{B(x,2\rho)}|\nabla u|^{p-2}h^2|\nabla \phi|^2\zeta^2 dx \leq C\int_{B(x,2\rho)}|\nabla u|^{p-2}h^2 (\eta|\nabla \phi|^2\zeta^2+C(\eta))dx. $$ Choosing $\eta$ sufficiently small and noticing $\zeta=1$ on $B(x,\rho)$, we obtain \begin{equation} \label{2.20} \int_{B(x,\rho)}|\nabla u|^{p-2}h^2|\nabla \phi|^2 dx\leq C\Big(\int_{B(x,2\rho)}|\nabla u|^pdx\Big)^{1-2/p}. \end{equation} Applying \eqref{2.20} with $\rho=r$ we obtain \begin{equation} \label{2.21} \begin{aligned} \int_B|\nabla u|^p &\leq \int_B|\nabla u|^{p-2}(h^2|\nabla \phi|^2 +|\nabla h|^2+|\nabla u_3|^2)dx\\ &\leq C\Big(\int_{B(x,2r)}|\nabla u|^pdx\Big)^{1-2/p}\\ &\quad +\Big(\int_B(|\nabla h|^p+|\nabla u_3|^p)dx\Big)^{2/p} \Big(\int_B|\nabla u|^pdx\Big)^{(p-2)/p}\\ &\leq C\Big(\int_{B(x,2r)}|\nabla u|^pdx\Big)^{1-2/p} +\delta \int_B|\nabla u|^p dx\\ &\quad +C(\delta)\int_B(|\nabla h|^p+|\nabla u_3|^p)dx. \end{aligned} \end{equation} Substituting \eqref{2.13} into \eqref{2.21} and choosing $\delta>0$ sufficiently small we derive \begin{equation} \label{2.22} \begin{aligned} \int_B|\nabla u|^p dx &\leq C\Big(\int_{B(x,2r)}|\nabla u|^pdx\Big)^{1-2/p} +C\varepsilon^{m-p+1}\\ &\quad +C\Big(\int_{B(x,2r)} |\nabla u_{\varepsilon}|^pdx+1\Big) \Big[\int_B(1-h^2)^2dx\Big]^{t/(p+t)}. \end{aligned} \end{equation} From \eqref{2.2} it follows that \begin{equation} \label{2.23} \int_B|\nabla u|^p dx\leq C(\varepsilon^{m-p})^{1-2/p} +C\varepsilon^{m-p+1} +C\varepsilon^{m-p+\frac{mt}{p+t}}=I_1+I_2+I_3. \end{equation} \smallskip \noindent\textbf{Step 2.} When $m \leq p/2$, then $m+1-p\leq (m-p)(1-2/p)$. Therefore $I_1 \leq I_2$. Let $k_0 \in N$ be the minimum with the property $m+1\leq (1+\frac{t}{p+t})^{k_0}m$. In the following we shall improve the exponent $m-p+\frac{t}{p+t}m$ of $\varepsilon$ in $I_3$ to $m-p+1$. Assume $\zeta \in C_0^{\infty}(B(x,2R),[0,1])$ satisfying $\zeta=1$ on $B_{m+1/2}$ and $|\nabla \zeta| \leq C$. Taking the test function as $h \zeta(1-h)$ in \eqref{2.17}, we have \begin{align*} &\frac{1}{\varepsilon^p} \int_Bh^2(1-h^2)\zeta(1-h)dx +\int_B|\nabla u|^{p-2}|\nabla h|^2h\zeta dx+\int_Bh^2|\nabla u|^p(1-h)\zeta dx\\ &\leq \int_B|\nabla u|^{p-2}\nabla h\nabla \zeta h(1-h) dx+\int_B|\nabla u|^p\zeta (1-h) \leq C\int_B|\nabla u|^pdx \end{align*} Noting $\zeta=1$ on $B_{m+1/2}$, applying $h \geq 1/2$ and \eqref{2.22}, we obtain $$ \frac{1}{\varepsilon^p} \int_{B_{m+1/2}}(1-h^2)^2 dx\leq \frac{C}{\varepsilon^p} \int_Bh^2(1-h^2)(1-h)\zeta dx \leq C(1+\varepsilon^{m-p+\frac{t}{p+t}m}), $$ which implies \begin{equation} \label{2.24} \int_{B_{m+1/2}}(1-h^2)^2 dx\leq C\varepsilon^{m(1+\frac{t}{p+t})}, \quad \varepsilon \in (0,\varepsilon_0). \end{equation} On the other hand, similar to the derivation of \eqref{2.14}, for $B_{m+1/2}$ we still conclude that for any $\delta>0$, $$ E_{\varepsilon}(u_{\varepsilon},B_{m+1/2})\leq \frac{1}{p}\int_{B_{m+1/2}} |\nabla w|^pdx+C\varepsilon^{m-p+1} +\delta\int_{B_{m+1/2}}|\nabla u_{\varepsilon}|^pdx. $$ Therefore, \eqref{2.15} can be written as \begin{equation} \label{2.25} \begin{aligned} &\frac{1}{p}\int_{B_{m+1/2}}|\nabla h|^pdx +\frac{1}{p}\int_{B_{m+1/2}}|\nabla u_3|^pdx +\frac{1}{4\varepsilon^p} \int_{B_{m+1/2}}(1-h^2)^2dx\\ &\leq C\varepsilon^{m-p+1}+\frac{1}{p} \int_{B_{m+1/2}} (1-h^p)|\nabla w|^pdx+\delta\int_{B_{m+1/2}} |\nabla u_{\varepsilon}|^pdx. \end{aligned} \end{equation} To estimate the second term of the right hand side of \eqref{2.25}, we apply \eqref{2.23} and \eqref{2.24} to obtain $$ \frac{1}{p} \int_{B_{m+1/2}}(1-h^p)|\nabla w|^p dx\leq C\varepsilon^{(m+\frac{t}{p+t}m)\frac{t}{p+t}+m +\frac{t}{p+t}m-p} =C\varepsilon^{m(1+\frac{t}{p+t})^2-p} $$ by the same way as for \eqref{2.16}. Substituting this into \eqref{2.25} yields $$ \frac{1}{p}\int_{B_{m+1/2}}(|\nabla h|^p+|\nabla u_3|^p) dx\leq C(\varepsilon^{m-p+1}+\varepsilon^{m(1+\frac{t}{p+t})^2-p}) +\delta\int_{B_{m+1/2}}|\nabla u_{\varepsilon}|^pdx. $$ Using this instead of \eqref{2.13} and by the same argument of Step 1 we can improve \eqref{2.23} as $$ \int_{B_{m+1/2}}|\nabla u_{\varepsilon}|^p dx\leq C+C(\varepsilon^{m-p+1}+\varepsilon^{m(1+ \frac{t}{p+t})^2-p}) \leq C\varepsilon^{m(1+\frac{t}{p+t})^2-p}. $$ Now, we use this inequality replacing \eqref{2.23} to discuss, thus \eqref{2.24} can be written as $$ \int_{B_{m+3/4}}(1-h^2)^2 dx\leq C\varepsilon^{m(1+\frac{t}{p+t})^2}, \quad \varepsilon \in (0,\varepsilon_0). $$ As a result, it is also follows that, as the derivation of \eqref{2.16} and \eqref{2.23}, \begin{gather*} \frac{1}{p} \int_{B_{m+3/4}}(1-h^p)|\nabla w|^p dx\leq C\varepsilon^{m(1+\frac{t}{p+t})^3-p}, \\ \int_{B_{m+3/4}}|\nabla u_{\varepsilon}|^p dx\leq C+C(\varepsilon^{m-p+1}+\varepsilon^{m(1+ \frac{t}{p+t})^3-p})\leq C\varepsilon^{m(1+\frac{t}{p+t})^3-p}. \end{gather*} If we do in this way, and noting the definition of $k_0$, we can derive by $k_0$ steps that $$ \int_{B_{m+1-1/{2^{k_0-1}}}}|\nabla u_{\varepsilon}|^pdx \leq C+C(\varepsilon^{m-p+1}+\varepsilon^{m (1+\frac{t}{p+t})^{k_0}-p}). $$ Thus $$ \int_{B_{m+1}}|\nabla u_{\varepsilon}|^p dx\leq \int_{B_{m+1-1/{2^{k_0-1}}}}|\nabla u_{\varepsilon}|^p dx\leq C(\varepsilon^{m-p+1}+1). $$ This is \eqref{2.2} for $j=m+1$. \smallskip \noindent\textbf{Step 3.} When $m>p/2$, $(m-p)(1-2/p)0$ such that $m(1+\frac{t}{p+t})^{k_0}-p>(m-p)(1-2/p)$. Namely, there is a constant $r_1 \in (R_{m+1},r)$ such that $$ \int_{B(x,r_1)}|\nabla u_{\varepsilon}|^p dx\leq C\varepsilon^{(m-p)(1-2/p)}. $$ Therefore, as the derivation of \eqref{2.24}, $$ \int_{B(x,2r_1/3)}(1-h^2)^2dx \leq C\varepsilon^{(m-p)(1-2/p)+p}. $$ Substituting these into \eqref{2.22} we have \begin{align*} &\int_{B(x,r_1/2)}|\nabla u_{\varepsilon}|^pdx\\ &\leq C\varepsilon^{m+1-p}+ C\Big[\int_{B(x,r)}|\nabla u_{\varepsilon}|^pdx\Big]^{1-2/p}\\ &\quad +C\Big(\int_{B(x,r)}|\nabla u_{\varepsilon}|^pdx+1\Big) \Big[\int_{B(x,r)}(1-h^2)^2dx\Big]^{\frac{t}{p+t}}\\ &\leq C\varepsilon^{m+1-p}+ C\varepsilon^{(m-p)(1-2/p)^2}+C\varepsilon^ {(m-p)(1-2/p)+[(m-p)(1-2/p)+p]\frac{t}{p+t}}. \end{align*} Noting $(m-p)(1-2/p)^20$ which does not depend on $\varepsilon \in (0,1)$ such that $E_{\varepsilon}(u_{\varepsilon},K)\leq C$. \end{theorem} \begin{proof} It is sufficient to prove that $E_{\varepsilon}(u_{\varepsilon},B(x,R))\leq C$, where $B(x,R)$ is the disc in $G\setminus \{a_1,a_2,\dots ,a_N\}$. Theorem \ref{thm2.2} shows that \begin{equation} \label{2.26} E_{\varepsilon}(u_{\varepsilon},B_{[p]})\leq C\varepsilon^{[p]-p}. \end{equation} Using this and the integral mean value theorem, there exists a constant $r \in [R_{[p]+1/2},R_{[p]}]$ such that \begin{equation} \label{2.27} \int_{\partial B(x,r)}|\nabla u_{\varepsilon}|^pd\xi +\frac{1}{\varepsilon^p} \int_{\partial B(x,r)}u_{\varepsilon 3}^2d\xi \leq C(r)\varepsilon^{[p]-p}. \end{equation} Consider the functional $$ E(\rho,B)=\frac{1}{p} \int_B(|\nabla \rho|^2+1)^{p/2}dx +\frac{1}{2\varepsilon^p} \int_B(1-\rho)^2dx, $$ where $B=B(x,r)$. It is easy to prove that the minimizer $\rho_2$ of $E(\rho,B)$ on $W_{|u'_{\varepsilon}|}^{1,p} (B,\mathbb{R}^+\cup\{0\})$ exists. Similar to the proof of proposition \ref{prop2.3}, by \eqref{2.26} and \eqref{2.27} we can derive \begin{equation} \label{2.28} E(\rho_2,B)\leq C\varepsilon^{[p]-p+1}. \end{equation} From this it follows that for any $\delta>0$, $$ \int_B|\nabla \rho_2|^2|\nabla w|^{p-2} dx\leq \delta\int_B|\nabla u_{\varepsilon}|^p dx+C\varepsilon^{[p]+1-p}. $$ Since $u_{\varepsilon}$ is a minimizer of $E_{\varepsilon}(u,G)$, we have \begin{equation} \label{2.29} \begin{aligned} E_{\varepsilon}(u_{\varepsilon},B) &\leq E_{\varepsilon}((\rho_2 w,\sqrt{1-\rho_2^2}),B)\\ &\leq \frac{1}{p} \int_B(\rho_2^2|\nabla w|^2)^{p/2}dx +C\int_B(|\nabla \rho_2|^p +|\nabla \rho_2|^2|\nabla w|^{p-2})dx\\ &\quad +\frac{1}{4\varepsilon^p} \int_B(1-\rho_2^2)^2dx. \end{aligned} \end{equation} Therefore, $$ E_{\varepsilon}(u_{\varepsilon},B) \leq \frac{1}{p}\int_B|\nabla w|^pdx +C\varepsilon^{[p]+1-p}+\delta\int_B|\nabla u_{\varepsilon}|^p dx. $$ Combining this with Jensen's inequality yields \begin{equation} \label{2.30} \begin{aligned} &\frac{1}{p}\int_B|\nabla h|^pdx+\frac{1}{p}\int_B|\nabla u_3|^pdx +\frac{1}{4\varepsilon^p}\int_B(1-h^2)^2 \\ &\leq E_{\varepsilon}(u_{\varepsilon},B) -\frac{1}{p}\int_B|\nabla w|^pdx+\frac{1}{p}\int_B(1-h^p)|\nabla w|^pdx\\ &\leq C\varepsilon^{[p]+1-p}+\delta \int_B|\nabla u_{\varepsilon}|^p dx+\frac{1}{p}\int_B(1-h^p)|\nabla w|^pdx. \end{aligned} \end{equation} To estimate the third term of the right hand side, we proceed in the same way of the proof of Proposition \ref{prop2.4}, and use $\frac{1}{\varepsilon^p} \int_B(1-h^2)^2dx\leq C\varepsilon^{[p]-p}$ which is implied by \eqref{2.26}. As a result, there exists $t \in (0,1/2)$ such that $$ \frac{1}{p}\int_B(1-h^p)|\nabla w|^p dx\leq C \varepsilon^{[p]+[p]t/(p+t)-p}. $$ Substituting this into \eqref{2.30} yields \begin{align*} &\frac{1}{p}\int_B(|\nabla h|^p+|\nabla u_3|^p)dx+ \frac{1}{4\varepsilon^p}\int_B(1-h^2)^2 dx \\ &\leq C(\varepsilon^{[p]+1-p}+\varepsilon^{[p]+\frac{[p]t}{p+t}-p}) +\delta\int_B|\nabla u_{\varepsilon}|^pdx. \end{align*} This and \eqref{2.21} imply that \begin{equation} \label{2.31} \int_B|\nabla u_{\varepsilon}|^p dx\leq C\varepsilon^{[p]-p+1}+C\varepsilon^{[p]-p+\frac{t}{p+t}m} +C\varepsilon^{([p]-p)(1-2/p)}+C, \end{equation} as long as we choose $\delta>0$ sufficiently small. Discussing in the same way to Step 2 and Step 3, we may improve the exponent of $\varepsilon$ in the second and the third terms of the right hand side of \eqref{2.31} step by step such that the improved exponent is not smaller than $[p]-p+1$, thus for some $B_{[p]+1} \subset B$, there exists $C$ independent of $\varepsilon \in (0,\varepsilon_0)$ with $\varepsilon_0$ sufficiently small such that $$ \int_{B_{[p]+1}}|\nabla u_{\varepsilon}|^p dx\leq C+C\varepsilon^{[p]+1-p}\leq C. $$ The proof is complete. \end{proof} \section{Proof of Theorem \ref{thm1.2}} \textbf{Step 1.} Suppose $B(x_0,2\sigma) \subset [G\setminus \cup_{j=1}^N \{a_j\}]$, where the constant $\sigma$ may be sufficiently small but independent of $\varepsilon$. Since theorem 2.5 implies $E_{\varepsilon}(u_{\varepsilon},B(x_0,2\sigma) \setminus B(x_0,\sigma)) \leq C$, there is a constant $r \in (\sigma, 2\sigma)$ such that $$ \int_{\partial B(x_0,r)}|\nabla u_{\varepsilon}|^pd\xi +\frac{1}{\varepsilon^p}\int _{\partial B(x_0,r)}u_{\varepsilon 3}^2d\xi \leq C(r). $$ Thus, we can find a subsequence $u_{\varepsilon_k}$ of $u_{\varepsilon}$ such that $u_{\varepsilon_k} \to u_p=(u'_p,0)$ in $C(\partial B(x_0,r),\mathbb{R}^3)$, where $u'_p$ is the $S^1$-valued harmonic map, which leads to \begin{equation} \label{3.2} \frac{u'_{\varepsilon_k}}{|u'_{\varepsilon_k}|} \to u'_p, \quad\text{in} \quad C(\partial B(x_0,r)). \end{equation} \smallskip \noindent\textbf{Step 2.} Denote $B=B(x_0,r)$. It is easy to see the existence of the solution $w_\varepsilon$ of \begin{equation} \label{3.3} \min\{\int_B|\nabla u|^p dx: u \in W_{\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}}^{1,p}(B,\partial B_1)\}. \end{equation} Theorem \ref{thm2.5} and $|u'_{\varepsilon}|\geq 1/2$ on $B$ imply $2^{-p}\int_B|\nabla \frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}|^p dx\leq \int_B|\nabla u_{\varepsilon}|^p dx\leq C$, and hence \begin{equation} \label{3.4} \int_B|\nabla w_\varepsilon|^p dx\leq \int_B|\nabla \frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}|^pdx\leq C. \end{equation} From this and \eqref{2.28} it follows that $\int_B|\nabla \rho_2|^2|\nabla w_\varepsilon|^{p-2} dx\leq C\varepsilon^{2([p]+1-p)/p}$, where $\rho_2$ is the minimizer of $E(\rho,B)$ on $W_{|u'_{\varepsilon}|}^{1,p} (B,\mathbb{R}^+\cup\{0\})$. Substituting this result into \eqref{2.29} and using \eqref{2.28}, we obtain \begin{equation} \label{3.5} \int_B|\nabla u_{\varepsilon}|^pdx \leq C\varepsilon^{2([p]+1-p)/p}+\int_B|\nabla w_\varepsilon|^pdx. \end{equation} \smallskip \noindent\textbf{Step 3.} Let $w_\varepsilon^{\tau}$ be a solution of \begin{equation} \label{3.6} \min\big\{\int_B(|\nabla w|^2+\tau)^{p/2} dx: w \in W_{\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}}^{1,p} (B,\partial B_1)\big\},\quad \tau \in (0,1). \end{equation} Clearly, $w_\varepsilon^{\tau}$ also solves \begin{equation} \label{3.7} -\mathop{\rm div}({v_\varepsilon^{\tau}}^{(p-2)/2}\nabla w) =w|\nabla w|^2{v_\varepsilon^{\tau}}^{(p-2)/2}, \quad v_\varepsilon^{\tau}=|\nabla w|^2+\tau. \end{equation} Noticing $\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|} \in W_{\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}}^{1,p} (B,\partial B_1)$, we have \begin{equation} \label{3.8} \begin{aligned} \int_B|\nabla w_\varepsilon^{\tau}|^p dx &\leq \int_B(|\nabla w_\varepsilon^{\tau}|^2+\tau)^{p/2} dx\\ &\leq \int_B(|\nabla \frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}|^2 +\tau)^{p/2} dx \\ &\leq \int_B(|\nabla \frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}|^2+1)^{p/2}dx \leq C \end{aligned} \end{equation} by using \eqref{3.4}, where $C$ is a constant which is independent of $\varepsilon, \tau$. Then there exist $w^* \in W_{\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}}^{1,p} (B,\partial B_1)$ and a subsequence of $w_\varepsilon^{\tau}$ denoted still by itself such that \begin{equation} \label{3.9} \lim_{\tau \to 0}w_\varepsilon^{\tau} = w^*\quad\text{weakly in } W^{1,p}(B,{R}^2). \end{equation} Noting the weak lower semi-continuity of $\int_B|\nabla w|^p$, we have \begin{equation} \label{3.10} \int_B|\nabla w^*|^p dx\leq \liminf_{\tau \to 0} \int_B|\nabla w_\varepsilon^{\tau}|^p dx \leq \limsup_{\tau \to 0} \int_B|\nabla w_\varepsilon^{\tau}|^p dx. \end{equation} The fact that $w_\varepsilon^{\tau}$ solves \eqref{3.6} implies $$ \limsup_{\tau \to 0} \int_B(|\nabla w_\varepsilon^{\tau}|^2+\tau)^{p/2} dx\leq \lim_{\tau \to 0} \int_B(|\nabla w_\varepsilon|^2+\tau)^{p/2}dx =\int_B|\nabla w_\varepsilon|^pdx, $$ where $w_\varepsilon$ is a solution of \eqref{3.3}. This and \eqref{3.10} lead to \begin{equation} \label{3.11} \int_B|\nabla w^*|^p dx \leq \liminf_{\tau \to 0} \int_B|\nabla w_\varepsilon^{\tau}|^p dx \leq \limsup_{\tau \to 0} \int_B|\nabla w_\varepsilon^{\tau}|^p dx \leq \int_B|\nabla w_\varepsilon|^p dx. \end{equation} Since $w^* \in W_{\frac{u'_{\varepsilon}}{|u'_{\varepsilon}|}}^{1,p} (B,\partial B_1)$, we know $w^*$ also solves \eqref{3.3}, namely \begin{equation} \label{3.12} \int_B|\nabla w_\varepsilon|^p dx=\int_B|\nabla w^*|^p dx. \end{equation} Combining this with \eqref{3.11} yields $\lim_{\tau \to 0}\int_B|\nabla w_\varepsilon^{\tau}|^p dx=\int_B|\nabla w^*|^pdx$, which and \eqref{3.9} imply that as $\tau \to 0$, \begin{equation} \label{3.13} \nabla w_\varepsilon^{\tau} \to \nabla w^* \quad \text{in } L^p(B,{R}^2). \end{equation} \smallskip \noindent\textbf{Step 4.} By the same argument as in Step 3, we obtain the following conclusion: Let $u^{\tau}$ be a solution of \begin{equation} \label{3.14} \min\{\int_B(|\nabla u|^2+\tau)^{p/2} dx: u \in W_{u'_p}^{1,p}(B,\partial B_1)\},\quad \tau \in (0,1). \end{equation} Then $u^{\tau}$ satisfies \begin{equation} \label{3.15} \int_B|\nabla u^{\tau}|^p dx\leq C, \end{equation} where $C$ is which is independent of $\tau$, and $u^{\tau}$ solves \begin{equation} \label{3.16} -\mathop{\rm div}[(v^{\tau})^{(p-2)/2}\nabla u] =u|\nabla u|^2v^{(p-2)/2}, \quad v^{\tau}=|\nabla u|^2+\tau. \end{equation} As $\tau \to 0$, there exists a subsequence of $u^{\tau}$ denoted by itself such that \begin{equation} \label{3.17} \nabla u^{\tau} \to \nabla u^* \quad\text{in } L^p(B,{R}^2), \end{equation} where $u^*$ is a minimizer of $\int_B|\nabla u|^p dx$ in $W_{u'_p}^{1,p}(B,\partial B_1)$. It is well-known that $u^*$ is a map of the least p-energy, and also a p-harmonic map. \smallskip \noindent\textbf{Step 5.} From \cite[Lemma 1, Page 65]{BZ}, we can write \begin{gather*} w_\varepsilon^{\tau}=(\cos \phi_\varepsilon^{\tau},\sin \phi_\varepsilon^{\tau}),\quad u^{\tau}=(\cos \psi^{\tau},\sin \psi^{\tau}),\\ w_\varepsilon=(\cos \phi_\varepsilon^*,\sin \phi_\varepsilon^*),\quad u^*=(\cos \psi^*,\sin \psi^*),\\ \frac{u'_\varepsilon}{|u'_\varepsilon|}|_{\partial B} =(\cos \phi_\varepsilon,\sin \phi_\varepsilon),\quad u'_p|_{\partial B}=(\cos \psi,\sin \psi), \end{gather*} where $\phi_\varepsilon^{\tau}, \psi^{\tau}, \phi_{\varepsilon}^*, \psi^*$ belong to $W^{1,p}(B,R)$, $\phi^*, \psi$ belong to $W^{1,p}(\partial B,R)$, and they are all single-valued functions since their degrees around $\partial B$ are zero. Therefore, \begin{equation} \label{3.18} \phi_\varepsilon^{\tau}|_{\partial B}=\phi_\varepsilon, \quad\psi^{\tau}|_{\partial B}=\psi, \end{equation} and $|\nabla w_\varepsilon^{\tau}|=|\nabla \phi_\varepsilon^{\tau}|$, $|\nabla u^{\tau}|=|\nabla \psi^{\tau}|$. $|\nabla w_\varepsilon|=|\nabla \phi_\varepsilon^*|$, $|\nabla u^*|=|\nabla \psi^*|$. Moreover, by \eqref{3.7} and \eqref{3.16}, we obtain that both $\phi_\varepsilon^{\tau}$ and $\psi^{\tau}$ satisfy $-\operatorname{div}[(|\nabla \Phi|^2+\tau)^{(p-2)/2}\nabla \Phi]=0$. Thus, \begin{equation} \label{3.19} -\operatorname{div}[(|\nabla \phi_\varepsilon^{\tau}|^2+\tau)^{(p-2)/2} \nabla \phi_\varepsilon^{\tau} -(|\nabla \psi^{\tau}|^2+\tau)^{(p-2)/2}\nabla \psi^{\tau}]=0. \end{equation} Multiplying both sides of \eqref{3.19} by $\phi_\varepsilon^{\tau} -\psi^{\tau}$ and integrating over $B$, we obtain \begin{equation} \label{3.20} \begin{aligned} &-\int_{\partial B}({v_\varepsilon^{\tau}}^{(p-2)/2}\phi_{\nu} -v^{(p-2)/2}\psi_{\nu})(\phi-\psi)d\xi\\ &+\int_B({v_\varepsilon^{\tau}}^{(p-2)/2}\nabla \phi -v^{(p-2)/2}\nabla \psi)\nabla (\phi-\psi)dx=0, \end{aligned} \end{equation} where $\nu$ denotes the unit outside-norm vector of $\partial B$. Let $w=w_\varepsilon^{\tau}$ be a solution of \eqref{3.6}. Integrating both sides of \eqref{3.7} over $B$, we have $$ -\int_{\partial B}{v_\varepsilon^{\tau}}^{(p-2)/2}w_{\nu}d\xi =\int_Bw|\nabla w|^2{v_\varepsilon^{\tau}}^{(p-2)/2}dx, $$ this and \eqref{3.8} imply \begin{equation} \label{3.21} \big|\int_{\partial B}{v_\varepsilon^{\tau}}^{(p-2)/2}\phi_{\nu}d\xi\big| =\big|\int_{\partial B}{v_\varepsilon^{\tau}}^{(p-2)/2}w_{\nu}d\xi\big| \leq \int_B {v_\varepsilon^{\tau}}^{p/2} dx\leq C. \end{equation} An analogous discussion shows that for the solution $u=u^{\tau}$ of \eqref{3.14} which is equipped with \eqref{3.15}, we may also obtain \begin{equation} \label{3.22} \big|\int_{\partial B}v^{(p-2)/2}\psi_{\nu}d\xi\big| =\big|\int_{\partial B}v^{(p-2)/2}u_{\nu}d\xi\big| \leq \int_B|\nabla u|^p dx\leq C. \end{equation} Combining \eqref{3.18} with \eqref{3.20}-\eqref{3.22}, we derive $$ \int_B({v_\varepsilon^{\tau}}^{(p-2)/2}\nabla \phi -v^{(p-2)/2}\nabla \psi)\nabla (\phi-\psi) dx\leq C\sup_{\partial B}|\phi_\varepsilon^{\tau}-\psi^{\tau}| =C\sup_{\partial B}|\phi_\varepsilon-\psi|, $$ where $C$ is independent of $\varepsilon, \tau$. Letting $\tau \to 0$ and applying \eqref{3.13} and \eqref{3.17}, we obtain $$ \big|\int_B(|\nabla \phi_\varepsilon^*|^{(p-2)/2}\nabla \phi_\varepsilon^* -|\nabla \psi^*|^{(p-2)/2}\nabla \psi^*)\nabla (\phi_\varepsilon^*-\psi^*)dx\big| \leq C\sup_{\partial B}|\phi_\varepsilon-\psi|, $$ which implies $\int_B|\nabla \phi_\varepsilon^*-\nabla \psi^*|^p dx\leq C\sup_{\partial B}|\phi_\varepsilon-\psi|$. Letting $\varepsilon \to 0$ and using \eqref{3.2}, we obtain $\int_B|\nabla \phi_\varepsilon^*|^p dx\to \int_B|\nabla \psi^*|^pdx$. That is, \begin{equation} \label{3.23} \int_B|\nabla w_\varepsilon|^pdx \to \int_B|\nabla u^*|^pdx. \end{equation} \smallskip \noindent\textbf{Step 6.} Since $\int_B|\nabla u|^pdx$ is weak lower semi-continuous, from Theorem \ref{thm1.2*} we deduce $\int_B|\nabla u_p|^pdx \leq \liminf_{\varepsilon_k \to 0} \int_B|\nabla u_{\varepsilon_k}|^pdx$. Combining this result with \eqref{3.5}, \eqref{3.12} and \eqref{3.23}, we obtain \begin{align*} \int_B|\nabla u_p|^p dx &\leq \liminf_{\varepsilon_k \to 0}\int_B|\nabla u_{\varepsilon_k}|^p dx\leq \limsup_{\varepsilon_k \to 0}\int_B|\nabla u_{\varepsilon_k}|^pdx\\ &\leq \lim_{\varepsilon_k \to 0}\int_B|\nabla w_\varepsilon|^pdx =\int_B|\nabla u^*|^pdx. \end{align*} Recalling the definition of $u^*$ in Step 4, and noticing $u'_p \in W_{u'_p}^{1,p}(B,\partial B_1)$, we know that $u'_p$ is also a minimizer of $\int_B|\nabla u|^p$, and $$ \lim_{\varepsilon_k \to 0}\int_B|\nabla u_{\varepsilon_k}|^pdx=\int_B|\nabla u_p|^pdx=\int_B|\nabla u^*|^pdx. $$ This result and Theorem \ref{thm1.2*} imply $\nabla u_{\varepsilon_k} \to \nabla u_p$ in $L^p(B,{R}^3)$. when $\varepsilon_k \to 0$. Combining this with the fact $u_{\varepsilon_k} \to u_p$ in $L^p(B,{R}^3)$, which is implied by Theorem \ref{thm1.2*}, we obtain $$ u_{\varepsilon_k} \to u_p, \quad\text{in } W^{1,p}(B,{R}^3) $$ as $\varepsilon_k \to 0$. Then it is not difficult to complete the proof of this theorem. \subsection*{Acknowledgements} The authors wish to express their appreciation to the anonymous referees for their suggestions that greatly improved this article. \begin{thebibliography}{00} \bibitem{ABGS-09} Y. Almog, L. Berlyand, D. Golovaty, I. Shafrir; \emph{ Global minimizers for a $p$-Ginzburg-Landau-type energy in $\mathbb{R}^2$,} J. Funct. Anal., \textbf{256} (2009), 2268-2290. \bibitem{ABGS-11} Y. Almog, L. Berlyand, D. Golovaty, I. Shafrir; \emph{Radially symmetric minimizers for a p-Ginzburg Landau type energy in $\mathbb{R}^2$, } Calc. Var. PDEs, \textbf{42} (2011), 517-546. \bibitem{BBH-93} F. Bethuel, H. Brezis, F. Helein; \emph{ Asymptotics for the minimization of a Ginzburg-Landau functional,} Calc. Var. PDEs, \textbf{1} (1993), 123-138. \bibitem{BBH-94} F. Bethuel, H. Brezis, F. Helein; \emph{Ginzburg-Landau Vortices,} Birkhauser, Berlin, 1994. \bibitem{BZ} F. Bethuel, X. Zheng; \emph{Density of smooth functions between two manifolds in Sobolev space,} J. Funct. Anal., \textbf{80} (1988), 60-75. \bibitem{GG} M. Giaquinta, E. Giusti; \emph{ On the regularity of the minima of variational integrals,} Acta. Math., \textbf{148} (1982), 31-46. \bibitem{HL-96} Z. Han, Y. Li; \emph{Degenerate elliptic systems and applications to Ginzburg-Landau type equations, Part I,} Calc. Var. PDEs, \textbf{4} (1996), 171-202. \bibitem{HL-01} F. Hang, F. Lin; \emph{ Static theory for planar ferromagnets and antiferromagnets,} Acta. Math. Sinica, English Series, \textbf{17} (2001), 541-580. \bibitem{Hong} M. Hong; \emph{Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps,} Adv. Diff. Eqns., \textbf{1} (1996), 611-634. \bibitem{KP} S. Komineas, N. Papanicolaou; \emph{Vortex dynamics in two-dimensional antiferromagnets,} Nonlinearity, \textbf{11} (1998), 265-290. \bibitem{Lei-04} Y. Lei; \emph{On the minimization of an energy functional,} J. Math. Anal. Appl., \textbf{293} (2004), 237-257. \bibitem{Lei-06} Y. Lei; \emph{ $W^{1,p}$ convergence of a Ginzburg-Landau type minimizer}, J. Math. Anal. Appl., \textbf{313} (2006), 1-23. \bibitem{Lei} Y. Lei; \emph{Asymptotic estimation for a p-Ginzburg-Landau type minimizer in higher dimensions, } Pacific J. Math., \textbf{226} (2006), 103-135. \bibitem{Lei-07} Y. Lei; \emph{Asymptotic estimations for a p-Ginzburg-Landau type minimizer,} Math. Nachr., \textbf{280} (2007), 1559-1576. \bibitem{Lei-08} Y. Lei; \emph{Asymptotic properties of minimizers of a p-energy functional}, Nonlinear Anal., \textbf{68} (2008), 1421-1431. \bibitem{Lei-10} Y. Lei; \emph{Singularity analysis of a p-Ginzburg-Landau type minimizer,} Bull. Sci. Math., \textbf{134} (2010), 97-115. \bibitem{Lin} F. Lin; \emph{Solutions of Ginzburg-Landau equations and critical points of the renomalized energy,} Ann. IHP. Anal. nonLineaire, \textbf{12} (1995), 599-622. \bibitem{PS} N. Papanicolaou, P. N. Spathis; \emph{Semitopological solutions in planar ferromagnets,} Nonlinearity, \textbf{12} (1999), 285-302. \bibitem{Stru} M. Struwe; \emph{On the asymptotic behaviour of minimizers of the Ginzburg-Landau model in 2 dimensions,} Diff. Inter. Eqs., \textbf{7} (1994), 1613-1624. \bibitem{Wang} C. Wang; \emph{Limits of solutions to the generalized Ginzburg-Landau functional,} Comm. Partial Differential Equations, \textbf{27} (2002), 877-906. \end{thebibliography} \end{document}