\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2016 (2016), No. 50, pp. 1--9.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2016 Texas State University.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2016/50\hfil Existence of positive radial solutions]
{Existence of positive radial solutions for
quasilinear elliptic equations and systems}
\author[Z. Zhang \hfil EJDE-2016/50\hfilneg]
{Zhijun Zhang}
\address{Zhijun Zhang \newline
School of Mathematics and Information Science,
Yantai University,
Yantai 264005, Shandong, China}
\email{chinazjzhang2002@163.com, zhangzj@ytu.edu.cn}
\thanks{Submitted November 23, 2015. Published February 17, 2016.}
\subjclass[2010]{35J55, 35J60, 35J65}
\keywords{Quasilinear elliptic equation; radial solutions; existence}
\begin{abstract}
Under simple conditions on $f$ and $g$, we
show that existence of positive radial solutions
for the quasilinear elliptic equation
\[
\operatorname{div}(\phi_1(|\nabla u|) \nabla u)=a(|x|)f(u) \quad
x\in \mathbb{R}^N,
\]
and for the system
\begin{gather*}
\operatorname{div}(\phi_1(|\nabla u|) \nabla u)=a(|x|)f(v) \quad
x\in \mathbb{R}^N, \\
\operatorname{div}(\phi_2(|\nabla v|) \nabla v) =b(|x|)g(u)\quad
x\in \mathbb{R}^N\,.
\end{gather*}
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{remark}[theorem]{Remark}
\allowdisplaybreaks
\section{Introduction}
The purpose of this article is to study the existence of
positive radial solutions to the quasilinear elliptic equation
\begin{equation}\label{e1.1}
\Delta_{\phi_1}u:=\operatorname{div} (\phi_1(|\nabla u|)
\nabla u)=a(|x|)f(u),\quad x\in \mathbb{R}^N,
\end{equation}
and for the system
\begin{equation}\label{e1.2}
\begin{gathered}
\operatorname{div}(\phi_1(|\nabla u|) \nabla u)=a(|x|)f(v),\quad x
\in \mathbb{R}^N, \\
\operatorname{div}(\phi_2(|\nabla v|) \nabla v)=b(|x|)g(u),
\quad x \in \mathbb{R}^N.
\end{gathered}
\end{equation}
In this article by a solution we mean a solution on the entire domain,
as opposed to a local solution.
To emphasize this property some authors use entire solution,
while others use global solution.
We assume the following assumptions:
\begin{itemize}
\item[(A1)] $a, b: \mathbb{R}^N \to [0,\infty)$ are
continuous;
\item[(A2)] $f, g: [0,\infty)\to [0,\infty)$ are continuous and increasing,
\item[(A3)] $\phi_i\in C^1((0, \infty), (0, \infty))$ ($i=1, 2$) satisfy
$(t \phi_i(t))'>0$, for all $t>0$;
\item[(A4)] there exist $p_i, q_i > 1$ such that
$$
p_i \leq \frac {t \Psi_i'(t)}{\Psi_i(t)} \leq q_i, \quad \forall t > 0,
$$
where $\Psi_i(t) = \int_0^t s \phi_i(s)ds$, $t>0$;
\item[(A5)] there exist $k_i, l_i > 0$ such that
$$
k_i \leq \frac {t \Psi_i ''(t)}{\Psi_i'(t)} \leq l_i, \quad \forall t > 0.
$$
\end{itemize}
The function $\phi_1$ appears in
mathematical models in nonlinear elasticity, plasticity, generalized
Newtonian fluids, and in quantum physics, see e.g., Benci,
Fortunato and Pisani \cite{BFP}, Cencelj, Repov\v{s} and Virk
\cite{CE}, Fuchs and Li \cite{FL}, Fuchs and Osmolovski \cite{FO},
Fukagai and Narukawa \cite{FN1}, R\u{a}dulescu \cite{RA1} and \cite{RA2},
R\u{a}dulescu and Repov\u{s} \cite{RA3},
Repov\u{s} \cite{RE}, Zhang and Yuan \cite{ZY} and
Fukagai and Narukawa \cite{FN2}.
Positive solutions to \eqref{e1.1} were
first considered by Santos, Zhou and Santos \cite{SAN}.
Some classical examples of $\phi_1$-Laplacian functions are:
\begin{itemize}
\item[(1)] when $\phi_1(t)\equiv 2$,
$\Psi_1(t)=t^2$, $t>0$,
$\Delta_{\phi_1} u =\Delta u$ is the Laplacian operator.
In this case,
$p_1=q_1=2$ in (A4), and $k_1=l_1=1$ in (A5);
\item[(2)] when $\phi_1(t)=pt^{p-2}$,
$\Psi_1(t)=t^p$, $t>0$, $p>1$,
$\Delta_{\phi_1} u =\Delta_p u$ is the $p$-Laplacian operator.
In this case,
$p_1=q_1=p$ in (A4), and $k_1=l_1=p-1$ in (A5);
\item[(3)] when $\phi_1(t)=pt^{p-2}+qt^{q-2}$,
$\Psi_1(t)=t^p+t^q$, $t>0$, $1
0$, $p>1/2$, $p_1=\min\{2, 2p \}$,
$q_1=\max\{2, 2p \}$ in (A4), and
$k_1=\min\{1, 2p-1\}$, $l_1=\max\{1, 2p-1 \}$ in (A5);
\item[(5)] when $\phi_1(t)= \frac {p(\sqrt{1+t^2}-1)^{p-1}}{\sqrt{1+t^2}}$,
$\Psi_1(t)=(\sqrt{1+t^2}-1)^p$, $t>0$, $p>1$,
$p_1=p$, $q_1=2p$ in (A4), and $k_1=p-1$, $l_1=2p-1$
in (A5);
\item[(6)] when $\phi_1(t)=p t^{p-2} (\ln (1+t))^q
+\frac {q t^{p-1} (\ln (1+t))^{q-1}}{1+t}$, $\Psi_1(t)=t^{p} (\ln
(1+t))^q$, $t>0$, $p>1$, $q>0$, $p_1=p$, $q_1=p+q$ in (A4), and $k_1=p-1$,
$l_1=p+q-1$ in (A5).
\end{itemize}
We say that $u\in C^1(\mathbb{R}^N)$ is a
solution of \eqref{e1.1} if
$$
\int_{\mathbb{R}^N} \phi_1(|\nabla u|) \nabla u \nabla \psi dx
=-\int_{\mathbb{R}^N}a(x)f(u)\psi dx,\quad \forall
\psi\in C_0^\infty(\mathbb{R}^N).
$$
When $\lim_{|x|\to \infty}u(x)=+\infty$, we say
that $u$ is a large solution to equation \eqref{e1.1}.
For convenience, we denote by
\begin{gather}\label{e1.3}
h_i^{-1} \text{ the inverses of } h_i(t)=t \phi_i(t),\quad t>0; \\
\label{e1.4}
I_{i\rho}(\infty):=\lim_{r\to \infty}I_{i\rho}(r),\quad
I_{i\rho}(r):=\int_0^r h_i^{-1}(\Lambda_\rho(t))dt,\quad r\geq 0,
\end{gather}
where $\rho\in C([0, \infty), [0, \infty))$ and
\begin{gather}\label{e1.5}
\Lambda_\rho(t):=t^{1-N} \int_{0}^{t} s^{N-1}\rho(s) ds, \quad t>0; \\
\label{e1.6}
\theta_i(t):= \min\{t^{p_i}, t^{q_i}\}, \quad
\Theta_i(t) := \max\{t^{p_i}, t^{q_i}\},
\quad t \geq 0; \\
\label{e1.7}
\theta_i^{-1}(t):= \min\{t^{1/{p_i}}, t^{1/{q_i}}\}, \quad
\Theta_i^{-1}(t):= \max\{t^{1/{p_i}}, t^{1/{q_i}}\}, \quad
t \geq 0;
\end{gather}
and, for an arbitrary $\alpha>0$ and $t\geq \alpha$,
\begin{gather}\label{e1.8}
H_{1\alpha}(\infty):=\lim_{t\to \infty}H_{1\alpha}(t),\quad
H_{1\alpha}(t):=\int_{\alpha}^t\frac {d\tau}{\Theta_1^{-1}(f(\tau))}; \\
\label{e1.9}
H_{2\alpha}(\infty):=\lim_{t\to \infty}H_{2\alpha}(t),\quad
H_{2\alpha}(t):=\int_{\alpha}^t\frac {d\tau}{\Theta_1^{-1}(f(\tau))
+\Theta_2^{-1}(g(\tau))}.
\end{gather}
We see that for $t>\alpha$,
\begin{gather*}
H_{1\alpha}'(t)=\frac {1}{\Theta_1^{-1}(f(t))}>0,\\
H_{2\alpha}'(t)=\frac {1}{\Theta_1^{-1}(f(t))+\Theta_2^{-1}(g(t))}>0,
\end{gather*}
and that $H_{1\alpha}, H_{2\alpha}$ have the inverse
functions $H_{1\alpha}^{-1}$ and $H_{2\alpha}^{-1}$ on
$[0,H_{1\alpha}(\infty))$ and
$[0, H_{2\alpha}(\infty))$, respectively.
First, let us review the model
\begin{equation}\label{e1.10}
\Delta u =a(|x|)f(u), \quad x \in \mathbb{R}^N.
\end{equation}
For $a(x)\equiv 1$ on $\mathbb{R}^N$: when $f$ satisfies
(A2), Keller \cite{KE} and Osserman \cite{OS} supplied
a necessary and sufficient condition
\begin{equation}\label{e1.11}
\int_1^\infty
\frac{dt}{\sqrt{2F(t)}}=\infty, \quad F(t)=\int_0^t f(s) ds,
\end{equation}
for the existence of positive radial
large solutions to \eqref{e1.10}.
For $N\geq3$, $f(u)=u^\gamma$, $\gamma\in (0, 1]$, and $a$ satisfies
(A1) with $a(x)=a(|x|)$, Lair and
Wood \cite{LW1} first showed that equation \eqref{e1.10} has
infinitely many positive radial large solutions if and only if
\begin{equation}\label{e1.12}
\int_0^\infty r a(r)dr=\infty.
\end{equation}
The above results have been extended by many authors and in
many contexts, see, for instance,
\cite{BZ,BR1,BR2,DGG,EMH,LW2,LAIR2,TZ,YANG,YZ} and the references therein.
Next we review the system
\begin{equation}\label{e1.13}
\begin{gathered}
\Delta u=a(x)f(v),\quad x \in \mathbb{R}^N, \\
\Delta v=b(x)g(u),\quad x \in \mathbb{R}^N.
\end{gathered}
\end{equation}
When $N\geq3$, $f(v)=v^{\gamma_1}$, $g(u)=u^{\gamma_2}$,
$0<\gamma_1\leq \gamma_2$, and $a(x)=a(|x|)$, $b(x)=b(|x|)$, Lair
and Wood \cite{LW3} have considered the existence and nonexistence
of positive radial solutions to system \eqref{e1.13}.
For further results, see for instance,
\cite{AM,BS,BEN1,BEN2,CR,GMRZ,LAIR3,LAIR4,LZZ,WW,Z1,Z2}
and the references therein.
Now we return to equation \eqref{e1.1}.
Recently, Santos, Zhou and Santos \cite{SAN}
considered the existence of positive radial and nonradial
large solutions to equation
$$
\operatorname{div}(\phi_1(|\nabla u|) \nabla u)
=a(x)f(u), \quad x\in \mathbb{R}^N.
$$
A basic result read as follows.
\begin{lemma}[{\cite[Corollary 1.2]{SAN}}] \label{Lem1.1}
Let {\rm (A3)--(A5)} hold, $f$ satisfy {\rm (A2)},
and $a$ satisfy {\rm (A1)} with $a(x)=a(|x|)$ for
$x\in \mathbb{R}^N$. If
$$
I_{1a}(\infty)=\infty,
$$
then \eqref{e1.1} admits a
sequence of symmetric radial large solutions
$u_m(|x|) \in C^1(\mathbb{R}^N)$ with $u_m(0)\to \infty$ as
$m \to \infty$ if and only if
$f$ satisfies
$$
\int_1^\infty\frac {dt}{\Psi_1^{-1}(F(t))}=\infty,
$$
where $\Psi_1^{-1}$ is the inverse of $\Psi_1$ which is given in
{\rm (A4)}.
\end{lemma}
Inspired by the above works, by using a monotone
iterative method and Arzela-Ascoli theorem,
we show existence of positive radial solutions
to equation \eqref{e1.1} and system \eqref{e1.2} under simple
conditions on $f$ and $g$.
Our main results for equation \eqref{e1.1} read as follows.
\begin{theorem}\label{Thm1.1}
Let {\rm (A1)--(A5)} hold. If
\begin{itemize}
\item[(A6)] $H_{1\alpha}(\infty)=\infty$,
\end{itemize}
then \eqref{e1.1} has a positive radial solution
$u \in C^1(\mathbb{R}^N)$. Moreover, if $I_{1a}(\infty)<\infty$, then $u$ is
bounded, and $\lim _{r\to \infty} u(r)=\infty$ provided
$I_{1a}(\infty)=\infty$.
\end{theorem}
\begin{theorem}\label{Thm1.2}
Under assumptions {\rm(A1)--(A5)} and
\begin{itemize}
\item[(A7)] $I_{1a}(\infty)0$ sufficiently small such that (A7) holds
provided
$I_{1a}(\infty)<\infty$ and $H_{1\alpha}(\infty)<\infty$.
\end{remark}
\begin{remark}\label{Rmk1.2} \rm
For $f(s)=s^{\gamma_1}$ with $s\geq 0$,
$\gamma_1>0$, since $\Theta_1^{-1}(t) =\frac{1}{p_1}$, $t\geq 1$,
one can see that when $\gamma_1>p_1$, $H_{1\alpha}(\infty)<\infty$,
and $H_{1\alpha}(\infty)=\infty$ provided
$\gamma_1 \leq p_1$, where $p_1$ is given as in (A4).
\end{remark}
\begin{remark}\label{Rmk1.3} \rm
For $f(s)=(1+s)^{\gamma_1} (\ln (1+s))^{\mu_1}$ with $s\geq 0$,
$\mu_1, \gamma_1>0$, one can see that when $\gamma_1>p_1$ or
$\gamma_1=p_1$ and $\mu_1>p_1$, $H_{1\alpha}(\infty)<\infty$, and
$H_{1\alpha}(\infty)=\infty$ provided
$\gamma_1 < p_1$ or $\gamma_1 = p_1$ and $\mu_1 \leq p_1$.
\end{remark}
\begin{remark}\label{Rmk1.4} \rm
For $f(s)=\exp (c_1 s)$, $s\geq 0$,
$c_1>0$, one can see that $H_{1\alpha}(\infty)<\infty$.
\end{remark}
Our main results for system \eqref{e1.2} are as follows.
\begin{theorem}\label{Thm1.3}
Let {\rm (A1)--(A5)} hold. If
\begin{itemize}
\item[(A8)] $H_{2\alpha}(\infty)=\infty$,
\end{itemize}
then \eqref{e1.2} has a positive radial solution
$(u,v)$ in $ C^1(\mathbb{R}^N)\times C^1(\mathbb{R}^N)$. Moreover, when
$I_{1a}(\infty)+I_{2b}(\infty)<\infty$, $u$ and $v$ are bounded;
when $I_a(\infty)=I_b(\infty)=\infty$,
$\lim _{r\to \infty} u(r)=\lim _{r\to \infty}v(r)=\infty$.
\end{theorem}
\begin{theorem}\label{Thm1.4}
Under hypotheses {\rm (A1)--(A5)} and
\begin{itemize}
\item[(A9)]
$$
I_{1a}(\infty)+I_{2b}(\infty)0$, when
$\gamma_1>p_1$ or $\gamma_2> p_2$, $H_{2\alpha}(\infty)<\infty$, and
$H_{2\alpha}(\infty)=\infty$ provided
$\gamma_1\leq p_1$ and $\gamma_2\leq p_2$, where $p_1$ and $p_2$
are given as in (A4).
\end{remark}
\begin{remark}\label{Rmk1.7} \rm
For $f(s)=(1+s)^{\gamma_1} (\ln (1+s))^{\mu_1}$,
$g(s)=(1+s)^{\gamma_2} (\ln (1+s))^{\mu_2}$, $s\geq 0$,
$\gamma_i, \mu_i>0$ ($i=1, 2$), when $\gamma_1>p_1$ or $\gamma_2> p_2$;
or $\gamma_1=p_1$ and $\eta_1> p_1$; or
$\gamma_2=p_2$ and $\eta_2> p_2$, $H_{2\alpha}(\infty)<\infty$, and
$H_{2\alpha}(\infty)=\infty$ provided
$\gamma_10$,
one can see that $H_{2\alpha}(\infty)<\infty$.
\end{remark}
\section{Proof of Theorems \ref{Thm1.1} and \ref{Thm1.2}}
\begin{lemma}[{\cite[Lemma 2.2]{SAN}}] \label{Lem2.1}
Let {\rm (A3)--(A5)} hold, $\theta_i, \Theta_i$ and
$\theta_i^{-1}, \Theta_i^{-1}$ ($i=1, 2$) be given as in
\eqref{e1.6} and \eqref{e1.7}. We have
\begin{itemize}
\item[(i)] $\theta_i$, $\Theta_i$,
$\theta_i^{-1}$ and $\Theta_i^{-1}$ are strictly increasing on
$(0, \infty)$;
\item[(ii)] $\theta_i^{-1}(\beta)h_i^{-1}
(t)\leq h_i^{-1}(\beta t)\leq \Theta_i^{-1}(\beta)h_i^{-1}(t)$, for all
$\beta, t>0$.
\end{itemize}
\end{lemma}
Let us consider the initial value problem
\begin{equation}\label{e2.1}
\begin{gathered}
\big(r^{N-1}\phi_1(u'(r))u'(r)\big)'=r^{N-1}a(r)f(u),\quad r>0, \\
u(0)= \alpha,\quad u'(0)=0,
\end{gathered}
\end{equation}
by a simple calculation,
\begin{equation}\label{e2.2}
u'(r)=h_1^{-1}\big( r^{1-N}
\int_{0}^{r} s^{N-1}a(s)f(u(s)) ds\big),\quad r> 0, \quad
u(0)=\alpha,
\end{equation}
and thus
\begin{equation}\label{e2.3}
u(r)=\alpha+\int_{0}^{r}h_1^{-1}\big(t^{1-N}
\int_{0}^{t} s^{N-1}a(s)f(u(s)) ds\big)dt,\quad r\geq 0.
\end{equation}
Note that solutions in $C[0, \infty)$ to problem \eqref{e2.3} are
solutions in $C^1[0, \infty)$ to problem \eqref{e2.1}.
Let $\{u_{m}\}_{m\geq 1}$
be the sequence of positive continuous functions defined on $[0,\infty)$ by
\begin{equation}\label{e2.4}
\begin{gathered}
u_{0}(r)=\alpha, \\
u_m(r)=\alpha+\int_{0}^{r}h_1^{-1}\big(t^{1-N}
\int_{0}^{t} s^{N-1}a(s)f(u_{m-1}(s)) ds\big)dt,\quad r\geq 0.
\end{gathered}
\end{equation}
Obviously,
\begin{equation}\label{e2.5}
u_m'(r)=h_1^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}a(s)f(u_{m-1}(s)) ds\big),\quad r>0,
\end{equation}
and, for all $ r\geq 0$ and $m\in {\mathbb{N}}$,
$u_{m}(r)\geq \alpha$, and $u_0\leq u_1$.
Then (A1)--(A3) and Lemma \ref{Lem2.1} yield $u_1(r)\leq u_2(r)$ for all $r\geq 0$.
Continuing this line of reasoning, we obtain that the sequence
$\{u_m\}$ is non-decreasing on $[0, \infty)$. Moreover, we obtain by
(A1)--(A3) and Lemma \ref{Lem2.1}
that for each $r>0$,
\begin{align*}
u_m'(r)&=h_1^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}a(s)f(u_{m-1}(s)) ds\big)\\
&\leq h_1^{-1}\big(f(u_{m}(r)) r^{1-N}
\int_{0}^{r} s^{N-1}a(s) ds\big)\\
&\leq \Theta_1^{-1}(f(u_{m}(r))) h_1^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}a(s) ds\big),
\end{align*}
and
\[
\int_{a}^{u_m (r)}\frac {d\tau}{\Theta_1^{-1}(f(\tau))}\leq
I_{1a}(r).
\]
Consequently, for an arbitrary $R>0$,
\begin{equation}\label{e2.6}
H_{1\alpha}(u_m(r))\leq I_{1a}(r)\leq I_{1a}(R), \quad \forall r\in [0,R].
\end{equation}
(i) When (A6) holds, we see that
\begin{equation}\label{e2.7}
H_{1\alpha}^{-1}(\infty)=\infty,\quad
u_m(r)\leq H_{1\alpha}^{-1}(I_{1a}(r))\leq H_{1\alpha}^{-1}
(I_{1a}(R)),\quad \forall r\in [0, R],
\end{equation}
i.e., the sequence $\{u_m\}$ is bounded on $[0, R]$
for an arbitrary $R>0$.
It follows from \eqref{e2.5} that $\{u_m'\}$ is bounded on $[0,R]$.
By the Arzela-Ascoli theorem, $\{u_m\}$ has a subsequence converging
uniformly to $u$ on $[0, R]$. Since $\{u_m\}$ is non-decreasing on
$[0, \infty), $ we see that $\{u_m\}$ itself converges uniformly to
$u$ on $[0, R]$. By the arbitrariness of $R$, we see that $u$ is a
positive radial solution to equation \eqref{e1.1}. Moreover,
when $I_{1a}(\infty)<\infty$, we see by \eqref{e2.7} that
$$
u(r)\leq H_{1\alpha}^{-1}(I_{1a}(\infty)),\quad \forall r\geq 0;
$$
when $I_{1a}(\infty)=\infty,$ we see by (A2) and Lemma \ref{Lem2.1} that
$$
u(r)\geq \alpha +\theta_1^{-1}(f(\alpha))I_{1a}(r), \quad
\forall r\geq0.
$$
Thus $\lim _{r\to \infty} u(r)=\infty$.
\smallskip
\noindent (ii) When (A7) holds, we see by \eqref{e2.6} that
\begin{equation}\label{e2.8}
H_{1\alpha}(u_m(r))\leq I_{1a}(\infty)0,\\
\big(r^{N-1}\phi_2(v'(r))v'(r)\big)'=r^{N-1}b(r)g(u),
\quad r>0, \\
u(0)=v(0)=\alpha/2,\quad u'(0)=v'(0)=0,
\end{gather*}
which is equivalent to
\begin{gather*}
u(r)=\alpha/2+\int_{0}^{r}h_1^{-1}\big(t^{1-N}
\int_{0}^{t} s^{N-1}a(s)f(v(s)) ds\big)dt,\quad r\geq 0, \\
v(r)=\alpha/2+\int_{0}^{r}h_2^{-1}\big(t^{1-N}
\int_{0}^{t} s^{N-1}b(s)g(u(s)) ds\big)dt,\quad r\geq 0.
\end{gather*}
Let $\{u_{m}\}_{m\geq 1}$
and $\{v_{m}\}_{m\geq 0}$ be the sequences of positive continuous
functions defined on $[0,\infty)$ by
\begin{gather*}
v_{0}(r)=\alpha/2, \\
u_{m}(r)=\alpha/2+\int_{0}^{r}h_1^{-1}\big(t^{1-N}
\int_{0}^{t} s^{N-1}a(s)f(v_{m-1}(s)) ds\big)dt,\quad r\geq 0,\\
v_{m}(r)=\alpha/2+\int_{0}^{r}h_2^{-1}\big(t^{1-N}
\int_{0}^{t} s^{N-1}b(s)g(u_{m}(s)) ds\big)dt,\quad r\geq 0.
\end{gather*}
Obviously, for all $ r\geq 0$ and $m\in {\mathbb{N}}$,
$u_{m}(r)\geq \alpha/2$, $v_{m}(r)\geq \alpha/2$ and
$v_0\leq v_1$. Assumptions (A1)--(A3) and Lemma \ref{Lem2.1} yield
$u_1(r)\leq u_2(r)$, for all $r\geq 0$, then $v_1(r)\leq v_2(r)$,
for all $r\geq 0$. Continuing this line of reasoning, we obtain that
the sequences $\{u_m\}$ and $\{v_m\}$ are
increasing on $[0, \infty)$.
Moreover, by (A1)-(A3) and Lemma \ref{Lem2.1} that for each $r>0$, we obtain
\begin{align*}
u_m'(r)&=h_1^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}a(s)f(v_{m-1}(s)) ds\big)\\
&\leq h_1^{-1}\big(f(v_{m}(r))r^{1-N}\int_{0}^{r} s^{N-1}a(s) ds\big)\\
&\leq \Theta_1^{-1}(f(v_m(r)))h_1^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}a(s) ds\big)\\
&\leq \Theta_1^{-1}(f(u_m(r)+v_m(r)))
(h_1^{-1}(\Lambda_a(r))+h_2^{-1}(\Lambda_b(r)));
\end{align*}
and
\begin{align*}
v_m'(r)&=h_2^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}b(s)g(u_{m}(s)) ds\big)\\
&\leq \Theta_2^{-1}(g(u_m(r)))h_2^{-1}\big(r^{1-N}
\int_{0}^{r} s^{N-1}b(s) ds\big)\\
&\leq \Theta_2^{-1}(g(u_m(r)+v_m(r)))
\big(h_1^{-1}(\Lambda_a(r))+h_2^{-1}(\Lambda_b(r))\big).
\end{align*}
Consequently,
\begin{align*}
u_m'(r)+v_m'(r)
&\leq \big(\Theta_1^{-1}(f(v_m(r)+u_m(r)))\\
&\quad +\Theta_2^{-1}(g(v_m(r)+u_m(r)))\big)
\big(h_1^{-1}(\Lambda_a(r))+h_2^{-1}(\Lambda_b(r))\big), \quad r>0,
\end{align*}
and
\begin{equation}\label{e3.1}
\begin{gathered}
\int_{a}^{u_m(r)+v_m(r)} \frac
{d\tau}{\Theta_1^{-1}(f(\tau))+\Theta_2^{-1}(g(\tau))}\leq
I_{1a}(r)+I_{2b}(r),\quad r>0, \\
H_{2\alpha}(u_m(r)+v_m(r))\leq I_{1a}(r)+I_{2b}(r), \quad \forall r\geq
0.
\end{gathered}
\end{equation}
The remaining proofs are similar to that for Theorems \ref{Thm1.1} and \ref{Thm1.2}.
Here we omit their proof.
\subsection*{Acknowledgment}
This work is supported in part by NSF of China
under grant 11571295.
\begin{thebibliography}{99}
\bibitem{AM} R. Alsaedi, H. M\^{a}agli, V. R\u{a}dulescu, N. Zeddini;
\emph{Positive bounded solutions for semilinear elliptic systems with
indefinite weights in the half-space}, Electronic J. Diff. Equations 2015
(2015), No. 177, 1-8.
\bibitem{BZ} I. Bachar, N. Zeddini;
\emph{On the existence of positive solutions for a class of semilinear
elliptic equations}, Nonlinear Anal. 52 (2003), 1239-1247.
\bibitem{BS} S. Barile, A. Salvatore;
\emph{Existence and multiplicity results for some
Lane-Emden elliptic systems: subquadratic case}, Adv. Nonlinear
Anal. 4 (2015), 25-35.
\bibitem{BR1} N. Belhaj Rhouma, A. Drissi, W. Sayeb;
\emph{Nonradial large solutions for a class of nonlinear problems},
Complex Var. Elliptic Equations 59 (5) (2014), 706-722.
\bibitem{BR2} N. Belhaj Rhouma, A. Drissi;
\emph{Large and entire large solutions for a class of nonlinear problems},
Appl. Math. Comput. 232 (2014), 272-284.
\bibitem{BEN1} A. Ben Dkhil, N. Zeddini;
\emph{Bounded and large radially symmetric solutions for some $(p, q)$-Laplacian
stationary systems},
Electronic J. Diff. Equations 2012 (2012), No. 71, 1-9.
\bibitem{BEN2} A. Ben Dkhil;
\emph{Positive solutions for nonlinear elliptic systems}, Electronic J. Diff.
Equations 2012 (2012), No. 239, 1-10.
\bibitem{BFP} V. Benci, D. Fortunato, L. Pisani;
\emph{Solitons like solutions of a Lorentz invariant equation in dimension 3},
Rev. Math. Phys. 10 (1998), 315-344.
\bibitem{CE} M. Cencelj, D. Repov\v{s}, Z. Virk;
\emph{Multiple perturbations of a singular eigenvalue problem},
Nonlinear Anal. 119 (2015), 37-45.
\bibitem{CR} F. C\^{\i}rstea, V. R\u adulescu;
\emph{Entire solutions blowing up at infinity for semilinear elliptic systems},
J. Math. Pures Appl. 81 (2002), 827-846.
\bibitem{DGG} L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault;
\emph{Entire large solutions for semilinear elliptic equations},
J. Diff. Equations 253 (2012), 2224-2251.
\bibitem{EMH} K. El Mabrouk, W. Hansen;
\emph{Nonradial large solutions of sublinear elliptic problems},
J. Math. Anal. Appl. 330 (2007), 1025-1041.
\bibitem{FL} M. Fuchs, G. Li;
\emph{Variational inequalities for energy functionals
with nonstandard growth conditions}, Abstr. Appl. Anal. 3 (1998), 41-64.
\bibitem{FO} M. Fuchs, V. Osmolovski;
\emph{Variational integrals on Orlicz-Sobolev spaces},
Z. Anal. Anwendungen 17 (1998), 393-415.
\bibitem{FN1} N. Fukagai, K. Narukawa;
\emph{Nonlinear eigenvalue problem for a model
equation of an elastic surface}, Hiroshima Math. J. 25 (1995), 19-41.
\bibitem{FN2} N. Fukagai, K. Narukawa;
\emph{On the existence of multiple positive solutions of quasilinear
elliptic eigenvalue problems}, Ann. Mat. Pura Appl. 4 (2007), 539-564.
\bibitem{GMRZ} A. Ghanmi, H. M\^{a}agli, V. R\u{a}dulescu, N. Zeddini;
\emph{Large and bounded solutions for a class of nonlinear Schr\"{o}dinger
stationary systems}, Analysis and Applications 7(4) (2009), 1-14.
\bibitem {KE} J. B. Keller;
\emph{On solutions of} $\Delta u=f(u),$ Commun. Pure Appl. Math.
10 (1957), 503-510.
\bibitem{LW1} A. V. Lair, A. W. Wood;
\emph{Large solutions of semilinear elliptic problems}, Nonlinear Anal. 37 (1999),
805-812.
\bibitem{LW2} A. V. Lair, A. W. Wood;
\emph{Large solutions of sublinear elliptic equations},
Nonlinear Anal. 39 (2000), 745-753.
\bibitem{LW3} A. V. Lair, A. W. Wood;
\emph{Existence of entire large positive solutions of semilnear elliptic systems},
J. Diff. Equations 164 (2000), 380-394.
\bibitem{LAIR1} A. V. Lair;
\emph{Nonradial large solutions of sublinear elliptic equations},
Appl. Anal. 82 (2003), 431-437.
\bibitem{LAIR2} A. V. Lair;
\emph{Large solutions of semilinear elliptic equations under
the Keller-Osserman condition}, J. Math. Anal. Appl. 328 (2007),
1247-1254.
\bibitem{LAIR3} A. V. Lair;
\emph{A necessary and sufficient condition for the existence of
large solutions to sublinear elliptic systems}, J. Math. Anal. Appl.
365 (2010), 103-108.
\bibitem{LAIR4} A. V. Lair;
\emph{Entire large solutions to semilinear elliptic systems}, J.
Math. Anal. Appl. 382 (2011), 324-333.
\bibitem{LZZ} H. Li, P. Zhang, Z. Zhang;
\emph{A remark on the existence of entire positive solutions for a class
of semilinear elliptic systems}, J. Math. Anal. Appl. 365 (2010),
338-341.
\bibitem {OS} R. Osserman;
\emph{On the inequality} $\Delta u\geq f(u)$, Pacific J. Math. 7 (1957),
1641-1647.
\bibitem {RA1} V. R\u{a}dulescu;
\emph{Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations:
Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics
and Its Applications}, vol. 6, Hindawi Publ. Corp., 2008.
\bibitem {RA2} V. R\u{a}dulescu;
\emph{Nonlinear elliptic equations with variable exponent: old and new},
Nonlinear Anal. 121 (2015), 336-369.
\bibitem {RA3} V. R\u{a}dulescu, D. Repov\v{s};
\emph{Partial Differential Equations with Variable Exponents:
Variational Methods and Qualitative Analysis}, CRC Press,
Taylor and Francis Group, Boca Raton FL, 2015.
\bibitem {RE} D. Repov\v{s};
\emph{Stationary waves of Schr\"{o}dinger-type equations with variable exponent},
Anal. Appl. 13 (2015), 645-661.
\bibitem {SAN} C. A. Santos, J. Zhou, J. A. Santos;
\emph{Necessary and sufficient conditions for existence of blow-up solutions
for elliptic problems in Orlicz-Sobolev spaces},
arXiv preprint arXiv:1601.01267, 2016.
\bibitem {TZ} S. Tao, Z. Zhang;
\emph{On the existence of explosive solutions for a class of semilinear
elliptic problems}, Nonlinear Anal. 48 (2002), 1043-1050.
\bibitem {WW} X. Wang, A. W. Wood;
\emph{Existence and nonexistence of entire positive solutions of semilinear
elliptic systems}, J. Math. Anal. Appl. 267 (2002), 361-362.
\bibitem{YANG} H. Yang;
\emph{On the existence and asymptotic behavior of large solutions for a
semilinear elliptic problem in} $\mathbb{R}^N$,
Comm. Pure Appl. Anal. 4 (2005), 197-208.
\bibitem{YZ} D. Ye, F. Zhou;
\emph{Invariant criteria for existence of bounded positive solutions},
Discrete Contin. Dyn. Syst. 12 (3) (2005), 413-424.
\bibitem{Z1} Z. Zhang;
\emph{Existence of entire positive solutions for a class of semilinear
elliptic systems}, Electronic J. Diff. Equations 2010 (2010), No. 16, 1-5.
\bibitem{Z2} Z. Zhang, Y. Shi, Y. Xue;
\emph{Existence of entire solutions for
semilinear elliptic systems under the Keller-Osserman condition},
Electronic J. Diff. Equations 2011 (2011), No. 39, 1-9.
\bibitem{ZY} Zhitao Zhang, R. Yuan;
\emph{Infinitely-many solutions for subquadratic fractional Hamiltonian systems
with potential changing sign}, Adv. Nonlinear Anal. 4 (2015), 59-72.
\end{thebibliography}
\end{document}