\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 51, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/51\hfil Positive solutions] {Positive solutions for second-order boundary-value problems with $\phi$-Laplacian} \author[D.-R. Herlea \hfil EJDE-2016/51\hfilneg] {Diana-Raluca Herlea} \address{Diana-Raluca Herlea \newline Babe\c{s}-Bolyai University, Department of Mathematics, 400084 Cluj, Romania} \email{dherlea@math.ubbcluj.ro} \thanks{Submitted February 3, 2016. Published February 18, 2016.} \subjclass[2010]{34B18, 47H10} \keywords{Positive solution; $\phi$-Laplacian, boundary value problem; \hfill\break\indent Krasnosel'ski\u{\i} fixed point theorem; weak Harnack inequality} \begin{abstract} This article concerns the existence, localization and multiplicity of positive solutions for the boundary-value problem \begin{gather*} \big( \phi( u') \big) '+f(t,u) =0, \\ u(0) - a u'(0) = u'(1)= 0, \end{gather*} where $f:[0,1]\times \mathbb{R}_{+}\to \mathbb{R}_{+}$ is a continuous function and $\phi :\mathbb{R}\to (-b,b)$ is an increasing homeomorphism with $\phi (0)=0$. We obtain existence, localization and multiplicity results of positive solutions using Krasnosel'ski\u{\i} fixed point theorem in cones, and a weak Harnack type inequality. Concerning systems, the localization is established by the vector version of Krasnosel'ski\u{\i} theorem, where the compression-expansion conditions are expressed on components. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The aim of this article is to present new results regarding the existence, localization and multiplicity of positive solutions for the problem \begin{equation} \begin{gathered} (\phi (u') ) '+f(t,u) =0,\quad 00$, $\phi $ is a homeomorphism from $\mathbb{R}$ to $(-b,b)$ and $01$. \item[(2)] The curvature operator, where $b< \infty$ and \[ \phi(u)=\frac{u}{\sqrt{1+u^{2}}}. \] \end{itemize} Problem \eqref{eq1} can be considered as a particular, $n=1$ of the corresponding problem for an $n$-dimensional system \begin{equation} \begin{gathered} (\phi _i(u_i') ) '+f_i(t,u_1,u_2,\dots,u_{n}) =0,\quad 00$. First we shall concentrate on the problem \eqref{eq1} for a single equation, and then we shall extend the results to the system \eqref{ps}. The study of $\phi$-Laplacian equations is a classical topic that has attracted the attention of many experts because of its applications (see for example \cite{Ag}). These equations, with different boundary conditions have been studied in a large number of papers using fixed point methods, degree theory, upper and lower solution techniques and variational methods. Robin boundary conditions \[ \alpha_1 u(0)-\beta_1 u'(0) = 0 = \alpha_2 u(1)+\beta_2 u'(1), \] are commonly used in solving Sturm-Liouville problems which appear in many contexts in science and engineering. These problems have been considered in the literature by many authors in order to search the existence of positive solutions (see \cite{Erbe,Ge}). Some of them worked with special cases. For example \cite{Sm1,Ge2,her} studied the case $\beta_1=\beta_2=0$ and $\alpha_1=\alpha_2=1$, while \cite{hp} discussed the case $\alpha_1=\beta_2=0$, $\alpha_2=1$ and $\beta_1=-1$. In this article, we considered the case $\alpha_1=\beta_2=1$, $\beta_1=a$, with $a>0$ and $\alpha_2=0$; we are interested not only on the existence of positive solutions to \eqref{eq1} and \eqref{ps}, but also on their localization and multiplicity. We shall achive this by using a technique based on Krasnosel'ski\u{\i}'s fixed point theorem in cones \cite{Krs}. This result has been extensively employed in the related literature (see for instance \cite{hd}-\cite{hp}, \cite{Prp,Tor}). \begin{theorem}[Krasnosel'ski\u{\i}] Let $(X, | \cdot |)$ be a normed linear space; $K \subset X$ a cone; $r, R \in \mathbb{R}_{+}$, $0 < r < R$, $K_{r,R} = \{u \in K : r \leq |u| \leq R\}$, and let $N: K_{r,R} \to K$ be a compact map. Assume that one of the following conditions is satisfied: \begin{itemize} \item[(a)] $N(u)\nless u$ if $|u|=r$, and $N(u)\ngtr u$ if $|u|=R$; \item[(b)] $N(u)\ngtr u$ if $|u|=r$, and $N(u)\nless u$ if $|u|=R$. \end{itemize} Then $N$ has a fixed point $u$ in $K$ with $r \leq |u| \leq R$. \end{theorem} Here for two elements $u,v\in X$, the strict ordering $u0$, then we may assume without loss of generality that $\min_{t\in \lbrack c,1]}u(t) =1$ (otherwise, multiply \eqref{eq2} by a suitable positive constant). Then $u(c)=1$. Since $u$ is concave, its graph on $[c,1]$ is under the line containing the points $(0,u(0))$ and $(c,1)$ and so at point $t=1$ we have \[ u(1) \leq \frac{u(0)(c-1)+1}{c}. \] However, $u'(0)= \frac{u(0)}{a}$ and being the slope of the line, \[ u'(0) \geq \frac{1-u(0)}{c}. \] Hence $u(0) \geq \frac{a}{c+a}$ and then $u(1) \leq \frac{a+1}{a+c}$. Now, from $| u| _{\infty }=u(1)$ we have \[ \frac{a+c}{a+1}|u|_{\infty} \leq 1. \] Finally, since $1\leq u(t) $ for $t\in \lbrack c,1]$, we obtain \[ u(t) \geq \frac{a+c}{a+1}|u|_{\infty}, \quad\text{for all }t \in [c,1], \] as we wished. Notice that a graphical representation would make more clear the above reasoning. \end{proof} Our first result is the following theorem. \begin{theorem} \label{t1} Let {\rm (A1)} and {\rm (A2)} hold and assume that there exist $\alpha ,\beta >0$ with $\alpha \neq \beta $ such that \begin{gather} \Phi (\alpha ):=a\phi ^{-1}\Big(\int_0^1f(s,\gamma(s)\alpha )\,ds\Big) + \int_0^1\phi ^{-1}\Big(\int_{\tau}^1f(s,\gamma(s)\alpha )\,ds\Big) \,d\tau > \alpha , \label{c1} \\ \Psi (\beta ):=a\phi ^{-1}\Big(\int_0^1f(s,\beta )\,ds\Big) + \int_0^1\phi ^{-1}\Big(\int_{\tau}^1f(s,\beta )\,ds\Big) \,d\tau <\beta . \label{c2} \end{gather} Then \eqref{eq1} has at least one positive solution $u$ with $r\leq {|u|}_{\infty }\leq R$, where $r=\min \{\alpha ,\beta \}$ and $R=\max \{\alpha ,\beta \}$. \end{theorem} \begin{proof} We shall apply Krasnosel'ski\u{\i}'s fixed point theorem in cones. In our case, $X=C[0,1] $, the cone is \begin{align*} K= \big\{&u\in C([0,1];\mathbb{R}_{+}):u(0)-au'(0)=u'(1)=0 \text{ and} \\ &u(t)\geq \gamma(t)|u|_{\infty } \text{ for all }t\in \lbrack 0,1]\big\}, \end{align*} and $N$ is the operator given by \eqref{op}. Note that if $u,v\in C([0,1];\mathbb{R}_{+})$ and $v0$. Hence \begin{equation} | u| _{\infty }\geq u(1) >v(1) . \label{aj} \end{equation} First we remark that $N(K) \subset K$. Indeed, if $u\in K$ and $v:=N(u) $, then $-(\phi (v') )'=$ $f(t,u) $. We have $f(t,u(t)) \geq 0$ for every $t\in [ 0,1] $, so $(\phi (v') ) '\leq 0$ on $[ 0,1] $. Then Lemma \ref{lem1} guarantees that $v(t) \geq \gamma(t) | v| _{\infty }$ for $t\in [ 0,1] $, that is $v\in K$ as desired. Next we prove that \begin{equation} u\ngtr N(u)\quad \text{for every }u\in K \text{ with }| u| _{\infty }=\alpha . \label{k1} \end{equation} To this end, assume the contrary, i.e. $u>N(u) $ for some $u\in K $ with $| u| _{\infty }=\alpha $. Then using \eqref{aj}, the definition of $K$, and the monotonicity of $f$ and $\phi $, we deduce \begin{align*} \alpha & =|u|_{\infty } \geq |N(u)|_{\infty } \geq N(u)(1) \\ & = a\phi ^{-1}\Big(\int_0^1 f(s,u(s))\,ds\Big) + \int_0^1\phi ^{-1}\Big(\int_{\tau}^1f(s,u(s))\,ds\Big)\,d\tau \\ & \geq a\phi ^{-1}\Big(\int_0^1f(s,\gamma(s)\alpha )\,ds\Big) + \int_0^1\phi ^{-1}\Big(\int_{\tau}^1f(s,\gamma(s)\alpha )\,ds\Big) \,d\tau , \end{align*} which contradicts \eqref{c1}. Thus \eqref{k1} holds. The next step is to prove that \begin{equation} u\nless N(u)\quad \text{for every $u\in K$ with }|u|_{\infty}=\beta . \label{k2} \end{equation} Assume the contrary, i.e. $u1\ $ and $\liminf_{\lambda \to 0}\frac{\Psi (\lambda ) }{\lambda }<1$; \item[(ii)] $\limsup_{\lambda \to 0}\frac{\Phi (\lambda )}{ \lambda }>1\ $ and $\liminf_{\lambda \to \infty }\frac{\Psi (\lambda )}{\lambda }<1$. \end{itemize} Then \eqref{eq1} has at least one positive solution. \end{theorem} \begin{proof} To apply Theorem \ref{t1}, we look for two numbers $\alpha ,\beta >0$, $\alpha \neq \beta $ with \[ \Phi (\alpha ) > \alpha \quad\text{and}\quad \Psi (\beta ) <\beta . \] In case (i), one can chose $\alpha $ large enough and $\beta $ small enough; while in case (ii), $\alpha $ is chosen small enough and $\beta $ is chosen large enough. \end{proof} \begin{theorem}\label{t3} Let {\rm (A1)} and {\rm (A2)} hold. If the condition \begin{itemize} \item[(iii)] $\limsup_{\lambda \to \infty }\frac{\Phi (\lambda )}{ \lambda }>1\ $ and $\liminf_{\lambda \to \infty }\frac{\Psi (\lambda )}{\lambda }<1$ \end{itemize} holds, then \eqref{eq1} has a sequence of positive solutions $(u_{n}) _{n\geq 1}$ such that $| u_{n}|_{\infty }\to \infty $ as $n\to \infty $. If the condition \begin{itemize} \item[(iv)] $\limsup_{\lambda \to 0}\frac{\Phi (\lambda )}{ \lambda }>1$ and $\lim \inf_{\lambda \to 0}\frac{\Psi (\lambda ) }{\lambda }<1$ \end{itemize} holds, then \eqref{eq1} has a sequence of positive solutions $(u_{n}) _{n\geq 1}$ such that $| u_{n}|_{\infty }\to 0$ as $n\to \infty $. \end{theorem} \begin{proof} Clearly (iii) guarantees the existence of two sequences $(\alpha_{n}) _{n\geq 1},(\beta _{n}) _{n\geq 1}$ such that \begin{equation} 0<\alpha _{n}<\beta _{n}<\alpha _{n+1}\quad \text{for every $n\geq 1$, and $\alpha _{n}\to \infty$ as $n\to \infty$}. \label{i'} \end{equation} For each $n$, Theorem \ref{t1} yields a positive solution $u_{n}$ with $\alpha _{n}\leq | u_{n}| _{\infty }\leq \beta _{n}$. The condition \eqref{i'} implies that these solutions are distinct and that $| u_{n}| _{\infty }\to \infty $ as $n\to \infty $. A similar reasoning can be done in case (iv). \end{proof} Notice that the conditions (iii) and (iv) show that $f$ is oscillating towards $\infty$ and zero, respectively. \section{Positive solutions of $\phi $-Laplace systems} In this section we extend the above results to the general case \eqref{ps}. We shall allow the homeomorphisms $\phi _i$ have different ranges, namely $\phi _i:\mathbb{R} \to (-b_i,b_i)$, $00$ with $c_i<1$ and $\alpha _i\neq \beta _i$ such that \begin{gather*} \begin{aligned} \Phi _i(\alpha ) :&= \ a_i\phi_i ^{-1}\Big(\int_0^1f_i(s,\gamma_1(s)\alpha_1,\dots, \gamma_{n}(s)\alpha_{n})\,ds\Big) \\ &\quad + \int_0^1\phi_i ^{-1}\Big(\int_{\tau}^1f_i(s,\gamma_1(s)\alpha_1, \dots,\gamma_{n}(s)\alpha_{n} )\,ds\Big) \,d\tau > \alpha _i, \end{aligned}\\ \Psi _i(\beta ) := a_i\phi_i ^{-1}\Big(\int_0^1f_i(s,\beta )\,ds\Big) + \int_0^1\phi_i ^{-1}\Big(\int_{\tau}^1f_i(s,\beta )\,ds\Big) \,d\tau <\beta _i, \end{gather*} for $i=1,2,\dots,n$, where $\alpha =(\alpha _1,\alpha _2,\dots,\alpha _{n}) $ and $\beta =(\beta _1,\beta _2,\dots,\beta _{n})$. Then \eqref{ps} has at least one positive solution $u=(u_1,u_2,\dots,u_{n}) $ with $r_i\leq {|u_i|}_{\infty }\leq R_i$, where $r_i=\min \{\alpha _i,\beta _i\}$, $R_i=\max \{\alpha_i,\beta _i\}$, $i=1,2,\dots,n$. \end{theorem} The above result is a consequence of the vectorial version of Krasnosel'ski\u{\i} fixed point theorem in cones. We shall say that for a given index $i$, the condition (i) from Theorem \ref{t2} holds if for every $\lambda _1,\lambda _2,\dots,\lambda _{i-1}>0$, \[ \limsup_{\lambda _i\to \infty }\frac{\Phi _i(\lambda )}{ \lambda_i }>1\quad \text{and}\quad \liminf_{\lambda _i\to 0}\frac{\Psi _i(\lambda )}{\lambda _i}<1, \] uniformly with respect to $\lambda _{i+1},\lambda _{i+2},\dots,\lambda _{n}\in(0,\infty ) $. We shall understand the condition (ii) in a similar manner. Therefore, if for each $i$ the condition (i) or (ii) holds, then we obtain pairs $(\alpha_i, \beta_i)$ satisfying the assumptions of Theorem \ref{t8}. Analogously, we say that (iii) from Theorem \ref{t3} holds for some index $i$, if for every $\lambda _1,\lambda _2,\dots,\lambda _{i-1}>0$, \[ \limsup_{\lambda _i\to \infty }\frac{\Phi _i(\lambda )}{ \lambda_i }>1\quad \text{and}\quad \liminf_{\lambda _i\to \infty } \frac{\Psi _i(\lambda )}{\lambda_i }<1, \] uniformly with respect to $\lambda _{i+1},\lambda _{i+2},\dots,\lambda _{n}\in (0,\infty )$. Condition (iv) is understood in a similar manner. Under such type of conditions we obtain sequences of solutions for the system \eqref{ps}. Finally, we note that \cite[Theorem 3.2]{hp} can be applied to our problem \eqref{ps} in order to guarantee the existence of multiple solutions. \begin{thebibliography}{99} \bibitem{Ag} R. P. Agarwal, D. O'Regan, S. Stanek; \emph{General existence principles for nonlocal boundary value problems with $\phi$-Laplacian and their applications}, Abstr. Appl. Anal., \textbf{2006} (2006), Article ID 96826, 30 pages. \bibitem{Sm1} A. Benmeza\"\i, S. Djebali and T. Moussaoui; \emph{Positive solutions for $\phi$-Laplacian Dirichlet BVPs}, Fixed Point Theory, \textbf{8} (2007), 167-186. \bibitem{be} C. Bereanu, J. Mawhin; \emph{Nonhomogeneous boundary value problems for some nonlinear equations with singular $\phi$-Laplacian}, J. Math. Anal. Appl., \textbf{352} (2009), 218-233. \bibitem{j} C. Bereanu, P. Jebelean, J. Mawhin; \emph{Radial solutions for some nonlinear problems involving mean curvature operators in Euclidian and Minkowski spaces}, Proc. Amer. Math. Soc., \textbf{137} (2009), 171-178. \bibitem{cp} A. Cabada, R. L. Pouso; \emph{Existence results for the problem $(\phi (u') ) '=f(t,u,u') $ with nonlinear boundary conditions}, Nonlinear Anal., \textbf{35} (1999), 221-231. \bibitem{Chen} S.-S. Chen, Z.-H. Ma; \emph{The solvability of nonhomogeneous boundary value problems with $\phi$-Laplacian operator}, Bound. Value Probl. 2014, doi:10.1186/1687-2770-2014-82. \bibitem{Erbe} L. H. Erbe, H. Wang; \emph{On the existence of positive solutions of ordinary differential equations}, Proc. Amer. Math. Soc., \textbf{120} (1994), no. 3, 743–748. \bibitem{Ge} W. G. Ge, J. Ren; \emph{New existence theorems of positive solutions for Sturm-Liouville boundary value problems}, Appl. Math. Comput., \textbf{148} (2004), no. 3, 631–644. \bibitem{Ge2} W.G. Ge, J. Ren; \emph{Positive solutions of second-order singular boundary value problem with a Laplace-like operator}, J. Inequal. Appl., \textbf{2005} (2005), 289-302. \bibitem{hd} D.-R. Herlea; \emph{Existence and localization of positive solutions to first order differential systems with nonlocal conditions}, Studia Univ. Babe\c{s}-Bolyai Math., \textbf{59} (2014), 221-231. \bibitem{her} D.-R. Herlea; \emph{Existence, localization and multiplicity of positive solutions for the Dirichlet BVP with $\phi$-Laplacian}, Fixed Point Theory, to appear. \bibitem{hp} D.-R. Herlea, R. Precup; \emph{Existence, localization and multiplicity of positive solutions to $\phi$-Laplace equations and systems}, Taiwanese J. Math., \textbf{20} (2016), 77-89. \bibitem{Krs} M. A. Krasnosel'ski\u{\i}; \emph{Positive solutions of operator equations}, Noordhoff, Groningen, 1964. \bibitem{Maw} J. Mawhin; \emph{Boundary value problems for nonlinear perturbations of some $\phi$-Laplacians}, Banach Center Publ., \textbf{77} (2007), 201-214. \bibitem{Pre} R. Precup; \emph{A vector version of Krasnosel'ski\u{\i}'s fixed point theorem in cones and positive periodic solutions on nonlinear systems}, J. Fixed Point Theory Appl., \textbf{2} (2007), 141-151. \bibitem{Prc} R. Precup; \emph{Abstract week Harnack inequality, multiple fixed points and p-Laplace equations}, J. Fixed Point Theory Appl., \textbf{12} (2012), 193-206. \bibitem{Pre2} R. Precup; \emph{Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications}, in: Mathematical Models in Engineering, Biology and Medicine, AIP Conf. Proc., 1124, Amer. Inst. Phys., Melville, NY, 2009, pp 284--293. \bibitem{Prp} R. Precup; \emph{Moser-Harnack inequality, Krasnosel'ski\u{\i} type fixed point theorems in cones and elliptic problems}, Topol. Methods Nonlinear Anal., \textbf{40} (2012), 301-313. \bibitem{Tor} P. J. Torres; \emph{Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem}, J. Differential Equations, \textbf{190} (2003), 643-662. \end{thebibliography} \end{document}