\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 54, pp. 1--23.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/54\hfil Fractional elliptic equations] {Fractional elliptic equations with critical growth and singular nonlinearities} \author[T. Mukherjee, K. Sreenadh \hfil EJDE-2016/54\hfilneg] {Tuhina Mukherjee, Konijeti Sreenadh} \address{Tuhina Mukherjee \newline Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khaz, New Delhi-16, India} \email{tulimukh@gmail.com} \address{Konijeti Sreenadh\newline Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khaz, New Delhi-16, India} \email{sreenadh@gmail.com} \thanks{Submitted December 20, 2015. Published February 23, 2016.} \subjclass[2010]{35R11, 35R09, 35A15} \keywords{Nonlocal operator; fractional Laplacian; singular nonlinearities} \begin{abstract} In this article, we study the fractional Laplacian equation with critical growth and singular nonlinearity \begin{gather*} (-\Delta)^s u = \lambda a(x)u^{-q} + u^{{2^*_s}-1}, \quad u>0 \quad \text{in }\Omega,\\ u = 0 \quad \text{in } \mathbb{R}^n \setminus\Omega, \end{gather*} where $\Omega$ is a bounded domain in $\mathbb{R}^n$ with smooth boundary $\partial \Omega$, $n > 2s$, $s \in (0,1)$, $\lambda >0$, $ 0 < q \leq 1 $, $\theta \leq a(x) \in L^{\infty}(\Omega)$, for some $\theta>0$ and $2^*_s=\frac{2n}{n-2s}$. We use variational methods to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter $\lambda$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$, $n>2s$ and $s \in (0,1)$. We consider the following problem with singular nonlinearity: \begin{equation} \label{Pl} \begin{gathered} (-\Delta)^s u = \lambda a(x)u^{-q} + u^{2^*_s-1}, \quad u>0 \quad \text{in } \Omega, \\ u = 0 \quad \text{in } \mathbb{R}^n \setminus\Omega, \end{gathered} \end{equation} where $\lambda >0$, $0 < q \leq 1 $, $\theta \leq a(x) \in L^{\infty}(\Omega)$ for some $\theta > 0$, $2^*_s=\frac{2n}{n-2s}$ and $(-\Delta)^s$ is the fractional Laplace operator defined as $$ (-\Delta)^s u(x) = - \frac{1}{2}\int_{\mathbb{R}^n} \frac{u(x+y)+u(x-y)-2u(x)}{|y|^{n+2s}}\,dy , \quad \text{for all } x \in \mathbb{R}^n. $$ The fractional power of Laplacian is the infinitesimal generator of L\'evy stable diffusion process and arise in anomalous diffusion in plasma, population dynamics, geophysical fluid dynamics, flames propagation, chemical reactions in liquids and American options in finance. For more details, we refer to \cite{da,gl}. Recently, the study of the fractional elliptic equations attracted lot of interest by researchers in nonlinear analysis. There are many works on existence of a solution for fractional elliptic equations with regular nolinearities like $u^q+\lambda u^p$, $p, q>0$. The sub critical growth problems are studied in \cite{XcT,s1,s2} and critical exponent problems are studied in \cite{bc,mb,mb1,s3,sv}. Also, the multiplicity of solutions by the method of Nehari manifold and fibering maps has been investigated in \cite{ss1, ss2,xy,zlh}. To the best of our knowledge, there are no works dealing with multiplicity results with singular and critical nonlinearities. We also refer \cite{Aut,GR1,JPS,md1,md2,mb3,mb2,puc} for related works with fractional Laplacian, singular nonlinearities, critical growth or critical exponential nonlinearities. In this paper, we attempt to address the multiplicity of positive solutions of problem with singular type nonlinearity $\lambda u^{-q}+ u^{2^*_s-1}$, $00 \quad \text{in } \Omega, \\ u=0 \quad \text{on } \partial \Omega, \end{gather*} where $00 \quad \text{in }\Omega, \\ u = 0 \quad \text{in } \mathbb{R}^n\backslash\Omega, \end{gather*} with $00\quad \text{in }\Omega, \\ u = 0 \quad \text{in } \mathbb{R}^n \setminus\Omega, \end{gather*} where $n>2s$, $M\ge 0$, $00$, $\lambda>0$, $10$ and for small $\lambda$ in the sub critical case. In this article, we study the multiplicity results with convex-concave type critical growth and singular nonlinearity. Here, we follow the approach as in the work of Hirano, Saccon and Shioji \cite{hcn}. We obtain our results by studying the existence of minimizers that arise out of structure of Nehari manifold. We would like to remark that the results proved here are new even for the case $q=1$. Also, the multiplicity result is sharp in the sense that we consider the maximal range of $\lambda$ for which the corresponding fibering maps have two critical points. The article is organized as follows: In section 2, we present some preliminaries on function spaces required for variational settings. In section 3, we study the corresponding Nehari manifold and properties of minimizers. In section 4 and 5, we show the existence of minimizers and solutions. In section 6, we show some regularity results. \section{Preliminaries and main results} We recall some definitions of function spaces and results that are required in later sections. In \cite{sv}, Servadei and Valdinoci discussed the Dirichlet boundary value problem in case of fractional Laplacian using the variational techniques. Due to nonlocalness of the fractional Laplacian, they introduced the function space $(X_0,\|\cdot\|_{X_0})$. The space $X$ is defined as \[ X= \big\{u: u:\mathbb{R}^n \to\mathbb{R} \text{ is measurable},\; u|_{\Omega} \in L^2(\Omega) \text{ and } \frac{(u(x)- u(y))}{ |x-y|^{\frac{n}{2s}+s}}\in L^2(Q)\big\}, \] where $Q=\mathbb{R}^{2n}\setminus(\mathcal{C}\Omega\times \mathcal{C}\Omega)$ and $\mathcal{C}\Omega := \mathbb{R}^n\setminus\Omega$. The space $X$ is endowed with the norm defined as \begin{align*} \|u\|_X = \|u\|_{L^2(\Omega)} + \left[u\right]_X, \quad \text{where } [u]_X= \Big( \int_{Q}\frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2s}}dx dy\Big)^{1/2}. \end{align*} Then we define $ X_0 = \{u\in X : u = 0 \text{a.e. in } \mathbb{R}^n\setminus \Omega\}$. Also, there exists a constant $C>0$ such that $\|u\|_{L^{2}(\Omega)} \le C [u]_X$, for all $u\in X_0$. Hence, $\|u\|=[u]_X$ is a norm on $(X_0, \|.\|)$ and $X_0$ is a Hilbert space. Note that the norm $\|\cdot\|$ involves the interaction between $\Omega$ and $\mathbb{R}^n\backslash\Omega$. We denote $\|.\|_{L^p(\Omega)}$ as $\|\cdot\|_p$ and $\|\cdot\|=[\cdot]_X$ for the norm in $X_0$. Now for each $\alpha \geq 0$, we set \begin{equation}\label{eq00} C_{\alpha} = \sup \Big\{ \int_{\Omega} |u|^\alpha dx : \|u\| = 1\Big\}. \end{equation} Then $C_0 = |\Omega| $ is the Lebesgue measure of $\Omega$ and $\int_{\Omega} |u|^\alpha dx \leq C_\alpha \|u\|^{\alpha}$, for all $ u \in X_0$. In the case of $n > 2s$, we set $2^*_s = \frac{2n}{ n-2s}$, $00, \] where $u^*(x) = \bar{u}\big(\frac{x}{S^{\frac{1}{2s}}}\big)$, $\bar{u}(x) = \frac{\tilde{u}(x)}{\|u\|_{2^*_s}}$ and $\tilde{u}(x)= \alpha(\beta^2 + |x|^2)^{-\frac{n-2s}{2}}$ with $\alpha \in \mathbb{R} \setminus \{0\}$ and $ \beta >0$ are fixed constants. Then for each $\epsilon > 0$, $U_\epsilon$ satisfies \[ (-\Delta)^su = |u|^{2^*_s-2}u \text{ in } \mathbb{R}^n \] and verifies the equality \[ \int_{\mathbb{R}^n} \frac{|U_\epsilon(x)-U_{\epsilon}(y)|^2}{|x-y|^{n+2s}} \,dx\,dy =\int_{\mathbb{R}^n} |U_\epsilon|^{2^*_s} = S^{\frac{n}{2s}}. \] For a proof, we refer to \cite{s3}. \begin{definition} \label{def2.1} \rm We say $u$ is a positive weak solution of \eqref{Pl} if $u>0$ in $\Omega$, $u \in X_0$ and \[ \int_Q \frac{(u(x)-u(y))(\psi(x)-\psi(y))}{|x-y|^{n+2s}} \,dx\,dy - \int_\Omega \big(\lambda a(x) u^{-q} - u^{2^{s}_{*}-1}\big) \psi \,dx = 0 \] for all $\psi \in C^{\infty}_c(\Omega)$. \end{definition} We define the functional $I_{\lambda} : X_{0} \to (-\infty, \infty]$ by \[ I_{\lambda}(u) = \frac12 \int_Q \frac{|u(x) - u(y)|^2}{|x-y|^{n+2s}}dx\,dy - \lambda \int_\Omega a(x) G_q(u) dx - \frac{1}{2_{s}^{*}} \int_\Omega |u|^{2_{s}^{*}}dx, \] where $G_q : \mathbb{R} \to [-\infty, \infty)$ is the function defined by $$ G_q(x)= \begin{cases} \frac{|x|^{1-q}}{1-q} & \text{if } 00$ is such that $\|z_{r_1}-w\| \leq 1$. Then $\max \{w_1, z_m\} \to w$ strongly as $m \to \infty$, thus we can find $r_2>0$ such that $\|\max\{w_1,z_{r_2}\}-w\| \leq 1/2$. We set $w_2=\max\{w_1,z_{r_2}\}$ and get $\max \{w_2, z_m\} \to w$ strongly as $m \to \infty$. Consequently, by induction we set, $w_{k+1}= \max\{w_k,z_{r_{k+1}}\}$ to obtain the desired sequence, since we can see that $w_k \in X_0$ has compact support, for each $k$ and $\|\max\{w_k,z_{r_{k+1}}\}-w\| \leq 1/(k+1)$ which says that $\{w_k\}$ converges strongly to $w$ in $X_0$ as $k \to \infty$. \end{proof} For each $u\in X_{+,q}$ we define the fiber map $\phi_u:\mathbb{R}^+ \to \mathbb{R}$ by $\phi_u(t)=I_\lambda(tu)$. Then we prove the following result. \begin{theorem} \label{thm2.3} Assume $00:\text{ for each } u\in X_{+,q}\backslash\{0\},\; \phi_u(t) \text{ has two critical points in } (0, \infty) \}. \] Then $\Lambda >0$. \end{theorem} Using the variational methods on the Nehari manifold (see section 3), we will prove the following multiplicity result. \begin{theorem}\label{thm2.4} For each $\lambda \in (0, \Lambda)$, Problem \eqref{Pl} has two solutions $u_\lambda$ and $v_\lambda$ in $X_{+,q}$. \end{theorem} \section{Nehari manifold and fibering map analysis} We denote $I_{\lambda} = I$ for simplicity. In this section, we describe the structure of the Nehari manifold associated to the functional $I$. One can easily verify that the energy functional $I$ is not bounded below on the space $X_0$. But we will show that $I$ is bounded below on this Nehari manifold and we will extract solutions by minimizing the functional on suitable subsets. The Nehari manifold is defined as \[ \mathcal{N}_{\lambda} = \{ u \in X_{+,q} | \langle I'(u),u\rangle = 0 \}. \] \begin{theorem} \label{thm3.1} $I$ is coercive and bounded below on $\mathcal{N}_{\lambda}$. \end{theorem} \begin{proof} Case (I) ($0 0\}\\ &= \{ t_0u \in \mathcal{N}_{\lambda} : t_0 > 0, \phi'_u (t_0) = 0, \phi''_u(t_0) > 0\},\\ \mathcal{N}_{\lambda}^{-} &= \{ u \in \mathcal{N}_{\lambda}: \phi'_u (1) = 0, \phi''_u(1) <0\}\\ &= \{ t_0u \in \mathcal{N}_{\lambda} : t_0 > 0, \phi'_u (t_0) = 0, \phi''_u(t_0) < 0\} \end{align*} and $ \mathcal{N}_{\lambda}^{0}= \{ u \in \mathcal{N}_{\lambda} : \phi'_{u}(1)=0, \phi''_{u}(1)=0 \}$. \begin{lemma}\label{lem3.2} There exist $\lambda_*>0$ such that for each $u\in X_{+,q}\backslash\{0\}$, there is unique $t_{\rm max}, t_1$ and $t_2$ with the property that $t_10\\ \end{align*} if and only if \[ \lambda < \Big( \frac{2_{s}^{*}-2}{2_{s}^{*}-1+q} \Big) \Big( \frac{1+q}{2_{s}^{*}-1+q} \Big)^{\frac{1+q}{2_{s}^{*}-2}} ({C_{2_{s}^{*}}})^\frac{-1-q}{2_{s}^{*}-2} (\|a\|_{\infty} {C_{1-q}})^{-1} = \lambda_* \] (say), where $C_{\alpha}$ is defined in \eqref{eq00}. \smallskip Case(I) $(00$ and $m'_u(t_2)<0$ that is, $t_1u \in \mathcal{N}^{+}_{\lambda}$ and $t_2u \in \mathcal{N}^{-}_{\lambda}$. Thus, $\phi_u$ has a local minimum at $t=t_1$ and a local maximum at $t=t_2$, that is $\phi_{u}$ is decreasing in $(0,t_1)$ and increasing in $(t_1,t_2)$. \smallskip Case(II) $(q=1)$: Since $ \lim_{t \to 0} \phi_{u}(t) = \infty$ and $ \lim_{t \to \infty} \phi_{u}(t) = - \infty$ with similar reasoning as above we obtain $t_1, t_2$. That is, in both cases $\phi_{u}$ has exactly two critical points $t_1$ and $t_2$ such that $0< t_1 < t_2$, $\phi''_{u}(t_1) > 0$ and $\phi''_{u}(t_2) < 0$ that is $t_1u \in \mathcal{N}_{\lambda}^{+}$, $t_2u \in \mathcal{N}_{\lambda}^{-}$. \end{proof} \begin{corollary} \label{coro3.3} $\mathcal{N}_{\lambda}^{0} = \{0\}$ for all $ \lambda \in (0, \Lambda)$. \end{corollary} \begin{proof} Let $u \not\equiv 0 \in \mathcal{N}_{\lambda}^{0}$. Then $u \in \mathcal{N}_{\lambda}^{0}$ implies $u \in \mathcal{N}_{\lambda}$ that is, $1$ is a critical point of $\phi_{u}$. Using previous results, we say that $\phi_{u}$ has critical points corresponding to local minima or local maxima. So, $1$ is the critical point corresponding to local minima or local maxima of $\phi_{u}$. Thus, either $u \in \mathcal{N}_{\lambda}^{+}$ or $u \in \mathcal{N}_{\lambda}^{-}$ which is a contradiction. \end{proof} \begin{proof}[Proof of Theorem \ref{thm2.3}] From lemma \ref{lem3.2}, we see that $\Lambda$ is positive. If $I_\lambda(tu)$ has two critical points for some $\lambda=\lambda^*$, then $t\mapsto I_\lambda(tu)$ also has two critical points for all $\lambda<\lambda^*$. \end{proof} We can show that $\mathcal{N}_{\lambda}^{+}$ and $\mathcal{N}_{\lambda}^{-}$ are bounded in the following way. \begin{lemma}\label{lem3.4} The following holds: \begin{itemize} \item[(i)] $\sup \{ \|u\|: u \in \mathcal{N}_{\lambda}^{+}\} < \infty $ \item[(ii)] $\inf \{ \|v\|: v \in \mathcal{N}_{\lambda}^{-} \} >0$ and $ \sup \{ \|v\| : v \in \mathcal{N}_{\lambda}^{-} , I(v) \leq M\} < \infty$ for each $M > 0$. \end{itemize} Moreover, $\inf I(\mathcal{N}_{\lambda}^{+}) > - \infty$ and $\inf I(\mathcal{N}_{\lambda}^{-}) > - \infty$. \end{lemma} \begin{proof} (i) Let $u \in \mathcal{N}_{\lambda}^{+}$. Then we have \begin{align*} 0 & < \phi''_u(1) = (2-2_{s}^{*}) \|u\|^2 + \lambda (2_{s}^{*}-1+q) \int_{\Omega} a(x) |u|^{1-q} dx \\ & \leq (2-2_{s}^{*}) \|u\|^2 + \lambda (2_{s}^{*}-1+q) C_{1-q} \|a\|_{\infty} \|u\|^{1-q} . \end{align*} Thus we obtain \[ \|u\| \leq \Big( \frac{\lambda (2_{s}^{*}-1+q) C_{1-q}\|a\|_{\infty} }{2_{s}^{*}-2} \Big)^{\frac{1}{1+q}}. \] (ii) Let $v \in \mathcal{N}_{\lambda}^{-}$. We have \begin{align*} 0 & > \phi''_v(1) = (1+q) \|v\|^2 - (2_{s}^{*}-1+q) \int_{\Omega}|v|^{2_{s}^{*}} dx \\ & \geq (1+q) \|v\|^2 - (2_{s}^{*}-1+q) C_{2_{s}^{*}}\|v\|^{2_{s}^{*}}. \end{align*} Thus, we obtain \[ \|v\| \geq \Big( \frac{1+q}{(2_{s}^{*}-1+q)C_{2_{s}^{*}}} \Big)^{\frac{1}{2_{s}^{*}-2}} \] which implies that $\inf \{ \|v\| : v \in \mathcal{N}_{\lambda}^{-} \} >0$. If $I(v) \leq M$, similarly we have for $0 0$. For $u \in \mathcal{N}_{\lambda}^{+}$, when $0 - \infty$ and similarly, using (ii) we can show that $\inf I(\mathcal{N}_{\lambda}^{-}) > - \infty$. \end{proof} \begin{lemma}\label{le03} Suppose $u$ and $v$ be minimizers of $I$ over $\mathcal{N}_{\lambda}^{+}$ and $\mathcal{N}_{\lambda}^{-}$ respectively. Then for each $ w \in X_{+}$, \begin{enumerate} \item there exists $\epsilon_0 > 0$ such that $I(u +\epsilon w) \geq I(u)$ for each $ \epsilon \in [0, \epsilon_0]$, and \item $t_{\epsilon} \to 1$ as $\epsilon \to 0^+$, where $t_{\epsilon}$ is the unique positive real number satisfying $t_{\epsilon} (v + \epsilon w) \in \mathcal{N}_{\lambda}^{-}$. \end{enumerate} \end{lemma} \begin{proof} (1) Let $w \in X_{+}$ that is $w \in X_0$ and $w \geq 0$. We set $$ \rho(\epsilon) = \|u+\epsilon w\|^2 + \lambda q \int_{\Omega} a(x) |u+\epsilon w|^{1-q}\,dx - (2^{*}_{s}-1) \int_{\Omega} |u+\epsilon w|^{2^{*}_{s}} $$ for each $\epsilon \geq 0$. Then using continuity of $\rho$ and $\rho(0) = \phi''_u(1) >0$, since $u \in \mathcal{N}^{+}_{\lambda}$, there exist $\epsilon_0>0 $ such that $\rho(\epsilon)> 0$ for $\epsilon \in [0, \epsilon_0]$. Since for each $\epsilon > 0$, there exists $t_{\epsilon}'>0$ such that $t_{\epsilon}'(u + \epsilon w) \in \mathcal{N}^{+}_{\lambda}$, so $t_{\epsilon}' \to 1$ as $\epsilon \to 0$ and for each $\epsilon \in [0, \epsilon_0]$, we have \[ I(u + \epsilon w) \geq I(t_{\epsilon}'(u + \epsilon w)) \geq \inf I(\mathcal{N}^{+}_{\lambda})= I(u). \] (2) We define $h :(0, \infty)\times \mathbb{R}^3 \to \mathbb{R} $ by \[ h(t,l_1,l_2,l_3) = l_1t - \lambda t^{-q}l_2 - t^{2^*_s-1}l_3 \] for $(t,l_1,l_2,l_3)\in (0, \infty)\times \mathbb{R}^3$. Then, $h$ is a $C^{\infty}$ function. Also, we have \begin{equation*} \frac{dh}{dt}(1, \|v\|^2,\int_{\Omega}a(x)|v|^{1-q}\,dx ,\quad \int_{\Omega}|v|^{2^*_s}) = \phi''_v(1)<0 \end{equation*} and for each $\epsilon > 0$, $h(t_{\epsilon}$, $\|v+\epsilon w\|^2$, $\int_{\Omega}a(x)|v + \epsilon w|^{1-q}\,dx$, $\int_{\Omega} |v|^{2^*_s}) = \phi'_{v+\epsilon w}(t_\epsilon)=0$. Moreover, \[ h\Big(1, \|v\|^2, \int_{\Omega}a(x) |v|^{1-q}\,dx, \int_{\Omega} |v|^{2^*_s}\Big) = \phi'_v(1) = 0. \] Therefore, by implicit function theorem, there exists an open neighborhood $ A \subset (0, \infty)$ and $B \subset \mathbb{R}^3$ containing $1$ and $(\|v\|^2,\int_{\Omega}a(x) |v|^{1-q}\,dx, \int_{\Omega}|v|^{2^*_s} )$ respectively such that for all $y \in B$, $h(t,y) = 0 $ has a unique solution $ t = g(y)\in A $, where $g : B \to A$ is a continuous function. So, $(\|v+\epsilon w\|^2,\; \int_{\Omega}a(x)|v+ \epsilon w|^{1-q}\,dx, \int_{\Omega}|v+ \epsilon w|^{2^*_s}) \in B$ and \[ g \Big( \|v+\epsilon w)\|^2,\; \int_{\Omega}a(x)|v+ \epsilon w|^{1-q}\,dx, \int_{\Omega}|v+ \epsilon w|^{2^*_s} \Big) = t_{\epsilon} \] since $h(t_{\epsilon},\|v+\epsilon w)\|^2$, $\int_{\Omega}a(x)|v+ \epsilon w|^{1-q}\,dx$, $\int_{\Omega}|v+ \epsilon w|^{2^*_s}) = 0$. Thus, by continuity of $g$, we obtain $t_{\epsilon} \to 1$ as $\epsilon \to 0^+$. \end{proof} \begin{lemma} \label{lem3.6} Suppose $u$ and $v$ are minimizers of $I$ on $\mathcal{N}_{\lambda}^{+}$ and $\mathcal{N}_{\lambda}^{-}$ respectively. Then for each $w \in X_{+}$, we have $u^{-q}w, v^{-q} w \in L^{1}(\Omega)$ and \begin{gather} \int_Q \frac{(u(x)-u(y))(w(x)-w(y))}{|x-y|^{n+2s}}\,dx\,dy - \lambda \int_\Omega a(x) u^{-q}w\,dx - \int_\Omega u^{2^*_s-1}w \geq 0, \label{eq4.2}\\ \int_Q \frac{(v(x)-v(y))(w(x)-w(y))}{|x-y|^{n+2s}} \,dx\,dy - \lambda \int_\Omega a(x) v^{-q}w\,dx - \int_\Omega v^{2^*_s-1}w \geq 0.\label{eq4.3} \end{gather} \end{lemma} \begin{proof} Let $w \in X_{+}$. For sufficiently small $\epsilon > 0$, by lemma \ref{le03}, \begin{equation}\label{eq7} \begin{split} 0 &\leq \frac{I(u+\epsilon w) - I(u)}{\epsilon}\\ &= \frac{1}{2\epsilon} (\|u+\epsilon w\|^2- \|u\|^2) - \frac{\lambda}{\epsilon} \int_{\Omega} a(x)(G_q(u + \epsilon w) - G_q(u))\,dx \\ &\quad - \frac{1}{\epsilon 2^*_s} \int_{\Omega} (|u+\epsilon w|^{2^*_s} - |u|^{2^*_s}) . \end{split} \end{equation} We can easily verify that \begin{enumerate} \item[(i)] \[ \frac{(\|u+ \epsilon w\|^2- \|u\|^2)}{\epsilon} \to 2\int_{Q} \frac{(u(x)-u(y))(w(x)-w(y))}{|x-y|^{n+2s}}\,dx\,dy\quad \text{as } \epsilon \to 0^+, \] \item[(ii)] \[ \int_{\Omega} \frac{(|u+\epsilon w|^{2^*_s}-|u|^{2^*_s})}{\epsilon} \to 2^*_s \int_{\Omega} |u|^{2^*_s-1} w \;\;\text{as}\; \epsilon \to 0^+ \] \end{enumerate} which implies that \[ a(x) \frac{(G_q(u + \epsilon w) - G_q(u))}{\epsilon} \in L^{1}(\Omega). \] Also, for each $x \in \Omega$, $$ \frac{G_q(u(x)+\epsilon w(x)) - G_q(u(x))}{\epsilon} = \begin{cases} \frac{1}{\epsilon} \big( \frac{|u+\epsilon w|^{1-q}(x) - |u|^{1-q}(x)}{1-q} \big) & \text{if } 00 , u(x) > 0\\ \infty & \text{if } w(x) > 0 ,\; u(x) =0. \end{cases} $$ So using monotone convergence theorem, we obtain $u^{-q}w \in L^1(\Omega)$. Letting $\epsilon \downarrow 0$ in both sides of \eqref{eq7}, we obtain \eqref{eq4.2}. Next, we will show these properties for $v$. For each $\epsilon >0 $, there exists $t_{\epsilon}>0$ with $t_{\epsilon}(v+\epsilon w) \in \mathcal{N}^-_\lambda$. By lemma \ref{le03}(2), for sufficiently small $\epsilon > 0$, there holds \[ I(t_{\epsilon}(v+\epsilon w)) \geq I(v) \geq I(t_{\epsilon}v) \] which implies $I(t_{\epsilon}(v+\epsilon w)) - I(v) \geq 0$ and thus, we have \begin{align*} &\lambda \int_{\Omega} a(x) ( G_q(|v+\epsilon w|^{1-q}) - G_q(|v|^{1-q})) dx\\ &\leq \frac{t_{\epsilon}^{q}}{2} (\|v+\epsilon w\|^2 - \|v\|^2) - \frac{t^{q+2^*_s}_\epsilon}{ 2^*_s} \int_{\Omega}(|v+\epsilon w|^{2^*_s} - |v|^{2^*_s}). \end{align*} As $\epsilon \downarrow 0$, $t_\epsilon \to 1$. Thus, using similar arguments as above, we obtain $v^{-q}w \in L^1(\Omega)$ and \eqref{eq4.3} follows. \end{proof} Let $\phi_1>0$ be the eigenfunction of $(-\Delta)^s$ corresponding to the smallest eigenvalue $\lambda_1$. Then, $\phi_1 \in L^{\infty}(\Omega)$ (see \cite{s3}) and \begin{gather*} (-\Delta)^s \phi_1 = \lambda_1 \phi_1, \quad u>0\quad \text{in }\Omega,\\ \phi_1 = 0 \quad \text{on } \mathbb{R}^n \setminus\Omega. \end{gather*} For instance, here we assume $\|\phi_1\|_{\infty} = 1$. Let $\eta > 0$ be such that $\phi = \eta \phi_1$ satisfies \begin{equation} \label{eq3.4} (-\Delta)^s \phi + \lambda a(x)\phi^{-q} + \phi^{2^*_s-1} > 0 \end{equation} and $\phi^{2^*_s-1+q} (x) \leq \lambda a(x) \left(\frac{ q}{2^*_s-1}\right)$, for each $x \in \Omega$. Then we have the following Lemma. \begin{lemma}\label{le05} Suppose $u$ and $v$ are minimizers of $I$ on $\mathcal{N}_{\lambda}^{+}$ and $\mathcal{N}_{\lambda}^{-}$ respectively. Then $u \geq \phi$ and $v\ge \phi$. \end{lemma} \begin{proof} By lemma \ref{lem2.1}, let $\{w_k\}$ be a sequence in $X_0$ such that $\operatorname{supp}(w_k)$ is compact, $0 \leq w_k \leq (\phi - u)^+$ for each $k$ and $\{w_k\}$ strongly converges to $(\phi - u)^+$ in $X_0$. Then for each $x \in \Omega$, \begin{equation}\label{eq3.5} \frac{d}{dt}(\lambda a(x)t^{-q}+t^{2^*_s-1}) = -q \lambda a(x)t^{-q-1} +(2^*_s-1)t^{2^*_s-2} \leq 0 \end{equation} if and only if $t^{2^*_s-1+q}\leq \lambda a(x) \left(\frac{q}{2^*_s-1}\right)$. Using the previous lemma and \eqref{eq3.4}, we have \begin{align*} &\Big(\int_Q \frac{(u(x)-u(y))(w_k(x)-w_k(y))}{|x-y|^{n+2s}} \,dx\,dy - \lambda \int_\Omega a(x) u^{-q}w_k\,dx - \int_\Omega u^{2^*_s-1}w_k \Big)\\ & - \Big(\int_Q \frac{(\phi(x)-\phi(y))(w_k(x)-w_k(y))}{|x-y|^{n+2s}}\,dx\,dy - \lambda \int_\Omega a(x) \phi^{-q}w_k\,dx - \int_\Omega \phi^{2^*_s-1}w_k\Big)\\ & \geq 0 \end{align*} which implies \begin{align*} &\int_Q \frac{(u(x)-u(y))- (\phi(x)-\phi(y))}{|x-y|^{n+2s}} [w_k(x) - w_k(y)] \,dx\,dy\\ &- \int_\Omega (\lambda a(x)u^{-q} + u^{2^*_s-1})w_k\,dx + \int_{\Omega} (\lambda a(x)\phi^{-q} +\phi^{2^*_s-1})w_k\,dx \geq 0. \end{align*} Using the strong convergence, we assume $\{w_k\}$ converges to $(\phi - u)^+$ pointwise almost everywhere in $\Omega$ and we write $w_k(x) = (\phi - u)^+(x)+ o(1)$ as $k \to \infty$. Consider, \begin{align*} &\int_Q \frac{((u-\phi)(x)-(u - \phi)(y))}{|x-y|^{n+2s}} [w_k(x) - w_k(y)] \,dx\,dy\\ & = \int_Q \frac{((u-\phi)(x)-(u - \phi)(y))}{|x-y|^{n+2s}} ((\phi - u)^+(x) - (\phi - u)^+(y)) \,dx\,dy \\ &\quad + o(1)\int_Q \frac{((u-\phi)(x)-(u - \phi)(y))}{|x-y|^{n+2s}}\,dx\,dy \end{align*} where we can see that \begin{align*} & \int_Q \frac{((u-\phi)(x)-(u - \phi)(y))}{|x-y|^{n+2s}} ((\phi - u)^+(x) - (\phi - u)^+(y)) \,dx\,dy\\ & = \int_Q \frac{-(\phi-u)(x)+(\phi-u)(y)}{|x-y|^{n+2s}}((\phi - u)^+(x) - (\phi - u)^+(y)) \,dx\,dy\\ & = \int_Q \frac{((\phi-u)^{+}-(\phi-u)^{-})(y)-((\phi-u)^{+} -(\phi-u)^{-})(x)}{|x-y|^{n+2s}} \\ &\quad\times \big((\phi-u)^{+}(x)-(\phi-u)^{+}(y)\big)\,dx\,dy\\ & \leq -\int_Q \Big(|(\phi-u)^{+}(y)|^{2}+|(\phi-u)^{+}(x)|^2 +(\phi-u)^{-}(y)(\phi-u)^{+}(x)\\ &\quad +(\phi-u)^{-}(x)(\phi-u)^{+}(y)\Big) \big/ |x-y|^{n+2s} \,dx\,dy\\ & = - \int_Q \frac{|(\phi-u)^{+}(x) - (\phi-u)^{+}(y)|^2}{|x-y|^{n+2s}}\,dx\,dy \\ &= - \| (\phi - u)^{+}\|^{2}. \end{align*} Since $\phi^{2^*_s-1+q} (x) \leq \lambda a(x) (\frac{q}{2^*_s-1})$ for each $x \in \Omega$, using \eqref{eq3.5} we obtain \begin{align*} & \int_\Omega ((\lambda a(x)u^{-q} + u^{2^*_s-1}) - (\lambda a(x)\phi^{-q} + \phi^{2^*_s-1}))w_k\,dx \\ & = \int_{\Omega \cap \{\phi \geq u\}} ((\lambda a(x)u^{-q} + u^{2^*_s-1}) - (\lambda a(x)\phi^{-q} + \phi^{2^*_s-1}))(\phi-u)^{+}(x)\,dx + o(1)\\ & \geq 0. \end{align*} This implies \begin{align*} 0 &\leq -\|(\phi-u )^+\|^2 -\int_\Omega (\lambda a(x)u^{-q} + u^{2^*_s-1})w_k\,dx\\ &\quad + \int_{\Omega} (\lambda a(x)\phi^{-q} + \phi^{2^*_s-1})w_k\,dx +o(1)\\ &\leq -\|(\phi-u )^+\|^2 + o(1) \end{align*} and letting $k \to \infty$, we obtain $-\|(\phi-u )^+\|^2 \geq 0$. Thus, we showed $u \geq \phi$. Similarly, we can show $v\ge \phi$. \end{proof} \section{Existence of minimizer on $\mathcal{N}_{\lambda}^{+}$} In this section, we will show that the minimum of $I$ is achieved in $\mathcal{N}_{\lambda}^{+}$. Also, we show that this minimizer is also the first solution of \eqref{Pl}. \begin{proposition} For all $\lambda\in (0,\Lambda)$, there exist $u_\lambda \in \mathcal{N}_{\lambda}^{+}$ satisfying $I(u_\lambda) = \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u)$. \end{proposition} \begin{proof} Assume $00$ which gives \[ \Big(\frac{1+q}{2^{*}_{s}-1+q} \Big)\|u_0\|^2 > \int_{\Omega}|u_0|^{2^{*}_{s}} dx . \] Therefore, using $2^{*}_{s}-1>1$ we obtain \begin{align*} I(u_0) & = \big( \frac12 - \frac{1}{1-q} \big) \|u_0\|^2 + \big( \frac{1}{1-q} - \frac{1}{2^{*}_{s}} \big)\int_{\Omega} |u_0|^{2^{*}_{s}}dx\\ & \leq - \frac{(1+q)}{2(1-q)} \|u_0\|^2 + \frac{(1+q)}{2^{*}_{s}(1-q)} \|u_0\|^2\\ &= \big( \frac{1}{2^*_s}-\frac{1}{2}\big)\big(\frac{1+q}{1-q}\big) \|u_0\|^2<0. \end{align*} We set $w_k := (u_k - u_\lambda)$ and claim that $u_k \to u_\lambda$ strongly in $X_0$. Suppose $\|w_k\|^2 \to c^2 \neq 0$ and $\int_{\Omega} |w_k|^{2^*_s}dx \to d^{2^*_s}$ as $k \to \infty$. Since $u_k \in \mathcal{N}^+_{\lambda}$, using Brezis-Lieb we obtain \begin{equation}\label{eq8} 0 = \lim_{k \to \infty} \phi'_{u_k}(1) = \phi'_{u_\lambda}(1)+c^2 -d^{2^*_s} \end{equation} which implies $$ \|u_\lambda\|^2+c^2 = \lambda \int_{\Omega}a(x)|u_\lambda|^{1-q}dx + \int_{\Omega}|u_k|^{2^*_s}dx +d^{2^*_s}. $$ We claim that $u_\lambda \in X_{+,q}$. Suppose $u_\lambda\equiv 0$. If $0 \inf I(\mathcal{N}^+_{\lambda}) = I(0)=0$, which is a contradiction and if $c\neq 0$ then \begin{equation}\label{eq4.2new} \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u) = I(0)+\frac{c^2}{2} - \frac{d^{2^*_s}}{2^*_s} = \frac{c^2}{2} - \frac{d^{2^*_s}}{2^*_s} . \end{equation} But we have $\|u_k\|^2_{2^*_s}S \leq \|u_k\|^2$ which gives $c^2 \geq Sd^2 $. Also from \eqref{eq8}, we have $c^2=d^{2^*_s}$. Then \eqref{eq4.2new} implies \[ 0 > \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u) = \big(\frac{1}{2}-\frac{1}{2^*_s}\big)c^2 \geq \frac{s}{n}S^{\frac{n}{2s}}, \] which is again a contradiction. In the case $q = 1$, the sequence $\{ \int_{\Omega} \ln(|u_{k}|)\}$ is bounded, since the sequence $\{I(u_{k})\}$ and $\{\|u_{k}\|\}$ is bounded, using Fatou's lemma and for each $k$, $\ln(|u_{k}|) \leq u_{k},$ we obtain \[ -\infty < \overline{\lim_{k \to \infty}} \int_{\Omega} \ln(|u_{k}|) dx \leq \int_{\Omega} \overline{\lim_{k \to \infty}} \ln(|u_{k}|)dx = \int_{\Omega} \ln(|u_\lambda|)dx. \] which implies $u_\lambda \not\equiv 0$. Thus, in both cases we have shown that $u_\lambda \in X_{+,q}$. So, there exists $0 < t_1 < t_2$ such that $\phi'_{u_{\lambda}}(t_1)= \phi'_{u_{\lambda}}(t_2) = 0$ and $t_{1}u_{\lambda} \in \mathcal{N}^{+}_{\lambda}$. Then, three cases arise: \begin{itemize} \item[(i)] $t_2 < 1$, \item[(ii)] $t_2 \geq 1$ and $\frac{c^2}{2}- \frac{d^{2^*_s}}{2^*_s} < 0$, and \item[(iii)] $t_2 \geq 1$ and $\frac{c^2}{2}- \frac{d^{2^*_s}}{2^*_s} \geq 0$. \end{itemize} \smallskip \noindent\textbf{Case (i)} Let \[ h(t) = \phi_{u_{\lambda}}(t)+ \frac{c^2t^2}{2} - \frac{d^{2^*_s}t^{2^*_s}}{2^*_s}, \] $t >0$. By \eqref{eq8}, we obtain $ h'(1) = \phi'_{u_{\lambda}}(1)+c^2-d^{2^*_s} = 0$ and \[ h'(t_2) = \phi'_{u_{\lambda}}(1)+t_2c^2-{t_2}^{2^*_s-1}d^{2^*_s} = {t_2}(c^2 - {t_2}^{2^*_s-2}d^{2^*_s}) > {t_2}(c^2 - d^{2^*_s}) > 0 \] which implies that $h$ increases on $[t_2,1]$. Then we obtain \begin{align*} \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u) &= \lim I(u_k) \geq \phi_{u_{\lambda}}(1) + \frac{c^2}{2}- \frac{d^{2^*_s}}{2^*_s} = h(1) > h(t_2)\\ & =\phi_{u_{\lambda}}(t_2) + \frac{c^2t_{2}^{2}}{2} - \frac{d^{2^*_s}t_{2}^{2^*_s}}{2^*_s} \geq \phi_{u_{\lambda}}(t_2) + \frac{t_{2}^{2}}{2} (c^2 - d^{2^*_s})\\ & > \phi_{u_{\lambda}}(t_2) > \phi_{u_{\lambda}}(t_1) \geq \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u), \end{align*} which is a contradiction. \smallskip \noindent\textbf{Case (ii)} In this case, since $\lambda \in (0, \Lambda)$, we have $(c^2/2 - d^{2^*_s}/{2^*_s}) < 0$ and $Sd^2 \leq c^2$. Also we see that, for each $u_0 \in \mathcal{N}^{+}_{\lambda}$ \begin{align*} 0 < \phi''_{u_0}(1) & = \|u_0\|^2 + q \lambda \int_{\Omega} a(x)|u_0|^{1-q} dx - (2^*_s-1) \int_{\Omega}|u_0|^{1+p}dx \\ & = (1+q) \|u_0\|^2 + (-q-2^*_s+1) \int_{\Omega} |u_0|^{2^*_s} dx \end{align*} which implies \[ (1+q)\|u_0\|^2 > (q+2^*_s-1)\int_{\Omega}|u_0|^{2^*_s}dx = (q+2^*_s-1)\|u_0\|^{2^*_s}_{{2^*_s}}dx \] or \[ C_{2^*_s} \leq \Big(\frac{1+q}{q+2^*_s-1}\Big) \|u_0\|^{2-2^*_s},\quad \text{or} \quad \|u_0\|^{2} \leq \Big(\frac{1+q}{q+2^*_s-1} \Big)^{\frac{2}{2^*_s-2}} S^{\frac{2^*_s}{2^*_s-2}}. \] Thus, we have \[ \sup\{ \|u\|^2: u \in \mathcal{N}^+_{\lambda}\} \leq \Big(\frac{2}{2^*_s}\Big)^{\frac{2}{2^*_s-2}} S^{\frac{2^*_s}{2^*_s-2}} < c^2 \leq \sup\{ \|u\|^2: u \in \mathcal{N}^+_{\lambda}\}, \] which gives a contradiction. Consequently, in case (iii) we have $$ \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u) = I(u_\lambda)+\frac{c^2}{2}-\frac{d^{2^*_s}}{2^*_s} \geq I(u_\lambda) = \phi_{u_\lambda}(1) \geq \phi_{u_\lambda}(t_1) \geq \inf I(\mathcal{N}^+_{\lambda}) . $$ Clearly, this holds when $t_1 = 1$ and $(c^2/2 - d^{2^*_s}/{2^*_s}) = 0$ which yields $c=0$ and $u_\lambda \in \mathcal{N}^+_{\lambda}$. Thus, $u_k \to u_\lambda$ strongly in $X_0$ and $I(u_\lambda) = \inf_{u\in \mathcal{N}_{\lambda}^{+}} I(u)$. \end{proof} \begin{proposition}\label{prop4.2} $u_\lambda$ is a positive weak solution of \eqref{Pl}. \end{proposition} \begin{proof} Let $\psi \in C^{\infty}_c(\Omega)$. By lemma \ref{le05}, since $\phi > 0$, we can find $ \alpha >0$ such that $u_\lambda \geq \alpha$ on support of $\psi$. Then $u+\epsilon \psi\ge0$ for small $\epsilon$. With similar reasoning as in the proof of lemma \ref{le03}, $ I(u_\lambda+\epsilon \psi) \geq I(u_\lambda)$ for sufficiently small $\epsilon >0$. Then we have \begin{align*} 0 & \leq \lim _{\epsilon \to 0} \frac{I(u_\lambda+\epsilon\psi) - I(u_\lambda)}{\epsilon}\\ &= \int_Q \frac{(u_\lambda(x)-u_\lambda(y)) (\psi(x)-\psi(y))}{|x-y|^{n+2s}}\,dx\,dy - \lambda \int_\Omega a(x) u_{\lambda}^{-q}\psi dx - \int_\Omega u_{\lambda}^{2^*_s-1}\psi \,dx. \end{align*} Since $\psi \in C^{\infty}_c(\Omega)$ is arbitrary, we conclude that $u_\lambda$ is a positive weak solution of \eqref{Pl}. \end{proof} As a consequence, we have the following result. \begin{lemma}\label{lem4.3} $\Lambda <\infty$. \end{lemma} \begin{proof} Taking $\phi_1$ as the test function in \eqref{Pl}, we obtain \[ \lambda_1 \int_\Omega u \phi_1 = \int_{\Omega} (\lambda u^{-q}+u^{2_{s}^{*}-1})\phi_1. \] Let $\mu^*>0$ be such that $\mu^* t^{-q} + t^{2_{s}^{*}-1} > (\lambda_1 +\epsilon) t$, for all $t>0$. Then we obtain $\lambda <\mu^*$ and the proof follows. \end{proof} \section{Existence of minimizer on $\mathcal{N}^{-}_{\lambda}$} In this section, we shall show the existence of second solution by proving the existence of minimizer of $I$ on $\mathcal{N}^-_{\lambda}$. We need some lemmas to prove this and for instance, we assume $0 \in \Omega$. To put $U_\epsilon$ zero outside $\Omega$, we fix $\delta >0$ such that $B_{4\delta} \subset \Omega$ and let $\zeta \in C^{\infty}_c(\mathbb{R}^n)$ be such that $0 \leq \zeta \leq 1$ in $\mathbb{R}^n$, $\zeta \equiv 0$ in $\mathcal{C} B_{2\delta}$ and $\zeta \equiv 1$ in $B_\delta$. For each $\epsilon > 0$ and $x \in \mathbb{R}^n$, we define $$ \Phi_\epsilon(x) := \zeta(x) U_\epsilon(x). $$ Moreover, since $u_\lambda$ is positive and bounded (see lemma \ref{lem6.2}), we can find $m,M>0$ such that for each $x \in \Omega$, $m \leq u_\lambda(x)\leq M$. \begin{lemma} $\sup \{I(u_\lambda + t\Phi_\epsilon): t\geq 0\} < I(u_\lambda) + \frac{s}{n}S^{\frac{n}{2s}}$, for each sufficiently small $\epsilon >0$. \end{lemma} \begin{proof} We assume $\epsilon>0$ to be sufficiently small. Using \cite[Proposition 21]{s3}, we have $$ \int_{Q} \frac{|\Phi_\epsilon(x) - \Phi_\epsilon(y)|^2}{|x-y|^{n+2s}}dx\,dy \leq S^\frac{n}{2s}+ o(\epsilon^{n-2s}) $$ which says that we can find $r_1 > 0$ such that $$ \int_{Q} \frac{|\Phi_\epsilon(x) - \Phi_\epsilon(y)|^2}{|x-y|^{n+2s}}dx\,dy \leq S^\frac{n}{2s}+ r_1\epsilon^{n-2s} . $$ Now, we consider \begin{align*} \int_{\Omega} |\Phi_\epsilon|^{2^*_s}dx & =\int_{B_\delta} |U_\epsilon|^{2^*_s}dx +\int_{B_{2\delta} \setminus B_{\delta}} |\zeta(x)U_\epsilon(x)|^{2^*_s}dx \\ & = \int_{\mathbb{R}^n} |U_\epsilon|^{2^*_s}dx - \int_{\mathbb{R}^n \setminus B_\delta} |U_\epsilon|^{2^*_s}dx + \int_{B_{2\delta} \setminus B_{\delta}} |\zeta(x)U_\epsilon(x)|^{2^*_s}dx\\ & \geq \int_{\mathbb{R}^n} |U_\epsilon|^{2^*_s}dx - \int_{\mathbb{R}^n \setminus B_\delta} |U_\epsilon|^{2^*_s}dx\\ & = S^\frac{n}{2s}- \epsilon^{-n}\int_{\mathbb{R}^n \setminus B_\delta} |u^*(x/\epsilon)|^{2^*_s}dx \\ &\geq S^\frac{n}{2s} - r_2\epsilon^n \end{align*} for some constant $r_2 >0$. We now fix $1 < \rho < \frac{n}{n-2s}$ and we have \begin{align*} \int_{\Omega}|\Phi_\epsilon|^\rho dx &= \epsilon^{-(n-2s)\rho/2}\int_{B_{2\delta}}|\zeta(x)u^*(x/\epsilon)|^\rho dx\\ & \leq {r_3}' \epsilon^{-(n-2s)\rho/2} \int_{B_{2\delta}} \Big( \big|\frac{x}{\epsilon S^\frac{1}{2s}}\big|^2\Big)^{\frac{-(n-2s)\rho}{2}}dx\\ & = r_3 \epsilon^{(n-2s)\rho/2} \end{align*} for constants ${r_3}', r_3 >0$. Now, choosing $\epsilon >\delta/S^\frac{1}{2s}$ we see that \begin{align*} \int_{B_\delta} |\Phi_\epsilon|^{2^*_s-1}dx &= \alpha^{2^*_s-1}\beta^{-(n+2s)} \epsilon^{(n-2s)/2} \int_{|y|< \frac{\delta}{\epsilon} S^\frac{1}{2s}}(1+|y|^2)^{-(n+2s)/2}dy\\ &\geq \alpha^{2^*_s-1}\beta^{-(n+2s)} \frac{\epsilon^{(n-2s)/2}}{2^{(n+2s)/2}} \int_{|y|\leq 1}dy \\ &= r_4\epsilon^{(n-2s)/2} \end{align*} for some constant $r_4>0$. We can find appropriate constants $\rho_1, \rho_2 >0$ such that the following inequalities holds: \begin{gather*} \lambda \Big( \frac{(c+d)^{1-q}}{1-q} - \frac{c^{1-q}}{1-q} - \frac{d}{c^q} \Big) \geq -\frac{\rho_1d^{\rho}}{r_3},\quad\text{for all }c \geq m, d\geq 0, \\ \Big(\frac{(c+d)^{2^*_s}}{2^*_s} - \frac{c^{2^*_s}}{2^*_s}-c^{2^*_s-1}d\Big) \geq \frac{d^{2^*_s}}{2^*_s},\quad\text{for all }c,d \geq 0, \\ \frac{(c+d)^{2^*_s}}{2^*_s}-\frac{c^{2^*_s}}{2^*_s} - {c^{2^*_s-1}}d \geq \frac{d^{2^*_s}}{2^*_s} + \frac{\rho_2cd^{2^*_s-1}}{r_4m(2^*_s-1)}, \quad\text{for all } 0\leq c \leq M,\; d\geq 1. \end{gather*} \smallskip \noindent\textbf{Case I:} $00$ as in previous lemma and define functions $\sigma_1, \sigma_2: [0,\infty) \to \mathbb{R}$ by \begin{gather*} \begin{aligned} \sigma_1(t) &= \int_{Q}\frac{|(u_\lambda+t\Phi_\epsilon)(x)-(u_\lambda +t\Phi_\epsilon)(y)|^2}{|x-y|^{n+2s}}\,dx\,dy - \lambda \int_{\Omega}a(x)|u_\lambda+t\Phi_\epsilon|^{1-q}\,dx\\ &\quad - \int_{\Omega}|u_\lambda+t\Phi_\epsilon|^{2^*_s}\,dx, \end{aligned} \\ \begin{aligned} \sigma_2(t) &= \int_{Q}\frac{|(u_\lambda+t\Phi_\epsilon)(x) -(u_\lambda+t\Phi_\epsilon)(y)|^2}{|x-y|^{n+2s}}\,dx\,dy \\ &\quad - \lambda q \int_{\Omega}a(x)|u_\lambda+t\Phi_\epsilon|^{1-q}\,dx - (2^*_s-1) \int_{\Omega}|u+t\Phi_\epsilon|^{2^*_s}\,dx. \end{aligned} \end{gather*} Let $t_0 = \sup\{t \geq 0: \sigma(t)\geq 0 \}$, then $\sigma_2(0) = \phi''_{u_\lambda}(1) >0$ and $\sigma_2(t) \to -\infty$ as $t \to \infty$ which implies $00$ and since $\sigma_1(t) \to -\infty$ as $t \to \infty$, there exists $t' \in (t_0, \infty)$ such that $\sigma_1(t')=0$. This gives $\phi''_{u_\lambda+t'\Phi_\epsilon}(1)<0$, because $t'>t_0$ implies $\sigma_2(t')<0$. Hence, $ (u_\lambda+t'\Phi_\epsilon)\in \mathcal{N}^-_{\lambda}$ and using previous lemma, we obtain the result. \end{proof} \begin{proposition} There exists $v_\lambda \in \mathcal{N}_{\lambda}^{-}$ satisfying $I(v_\lambda) = \inf_{v\in \mathcal{N}_{\lambda}^{-}} I(v)$. \end{proposition} \begin{proof} Let $\{v_k\}$ be sequence in $\mathcal{N}^-_{\lambda}$ such that $I(v_k) \to \inf I(\mathcal{N}^-_{\lambda})$ as $k \to \infty$. Using lemma \ref{lem3.4}, we may assume that there exist $v_\lambda$ such that $v_k \rightharpoonup v_\lambda$ weakly in $X_0$. We set $z_k := (v_k - v_\lambda)$ and claim that $v_k \to v_\lambda$ strongly in $X_0$. Suppose $\|z_k\|^2 \to c^2$ and $\int_{\Omega}|z_k|^{2^*_s}dx \to d^{2^*_s}$ as $k \to \infty$. Then using Brezis-Lieb lemma, we obtain \[ \|v_\lambda\|^2 +c^2 = \lambda\int_{\Omega}a(x)|v_\lambda|^{1-q}dx + \int_{\Omega}|v_\lambda|^{2^*_s}+d^{2^*_s}dx. \] We claim that $v_\lambda \in X_{+,q}$. Suppose $v_\lambda =0$, this implies $c \neq 0$ (using lemma \ref{lem3.4}(ii)) and thus \[ \inf I(\mathcal{N}^-_{\lambda}) = \lim I(v_k) = I(0) +\frac{c^2}{2}-\frac{d^{2^*_s}}{2^*_s} \geq \frac{s}{n}S^\frac{n}{2s}, \] but by previous lemma, $ (sS^\frac{n}{2s})/n \leq \inf I(\mathcal{N}^-_{\lambda}) < I(u_\lambda) + \frac{s}{n}S^\frac{n}{2s}$ implying $I(u_\lambda) >0$ or we say that $\inf I(\mathcal{N}_{\lambda}^{-}) >0$, which is a contradiction. So $v_\lambda \in X_{+,q}$ and thus, our assumption $\lambda \in (0, \Lambda)$ says that there exists $00$, and \item[(iii)] $t_2 \geq 1$ and $d = 0$. \end{itemize} Case (i) $t_2 <1$ implies $g'(1)= \phi'_{v_\lambda}(1)+ f'(1) = 0$, using \eqref{eq11} and $g'(t_2)= \phi'_{v_\lambda}(t_2)+ f'(t_2) = t_2(c^2-d^{2^*_s}t_{2}^{2^*_s-2}) \geq t_2(c^2-d^{2^*_s})>0$. This implies that $g$ is increasing on $[t_2,1]$ and we have \[ \inf I(\mathcal{N}^-_{\lambda}) = g(1)> g(t_2) \geq I(t_2 v_\lambda)+\frac{{t_2}}{2}(c^2-d^{2^*_s}) > I(t_2 v_\lambda) \geq \inf I(\mathcal{N}^-_{\lambda}) \] which is a contradiction. Case (ii) Let $\underline{t}=(c^2/d^{2^*_s})^{\frac{1}{2^*_s-2}}$ and we can check that $f$ attains its maximum at $\underline{t}$ and $$ f(\underline{t})= \frac{c^2{\underline{t}}^2}{2}-\frac{d^{2^*_s} {\underline{t}}^{2^*_s}}{2^*_s} =\Big( {\frac{c^2}{d^{2^*_s}}}\Big)^{\frac{2^*_s}{2^*_s-2}} \Big(\frac{1}{2}- \frac{1}{2^*_s} \Big) \geq S^{\frac{2^*_s}{2^*_s-2}}\frac{s}{n} = \frac{s}{n}S^\frac{n}{2s}. $$ Also, $f'({t})= (c^2-d^{2^*_s}t^{2^*_s-2})t >0 $ if $0 \underline{t}$. Moreover, we know $g(1) = \max _{t>0} \{g(t)\} \geq g(\underline{t})$ using the assumption $\lambda \in (0, \Lambda)$. If $\underline{t}\leq 1$, then we have \[ \inf I(\mathcal{N}^-_{\lambda}) = g(1)\geq g(\underline{t})=I(\underline{t}v_\lambda) + f(\underline{t}) \geq I(t_1 v_\lambda)+\frac{s}{n}S^\frac{n}{2s} \] which contradicts the previous lemma. Thus, we must have $\underline{t}>1$. Since $g'(t) \leq 0$ for $t\geq 1$, there holds $\phi''_{v_\lambda}(t) \leq -f'(t) \leq 0 $ for $1\leq t \leq \underline{t}$. Then we have $\underline{t}\leq t_1$ or $t_2=1$. If $\underline{t}\leq t_1$ then \[ \inf I(\mathcal{N}^-_{\lambda})= g(1) \geq g(\underline{t}) =I(\underline{t}v_\lambda)+ f(\underline{t}) \geq I(t_1v_\lambda)+\frac{s}{n}S^\frac{n}{2s} \] which is a contradiction. If $t_2=1$ then using $c^2=d^{2^*_s}$ we obtain \[ \inf I(\mathcal{N}^-_{\lambda})=g(1)= I(v_\lambda) + \Big(\frac{c^2}{2}-\frac{d^{2^*_s}}{2^*_s}\Big)\geq I(v_\lambda) + \frac{s}{n}S^\frac{n}{2s} \] which is a contradiction and thus only case (iii) holds. If $c \neq 0$, then $\phi'_{v_\lambda}(1) = -c^2 <0$ and $\phi''_{v_\lambda}(1) = -c^2<0$ which contradicts $t_2 \geq 1$. Thus, $c=0$ which implies $v_k \to v_\lambda$ strongly in $X_0$. Consequently, $v_\lambda \in \mathcal{N}^-_{\lambda}$ and $\inf I(\mathcal{N}^-_{\lambda})= I(v_\lambda)$. \end{proof} \begin{proposition}\label{prop5.4} For $\lambda \in (0,\Lambda),$ $v_\lambda$ is a positive weak solution of \eqref{Pl}. \end{proposition} \begin{proof} Let $\psi \in C^{\infty}_c(\Omega)$. Using lemma \ref{le05}, since $\phi > 0$ in $\Omega$, we can find $ \alpha >0$ such that $v_\lambda \geq \alpha$ on $supp(\psi)$. Also, $t_{\epsilon} \to 1$ as $\epsilon \to 0+$, where $t_{\epsilon}$ is the unique positive real number corresponding to $(v_\lambda+\epsilon \psi)$ such that $t_\epsilon (v_\lambda+\epsilon \psi) \in \mathcal{N}^{-}_{\lambda}$. Then, by lemma \ref{le03} we have \begin{align*} 0 & \leq \lim_{\epsilon \to 0}\frac{I(t_\epsilon(v_\lambda+\epsilon\psi)) - I(v_\lambda)}{\epsilon} \leq \lim _{\epsilon \to 0} \frac{I(t_{\epsilon}(v_\lambda+\epsilon\psi)) - I(t_{\epsilon} v_\lambda)}{\epsilon}\\ & = \int_Q \frac{(v_\lambda(x)-v_\lambda(y))(\psi(x)-\psi(y))}{|x-y|^{n+2s}} dx\,dy - \lambda \int_\Omega a(x) v_{\lambda}^{-q}\psi dx - \int_\Omega v_{\lambda}^{2^*_s-1}\psi dx. \end{align*} Since $\psi \in C^{\infty}_c(\Omega)$ is arbitrary, we conclude that $v_{\lambda}$ is positive weak solution of \eqref{Pl}. \end{proof} Now the proof of Theorem \ref{thm2.4} follows from proposition \ref{prop4.2}, lemma \ref{lem4.3} and proposition \ref{prop5.4}. \section{Regularity of weak solutions} In this section, we shall prove some regularity properties of positive weak solutions of $\eqref{Pl}$. We begin with the following lemma. \begin{lemma} \label{lem6.1} Suppose $u$ is a weak solution of $\eqref{Pl}$, then for each $w \in X_0$, it satisfies \begin{gather*} a(x)u^{-q}w \in L^{1}(\Omega),\\ \int_Q \frac{(u(x)-u(y))(w(x)-w(y))}{|x-y|^{n+2s}}\,dx\,dy - \int_\Omega \left(\lambda a u^{-q} + u^{2^{s}_{*}-1}\right)w dx = 0. \end{gather*} \end{lemma} \begin{proof} Let $u$ be a weak solution of $\eqref{Pl}$ and $w \in X_{+}$. By lemma \ref{lem2.1}, we obtain a sequence $\{w_k \} \in X_{0}$ such that $\{w_k\} \to w$ strongly in $X_0$, each $w_k$ has compact support in $\Omega$ and $0 \leq w_1 \leq w_2 \leq \ldots$. Since each $w_k$ has compact support in $\Omega$ and $u$ is a positive weak solution of \eqref{Pl}, for each $k$ we obtain \[ \lambda \int_\Omega a(x) u^{-q}w_k\,dx = \int_Q \frac{(u(x)-u(y))(w_k(x)-w_k(y))}{|x-y|^{n+2s}} \,dx\,dy - \int_\Omega u^{2^{s}_{*}-1}w_k\,dx .\] Using monotone convergence theorem, we obtain $a(x)u^{-q}w \in L^{1}(\Omega)$ and \[ \lambda \int_\Omega a(x) u^{-q}w\,dx = \int_Q \frac{(u(x)-u(y))(w(x)-w(y))}{|x-y|^{n+2s}}\,dx\,dy -\int_\Omega u^{2^{s}_{*}-1}w\,dx = 0. \] If $w \in X_0$, then $w = w^+ - w^-$ and $w^+, w^- \in X_{+}$. Since we proved the lemma for each $w \in X_+$, we obtain the conclusion. \end{proof} \begin{lemma}\label{lem6.2} Let $u$ be a weak solution of $\eqref{Pl}$. Then $u \in L^{\infty}(\Omega)$. \end{lemma} \begin{proof} We follow \cite{bss}. We use the inequality known for fractional Laplacian \[ (-\Delta)^s\varphi(u) \leq \varphi'(u)(-\Delta)^s u, \] where $\varphi$ is a convex and differentiable function. We define $$ \varphi(t) = \varphi_{T,\beta}(t) \begin{cases} 0 & \text{if } t\leq 0 \\ t^{\beta} & \text{if } 0 0$ is large. Then $\varphi$ is Lipschitz with constant $M = \beta T^{\beta -1}$ which gives $\varphi \in X_0$. Thus, \begin{equation}\label{eqreg1} \|\varphi(u)\| = \Big(\int_{Q} \frac{|\varphi(u(x))-\varphi(u(y))|^2}{|x-y|^{n+2s}}\Big)^{1/2} \leq \Big( \int_{Q} \frac{M^2|u(x)-u(y)|^2}{|x-y|^{n+2s}} \Big)^{1/2} = M^2\|u\|. \end{equation} Using $\|\varphi(u)\| = \|(-\Delta)^{s/2}\varphi(u)\|_{2}$, we obtain \[ \int_{\Omega}\varphi(u) (-\Delta)^s \varphi(u) = \|\varphi(u)\|^2 \geq S \|\varphi(u)\|^2_{2^*_s}, \] where $S$ is as defined in section $1$. Since $\varphi$ is convex and $\varphi(u)\varphi'(u) \in X_0$, we obtain \begin{equation}\label{eqreg2} \begin{split} \int_{\Omega}\varphi(u) (-\Delta)^s \varphi(u) & \leq \int_{\Omega}\varphi(u)\varphi'(u) (-\Delta)^s u\\ & = \int_{\Omega}\varphi(u)\varphi'(u) (\lambda a(x)u^{-q}+ u^{2^*_s-1})dx. \end{split} \end{equation} Therefore, using \eqref{eqreg1} and \eqref{eqreg2}, we obtain \begin{equation}\label{eqreg3} \|\varphi(u)\|^2_{2^*_s} \leq C \int_{\Omega}\varphi(u)\varphi'(u)(\lambda a(x)u^{-q}+ u^{2^*_s-1})dx, \end{equation} for some constant $C$. We have $u \varphi'(u)\leq \beta \varphi(u)$ and $\varphi'(u)\leq \beta(1+\varphi(u))$ which gives \begin{equation*}\label{eqreg5} \begin{split} &\int_{\Omega}\varphi(u)\varphi'(u)(\lambda a(x)u^{-q}+ u^{2^*_s-1})dx\\ & = \int_{\Omega} \left(\lambda a(x)\varphi(u)\varphi'(u)u^{-q}dx + \varphi(u)\varphi'(u)u^{2^*_s-1}\right) dx\\ & \le \lambda \|a\|_{\infty}\beta \int_{\Omega}\varphi(u)u^{-q}(1+\varphi(u)) + \beta \int_{\Omega} (\varphi(u))^2 u^{2^*_s-2}. \end{split} \end{equation*} Thus from \eqref{eqreg3}, we obtain \begin{equation*} \Big(\int_{\Omega}|\varphi(u)|^{2^*_s}\Big)^{2/2^*_s} \leq C_2\beta \Big( \lambda \|a\|_{\infty} \int_{\Omega}(\varphi(u)u^{-q} + (\varphi(u))^2u^{-q}) + \int_{\Omega}(\varphi(u))^2 u^{2^*_s-2} \Big). \end{equation*} where $C_2= C\max\{\lambda \|a\|_{\infty},1\}$. Next we claim that $u \in L^{\beta_1 2^*_s}(\Omega)$, where $\beta_1 = 2^*_s/2$. Fixing some $K$ whose appropriate value is to be determined later and taking $r = \beta_1$, $s = 2^*_s/(2^*_s-2)$, we obtain \begin{align*} \int_{\Omega}(\varphi(u))^2u^{2^*_s-2} &= \int_{u\leq K}(\varphi(u))^2u^{2^*_s-2} + \int_{u > K}(\varphi(u))^2u^{2^*_s-2}\\ & \leq K^{2^*_s-2} \int_{u \leq K} (\varphi(u))^2 + \Big( \int_{\Omega}(\varphi(u))^{2^*_s} \Big)^{2/2^*_s} \Big( \int_{u>K} u^{2^*_s} \Big)^{(2^*_s-2)/2^*_s}. \end{align*} Using the Monotone Convergence theorem, we choose $K$ such that \[ \Big(\int_{u>K}u^{2^*_s}\Big)^{(2^*_s-2)/2^*_s} \leq \frac{1}{2C_2\beta} \] and this gives \begin{equation}\label{eqreg6} \begin{aligned} &\Big(\int_{\Omega} (\varphi(u))^{2^*_s} \Big)^{2/2^*_s}\\ &\leq 2C_2\beta \Big( \int_{\Omega}(\varphi(u))u^{-q} + \int_{\Omega}(\varphi(u))^2u^{-q} +K^{2^*_s-2} \int_{u\leq K}(\varphi(u))^2 \Big). \end{aligned} \end{equation} Using $\varphi_{T,\beta_1}(u)\leq u^{\beta_1}$ in left hand side of \eqref{eqreg6} and then letting $T \to \infty$ in right hand side, we obtain \[ \Big(\int_{\Omega}u^{2^*_s \beta_1}\Big)^{2/2^*_s} \leq 2C_2\beta_1 \Big( \int_{\Omega}u^{\frac{2^*_s}{2}-q} + \int_{\Omega}u^{2^*_s-q} + K^{2^*_s-2}\int_{\Omega}u^{2^*_s}\Big) \] since $2\beta_1 = 2^*_s$. This proves the claim. Again, from \eqref{eqreg5}, using $\varphi_{T,\beta}(u)\leq u^{\beta}$ in left hand side and then letting $T \to \infty$ in right hand side, we obtain \begin{equation}\label{eqreg7} \begin{split} \Big(\int_{\Omega}u^{2^*_s \beta}\Big)^{2/2^*_s} &\leq C_2\beta \Big( \int_{\Omega}u^{\beta -q} + \int_{\Omega}u^{2\beta-q} + K^{2^*_s-2}\int_{\Omega}u^{2 \beta+2^*_s-2}\Big)\\ & \leq C_2'\beta \Big( 1 + \int_{\Omega}u^{2\beta-q} + K^{2^*_s-2} \int_{\Omega}u^{2 \beta+2^*_s-2}\Big), \end{split} \end{equation} where $C_2'> 0$ is a constant. Now we see that \begin{equation*} \begin{split} \int_{\Omega}u^{2\beta-q} = \int_{u\geq 1}u^{2\beta-q} + \int_{u<1}u^{2\beta-q} \leq \int_{u \geq 1}u^{2\beta+2^*_s-2}+|\Omega|. \end{split} \end{equation*} Using this in \eqref{eqreg7}, with some simplifications, we obtain \begin{equation}\label{eqreg8} \Big(1+\int_{\Omega}u^{2^*_s \beta}\Big)^{\frac{1}{2^*_s(\beta-1)}} \leq {C^{\frac{1}{2(\beta-1)}}_{\beta}}\Big( 1+\int_{\Omega}u^{2\beta+2^*_s-2} \Big)^{\frac{1}{2(\beta-1)}}, \end{equation} where $C_{\beta}= 4C_2' \beta(1+|\Omega|)$. For $m \geq 1$, let us define $\beta_{m+1}$ inductively by \[ 2\beta_{m+1}+2^*_s-2 = 2^*_s \beta_m ; \] that is, $(\beta_{m+1} - 1)= \frac{2^*_s}{2}(\beta_m -1) = \big(\frac{2^*_s}{2}\big)^m(\beta_1-1)$. Hence, from \eqref{eqreg8} it follows that \begin{equation*} \Big(1+\int_{\Omega}u^{2^*_s \beta_{m+1}}\Big)^{\frac{1}{2^*_s(\beta_{m+1}-1)}} \leq {C^{\frac{1}{2(\beta_{m+1}-1)}}_{\beta_{m+1}}} \Big( 1+\int_{\Omega}u^{2^*_s\beta_m} \Big)^{\frac{1}{2^*_s(\beta_m-1)}}, \end{equation*} where $C_{\beta_{m+1}}= 4C_2'\beta_{m+1}(1+|\Omega|)$. Setting $D_{m+1} := \big( 1+\int_{\Omega}u^{2^*_s\beta_m} \big)^{\frac{1}{2^*_s(\beta_m-1)}}$, we obtain \begin{align*} D_{m+1} &\leq C^{\frac{1}{2(\beta_{m+1}-1)}}_{m+1}D_{m} \\ &= \Big(\prod_{i=2}^{m+1}C^{\frac{1}{2(\beta_i -1)}}_{k} \Big)D_1 \{4C_2'(1+|\Omega|)\}^{\sum_{i=2}^{m+1}\frac{1}{2(\beta_i-1)}} \\ &\quad\times \prod^{m+1}_{i=2}\Big( 1+\left( \frac{2^*_s}{2}\right)^{i-1}(\beta_1-1) \Big)^{\frac{1}{2((2^*_s/2)^{i-1}(\beta_1-1))}}D_1. \end{align*} Since \[ \lim_{i \to \infty}\Big(\big(\frac{2^*_s}{2}\big)^{i-1}(\beta_1-1)+1 \Big)^{\frac{1}{2((2^*_s/2)^{i-1}(\beta_1-1))}} = 1, \] there exists $C_3 >1$ (independent of $\beta_i$) such that $$ D_{m+1} \leq \{4C_2'(1+|\Omega|)\}^{\sum_{i=2}^{m+1}\frac{1}{2(\beta_i-1)}}C_3D_1. $$ However, \[ \sum_{i=2}^{m+1}\frac{1}{2(\beta_i-1)} = \frac{1}{2(\beta_1-1)}\sum_{i=2}^{m+1}\big( \frac{2^*_s}{2} \big)^i \] and $\big(\frac{2^*_s}{2}\big) <1$ implies that there exists a constant $C_4>0$ such that $D_{m+1}\leq C_4D_1$; that is, \begin{equation}\label{eqreg10} \Big(1+ \int_{\Omega}u^{2^*_s(\beta_{m+1})} \Big)^{\frac{1}{2^*_s(\beta_{m+1}-1)}} \leq C_4D_1, \end{equation} where $2^*_s\beta_m \to \infty$ as $m \to \infty$. Let us assume $\|u\|_{\infty}> C_4D_1$. Then there exists $\eta > 0$ and ${\Omega}' \subset \Omega$ such that $0<|{\Omega}'|< \infty$ and \[ u(x) > C_4D_1+\eta, \quad \text{for all } x \in {\Omega}'. \] It follows that \begin{equation*} \liminf_{\beta_m \to \infty}\Big( \int_{\Omega}|u|^{2^*_s\beta_m}+1\Big) ^{\frac{1}{2^*_s\beta_m -1}} \geq \liminf_{\beta_m \to \infty} \left( C_4D_1+\eta \right)^{\frac{\beta_m}{\beta_m-1}} (|{\Omega}'|)^{\frac{1}{2^*_s(\beta_m-1)}} = C_4D_1+\eta \end{equation*} which contradicts \eqref{eqreg10}. Hence, $\|u\|_{\infty}\leq C_4D_1$ that is $u \in L^{\infty}(\Omega)$. \end{proof} \begin{theorem} Let $u$ be a positive solution of \eqref{Pl}. Then there exist $\alpha \in (0,s]$ such that $u \in C_{loc}^{\alpha}(\Omega')$, for all $\Omega' \Subset \Omega$. \end{theorem} \begin{proof} Let $\Omega' \in \Omega$. Then using lemma \ref{le05} and above regularity result, for any $\psi \in C_{c}^{\infty}(\Omega)$ we obtain \begin{equation*} \lambda \int_{\Omega'}u^{-q}\psi dx + \int_{\Omega'}u^{2^*_s-1}\psi dx \leq \lambda \int_{\Omega'}\phi_{1}^{-q}\psi dx + \|u\|_{\infty}^{2^*_s-1} \int_{\Omega'}\psi dx \leq C \int_{\Omega'}\psi dx \end{equation*} for some constant $C>0$, since we can find $k>0$ such that $\phi_1>k$ on $\Omega'$. Thus we have $|(-\Delta)^su|\leq C$ weakly on $\Omega'$. So, using \cite[Theorem 4.4]{Asm} and applying a covering argument on inequality in \cite[Corollary 5.5]{Asm}, we can prove that there exist $\alpha \in (0,s] $ such that $u \in C_{loc}^{\alpha}(\Omega')$, for all $\Omega' \Subset \Omega$. \end{proof} \begin{thebibliography}{00} \bibitem{AJ} Adimurthi, J. Giacomoni; \emph{Multiplicity of positive solutions for a singular and critical elliptic problem in $\mathbb R^2$}, Communications in Contemporary Mathematics \textbf{8} (2006), 621--656. \bibitem{da} D. Applebaum; \emph{L\'evy process-from probability to finance and quantum groups}, Notices Amer. Math. Soc. \textbf{51} (2004), 1336--1347. \bibitem{Aut} G. Autuori, P. Pucci; \emph{Elliptic problems involving the fractional Laplacian in ${\mathbb R}^n$}, J. Differential Equations \textbf{255} (2013), 2340--2362. \bibitem{bss} B. Barrios, E. Coloradoc, R. Servadei, F. Soriaa; \emph{A critical fractional equation with concave–convex power nonlinearities}, Ann. I. H. Poincar\'e Analyse Non Lin\'eaire \textbf{32} (2015), 875--900. \bibitem{peral} B. Barrios, I. De Bonis, M. María, I. Peral; \emph{Semilinear problems for the fractional laplacian with a singular nonlinearity}, Open Math. \textbf{13} (2015), 390--407. \bibitem{bc} B. Br\"{a}ndle, E. Colorado, A. De Pablo, U. S\'{a}nchez; \emph{A concave-convex elliptic problem involving the fractional Laplacian}, Proc. Roy. Soc. Edinburgh. Sect. A \textbf{143} (2013), 39--71. \bibitem{XcT} X. Cabr\'{e}, J.G. Tan; \emph{Positive solutions of nonlinear problem involving the square root of the Laplacian}, Adv. Math. \textbf{224} (2) (2010), 2052--2093. \bibitem{crt} M. G. Crandall, P. H. Rabinowitz, L. Tartar; \emph{On a Dirichlet problem with a singular nonlinearity}, Communications in Partial Differential Equations \textbf{2} (1977), 193--222. \bibitem{DJP} R. Dhanya, J. Giacomoni, S. Prashanth, K. Saoudi; \emph{Global bifurcation and local multiplicity results for elliptic equations with singular nonlinearity of super exponential growth in $\mathbb{R}^2$}, Advances in Differential Equations \textbf{17} (3-4) (2012), 369--400. \bibitem{fa} Y. Fang; \emph{Existence, uniqueness of positive solution to a fractional laplacians with singular non linearity }, preprint (2014), http://arxiv.org/pdf/1403.3149.pdf. \bibitem{gl} A. Garroni, S. M$\ddot{u}$ller; \emph{$\Gamma$-limit of a phase-field model of dislocations}, SIAM J. Math. Anal. \textbf{36} (2005), 1943--1964. \bibitem{GR1} M. Ghergu, V. R\u{a}dulescu; \emph{Singular Elliptic Problems. Bifurcation and Asymptotic Analysis}, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, 37 (2008). \bibitem{GR} M. Ghergu and V. R\u{a}dulescu; \emph{Singular elliptic problems with lack of compactness}, Ann. Mat. Pura Appl. \textbf{185}(1) (2006), 63–-79 \bibitem{JPS} J. Giacomoni, P. Kumar Mishra, K. Sreenadh; \emph{Fractional elliptic equations with critical exponential nonlinearity}, Adv. Nonlinear Anal. \textbf{5}(1) (2016), 57--74. \bibitem{ss1} S. Goyal, K. Sreenadh; \emph{Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function}, Adv. Nonlinear Anal. \textbf{4}(1) (2015), 37--58. \bibitem{ss2} S. Goyal, K. Sreenadh; \emph{The Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions}, Proc. Indian Acad. Sci. Math. Sci., PMSC-D-13-00460. \bibitem{haitao} Y. Haitao; \emph{Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem}, J. Differential Equations \textbf{189} (2003), 487--512. \bibitem{HFV} J. Hern\'{a}ndez, J. Francisco. J. M. Vega; \emph{Positive solutions for singular nonlinear elliptic equations}, Proc. Roy. Soc. Edinburgh Sect. A \textbf{137} (1) (2007), 41–-62. \bibitem{HKS} J. Hern\'{a}ndez, J. Karátson, P. L. Simon; \emph{Multiplicity for semilinear elliptic equations involving singular nonlinearity}, Nonlinear Anal. \textbf{65} (2) (2006), 265–-283. \bibitem{Hirano} N. Hirano, C. Saccon, N. Shioji; \emph{Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem}, J. Differential Equations \textbf{245} (2008), 1997--2037. \bibitem{hcn} N. Hirano, C. Saccon, N. Shioji; \emph{Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities}, Advances in Differential Equations \textbf{9} (1-2) (2004), 197--220. \bibitem{Asm} A. Iannizzotto, S. Mosconi, M. Squassina; \emph{Global H\"{o}lder regularity for the fractional $p$-Laplacian}, Preprint(2015), http://arxiv.org/pdf/1411.2956.pdf \bibitem{md1} G. Molica Bisci, D. Repov\v{s}; \emph{Existence and localization of solutions for nonlocal fractional equations}, Asymptot. Anal. \textbf{90} (3-4) (2014), 367--378. \bibitem{md2} G. Molica Bisci, D. Repov\v{s}; \emph{On doubly nonlocal fractional elliptic equations}, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. \textbf{26} (2) (2015), 161--176. \bibitem{mb1} G. Molica Bisci, R. Servadei; \emph{A Brezis-Nirenberg spitting approach for nonlocal fractional equations}, Nonlinear Anal. \textbf{119} (2015), 341--353. \bibitem{mb3} G. Molica Bisci, V. R\u adulescu; \emph{Ground state solutions of scalar field fractional Schr\"{o}dinger equations}, Calc. Var. Partial Differential Equations \textbf{54} (3) (2015), 2985--3008. \bibitem{mb} G. Molica Bisci, R. Servadei; \emph{Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent}, Advances in Differential Equations \textbf{20} (2015), 635--660. \bibitem{mb2} G. Molica Bisci, V. R\u adulescu, R. Servadei; \emph{Variational Methods for Nonlocal Fractional Problems}, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, (2016). \bibitem{NR} N.S. Papageorgiou, V. R\u{a}dulescu; \emph{Combined effects of singular and sublinear nonlinearities in some elliptic problems}, Nonlinear Anal. \textbf{109} (2014), 236--244. \bibitem{puc} P. Pucci, M. Xiang, B. Zhang; \emph{Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations}, Adv. Nonlinear Anal. \textbf{5} (1) (2016), 27--55. \bibitem{s1} R. Servadei, E. Valdinoci; \emph{Mountain pass solutions for nonlocal elliptic operators}, J. Math. Anal. Appl. \textbf{389} (2012), 887--898. \bibitem{sv} R. Servadei, E. Valdinoci; \emph{The Brezis-Nirenberg result for the fractional laplacian}, Trans. Amer. Math. Soc. \textbf{367} (2015), 67--102. \bibitem{s2} R. Servadei, E. Valdinoci; \emph{Variational methods for nonlocal operators of elliptic type}, Discrete Contin. Dyn. Syst. \textbf{33} (5) (2013), 2105--2137. \bibitem{s3} R. Servadei, E. Valdinoci; \emph{A Brezis-Nirenberg result for nonlocal critical equations in low dimension}, Commun. Pure Appl. Anal. \textbf{12} (6) (2013), 2445--2464. \bibitem{xy} X. Yu; \emph{The Nehari manifold for elliptic equation involving the square root of the Laplacian}, J. Differential Equations \textbf{252} (2012), 1283--1308. \bibitem{zlh} J. Zhang, X. Liu, H. Jiao; \emph{Multiplicity of positive solutions for a fractional Laplacian equations involving critical nonlinearity}, preprint (2015), http://arxiv.org/abs/1502.02222. \end{thebibliography} \end{document}