\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 58, pp. 1--22.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/58\hfil Stability of solutions] {Stability of solutions to impulsive Caputo fractional differential equations} \author[R. Agarwal, S. Hristova, D. O'Regan \hfil EJDE-2016/58\hfilneg] {Ravi Agarwal, Snezhana Hristova, Donal O'Regan} \address{Ravi Agarwal \newline Department of Mathematics, Texas A\& M University-Kingsville, Kingsville, TX 78363, USA} \email{agarwal@tamuk.edu} \address{Snezhana Hristova \newline Department of Applied Mathematics, Plovdiv University, Plovdiv, Bulgaria} \email{snehri@gmail.com} \address{Donal O'Regan \newline School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland} \email{donal.oregan@nuigalway.ie} \thanks{Submitted December 16, 2015. Published February 25, 2016.} \subjclass[2010]{34A34, 34A08, 34D20} \keywords{Stability; Caputo derivative; Lyapunov functions; impulses; \hfill\break\indent fractional differential equations} \begin{abstract} Stability of the solutions to a nonlinear impulsive Caputo fractional differential equation is studied using Lyapunov like functions. The derivative of piecewise continuous Lyapunov functions among the nonlinear impulsive Caputo differential equation of fractional order is defined. This definition is a natural generalization of the Caputo fractional Dini derivative of a function. Several sufficient conditions for stability, uniform stability and asymptotic uniform stability of the solution are established. Some examples are given to illustrate the results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} The study of stability for fractional order systems is quite recent. There are several approaches in the literature to study stability, one of which is the Lyapunov approach. One of the main difficulties on the application of a Lyapunov function to fractional order differential equations is the appropriate definition of its derivative among the fractional differential equations. We give a brief brief overview of the literature and we use the so called Caputo fractional Dini derivative. The presence of impulses in fractional differential equations lead to complications with the concept of the solution. Mainly there are two different approaches: either keeping the lower limit at the initial time $t_0$ or change the nature of fractional differential equation by moving the lower limits of the fractional derivative to the points of impulses. In this paper the second approach is used. The Caputo fractional Dini derivative is generalized to piecewise continuous Lyapunov functions among the studied nonlinear fractional equations with impulses. Comparison results using this definition and scalar impulsive fractional differential equations are presented. Several sufficient conditions for stability, uniform stability and asymptotic uniform stability are obtained. Some examples illustrate the obtained results. \section{Notes on fractional calculus} Fractional calculus generalizes the derivative and the integral of a function to a non-integer order \cite{1, Lakfde, podlubny, kilbas} and there are several definitions of fractional derivatives and fractional integrals. In engineering, the fractional order $q$ is often less than 1, so we restrict our attention to $q\in (0,1)$. \smallskip \noindent (1) The Riemann--Liouville (RL) fractional derivative of order $q\in(0,1)$ of $m(t)$ is given by (see for example \cite[Section 1.4.1.1]{1}) \begin{equation*} _{t_0}^{RL}D^{q}m(t)=\frac{1}{\Gamma ( 1-q) }\frac{d}{dt}\int_{t_0}^{t} (t-s) ^{-q}m(s)ds,\quad t\geq t_0, \end{equation*} where $\Gamma (\cdot)$ denotes the usual Gamma function. \smallskip \noindent(2) The Caputo fractional derivative of order $q\in(0,1)$ is defined by (see for example \cite[Section 1.4.1.3]{1}) \begin{equation} \label{198} {}_{t_0}^{c}D^{q}m(t)=\frac{1}{\Gamma ( 1-q)} \int_{t_0}^{t}( t-s) ^{-q}m^{\prime}(s)ds,\quad t\geq t_0. \end{equation} The properties of the Caputo derivative are quite similar to those of ordinary derivatives. Also, the initial conditions of fractional differential equations with the Caputo derivative has a clear physical meaning and as a result the Caputo derivative is usually used in real applications. \smallskip \noindent(3) The Grunwald-Letnikov fractional derivative is given by (see for example \cite[Section 1.4.1.2]{1}) \begin{equation*} {}_{t_0}^{GL}D^{q}m(t)=\lim_{h\to 0}\frac{1}{h^q} \sum_{r=0}^{[\frac{t-t_0}{h}]} (-1)^r (qCr)m(t-rh), \quad t\geq t_0, \end{equation*} and the Grunwald-Letnikov fractional Dini derivative by \begin{equation} \label{765} {}_{t_0}^{GL}D^{q}_{+}m(t)=\limsup _{h\to 0+}\frac{1}{h^q} \sum_{r=0}^{[\frac{t-t_0}{h}]} (-1)^r (qCr)m(t-rh), \quad t\geq t_0, \end{equation} where $qCr=\frac{q(q-1)(q-1)\dots (q-r+1)}{r!}$ and $[\frac{t-t_0}{h}]$ denotes the integer part of the fraction $\frac{t-t_0}{h}$. \begin{proposition}[{\cite[Theorem 2.25]{2}}] \label{prop1} Let $m\in C^1[t_0,b]$. Then $$ {}_{t_0}^{GL}D^{q}m(t)={}_{t_0}^{RL}D^{q}m(t) \quad \text{for } t \in (t_0,b]. $$ \end{proposition} Also, by \cite[Lemma 3.4]{2} we have ${}_{t_0}^{c}D_{t}^{q}m(t)={}_{t_0}^{RL}D_{t}^{q}m(t)-m(t_0) \frac{(t-t_0)^{-q}}{\Gamma(1-q)}$. From the relation between the Caputo fractional derivative and the Grunwald-Letnikov fractional derivative using \eqref{765} we define the Caputo fractional Dini derivative as \begin{equation} \label{679} {}_{t_0}^{c}D^{q}_+ m(t)={}_{t_0}^{GL}D^{q}_{+}[m(t)-m(t_0)], \end{equation} i.e. \begin{equation} \label{10} \begin{aligned} &{}_{t_0}^{c}D^{q}_+ m(t)\\ &=\limsup _{h\to 0+}\frac{1}{h^q}\Big[m(t)-m(t_0) -\sum_{r=1}^{[\frac{t-t_0}{h}]} (-1)^{r+1} (qCr)\big( m(t-rh)-m(t_0)\big)\Big]. \end{aligned} \end{equation} \begin{definition}[\cite{devi vlm}] \label{def1} \rm We say $m\in C^q([t_0,T],\mathbb{R}^n)$ if $m(t)$ is differentiable (i.e. $m'(t)$ exists), the Caputo derivative ${}_{t_0}^{c}D^{q}m(t)$ exists and satisfies \eqref{198} for $t\in[t_0,T]$. \end{definition} \begin{remark} \label{rmk1}\rm Definition \ref{def1} could be extended to any interval $I\subset \mathbb{R}_+$. If $m\in C^q([t_0,T],\mathbb{R}^n)$ then $_{t_0}^{c}D_+^{q}m(t)=\ _{t_0}^{c}D^{q}m(t)$. \end{remark} \section{Impulses in fractional differential equations} Consider the initial value problem (IVP) for the system of \emph{fractional differential equations} (FrDE) with a Caputo derivative for $0\tau\}$. Consider the initial value problem for the system of \emph{impulsive fractional differential equations} (IFrDE) with a Caputo derivative for $00$ and $t_0\in\mathbb{R}_+$ there exist $\delta =\delta (\epsilon,t_0)>0$ such that for any $x_0\in \mathbb{R}^n$ the inequality $\|x_0\|<\delta$ implies $\|x(t;t_0,x_0)\|<\epsilon$ for $t\geq t_0$; \item uniformly stable if for every $\epsilon >0$ there exist $\delta =\delta (\epsilon)>0$ such that for $t_0\in\mathbb{R}_+, x_0\in \mathbb{R}^n$ with $\|x_0\|<\delta$ the inequality $\|x(t;t_0,x_0)\|<\epsilon$ holds for $t\geq t_0$; \item uniformly attractive if for $\beta>0$: for every $\epsilon >0$ there exist $T=T(\epsilon)>0$ such that for any $t_0\in\mathbb{R}_+, x_0\in \mathbb{R}^n$ with $\|x_0\|<\beta$ the inequality $\|x(t;t_0,x_0)\|<\epsilon$ holds for $t\geq t_0+T$; \item uniformly asymptotically stable if the zero solution is uniformly stable and uniformly attractive. \end{itemize} \end{definition} In this article we use the followings two sets: \begin{gather*} \mathcal{K} = \{a\in C[\mathbb{R}_{+},\mathbb{R}_{+}]:a\text{ is strictly increasing and }a(0)=0\}, \\ S(A ) =\{x\in \mathbb{R}^n:\|x\|\leq A \}, \;A>0. \end{gather*} Furthermore we consider the initial value problem for a scalar FrDE \begin{equation} \label{222} \begin{gathered} {}_{\tau}^{c}D^{q}u=g(t,u) \quad \text{for } t\geq \tau, \\ u(\tau)=u_0, \end{gathered} \end{equation} where $u,u_0\in\mathbb{R}$, $\tau\in\mathbb{R}_+$, $g:\mathbb{R}_+\times \mathbb{R}\to\mathbb{R}$. Consider also the IVP for scalar impulsive fractional differential equations \begin{equation} \label{2} \begin{gathered} {}_{t_0}^{c}D^{q}u=g(t,u) \quad \text{for } t\geq t_0, \; t\neq t_i, \\ u(t_i+0)=\Psi_i( u(t_i-0))\quad \text{for } i=1,2,\dots ,\\ u(t_0)=u_0, \end{gathered} \end{equation} where $u,u_0\in\mathbb{R}$, $g:\mathbb{R}_+\times \mathbb{R}\to \mathbb{R}$, $\Psi_i: \mathbb{R}\to \mathbb{R}$, $i=1,2,\dots$. For the scalar IFrDE \eqref{2} we consider approach (V1) and similar to condition (H1) we assume the following conditions \begin{itemize} \item[(H3)] If $u\neq 0$ then $\Psi_{k}(u)\neq u$ for all $k=1,2,3,\dots$. \item[(H4)] $g(t,0)\equiv 0$ for $t\in\mathbb{R}_+$ and $\Psi_i(0)=0$ for $i=1,2,3, \dots$. \end{itemize} Note the stability of the zero solution of the scalar IFrDE \eqref{2} is defined in a similar manner to that in Definition \ref{def2}. \begin{remark} \label{rmk7} \rm Note in the case $\Psi_i(u)\equiv u$ for $i=1,2,\dots$ the impulsive fractional equation \eqref{2} is reduced to the fractional differential equation \eqref{222}. \end{remark} \begin{example} \label{examp2} \rm Consider the scalar impulsive Caputo fractional differential equation \eqref{311} where $A<0$, $a_i\in[-1,0)\cup(0,1]$, $i=1,2,3,\dots$ are constants. According to Example \ref{examp1} the IVP for IFrDE \eqref{311} has a solution $x(t;t_0,x_0)$ defined by \eqref{317}. Therefore, applying $00$ with $\prod_{i=1}^{\infty}|a_i|\leq M$. The IVP for IFrDE \eqref{29} has a solution defined by $u(t;t_0,v_0)=u_0\prod_{i=1}^{k}a_i$ for $t\in (t_k,t_{k+1}]$, $k=0,1,2,\dots$. Therefore, we obtain $ | u(t;t_{0},u_{0}) | \leq |u_{0}|\prod_{i=1}^{k}|a_i|$ for $t\in (t_k,t_{k+1}]$ which guarantees that the zero solution of \eqref{29} is uniformly stable. Note the existence of a constant $M>0$ with $\prod_{i=1}^{\infty}|a_i|\leq M$ is guaranteed if $a_i\in[-1,0)\cup(0,1),\ i=1,2,3,\dots$. \end{example} In this article we study the connection between the stability properties of the solutions of a nonlinear system IFrDE \eqref{1} and the stability properties of the zero solution of a corresponding scalar IFrDE \eqref{2} or corresponding scalar FrDE \eqref{222}. We now introduce the class $\Lambda $ of piecewise continuous Lyapunov-like functions which will be used to investigate the stability of the system IFrDE \eqref{1}. \begin{definition} \label{def3} \rm Let $J\in \mathbb{\ R}_+$ be a given interval, and $\Delta \subset \mathbb{\ R}^n$, $0\in \Delta$ be a given set. We will say that the function $V(t,x):J\times \Delta\to \mathbb{R}_{+} $, $V(t,0)\equiv 0$ belongs to the class $\Lambda(J,\Delta) $ if \begin{itemize} \item[(1)] The function $V(t,x)$ is continuous on $J/\{t_k\in J\}\times \Delta$ and it is locally Lipschitzian with respect to its second argument; \item[(2)] For each $t_k\in J$ and $x\in \Delta$ there exist finite limits $$ V(t_k-0,x)=\lim_{t\uparrow t_k}V(t,x),\quad V(t_k+0,x)=\lim_{t\downarrow t_k}V(t,x) $$ and the equalities $V(t_k-0,x)=V(t_k,x)$ are valid. \end{itemize} \end{definition} \begin{remark} \label{rmk8} \rm When the function $V(t,x)\in \Lambda(J,\Delta)$ is additionally continuous on the whole interval $J$, we will say $V(t,x)\in \Lambda^C(J,\Delta)$. \end{remark} Lyapunov like functions used to discuss stability for differential equations require an appropriate definition of the derivative of the Lyapunov function along the studied differential equations. For nonlinear Caputo fractional differential equations \eqref{1} the following types of derivatives of Lyapunov functions along the nonlinear Caputo fractional differential equations are used: - \emph{Caputo fractional derivative of Lyapunov functions} $^c_{\tau_0}D{^q}{_t}V(t,x(t))$, where $x(t)$ is a solution of the studied fractional differential equation \eqref{100} \cite{Li1,Li3}. This approach requires the function to be smooth enough (at least continuously differentiable). It works well for quadratic Lyapunov functions but in the general case when the Lyapunov function depends on $t$ it can cause some problems (see Example \ref{examp5}). - \emph{Dini fractional derivative of Lyapunov functions} \cite{Lakfde,LL} given by \begin{equation} \label{14} D_+^qV(t,x)=\limsup_{h\to 0+}\frac{1}{h^q}\big (V(t,x)-V(t-h,x-h^qf(t,x)\big) \end{equation} where $00$ such that $t-h\in [\tau_0,T)$, $x-h^{q}f(t,x)\in \Delta $ for $ 00$ such that $t-h\in [t_0,T)$, $x-h^{q}f(t,x)\in \Delta $ for $ 00$ is a constant. According to Example \ref{examp3} the solution of \eqref{29} is $x(t;t_0,u_0)=2\sqrt{\frac{a}{2^k}}$ on $(k,k+1]$, $k=0, 1,2,\dots$. Consider the IFrDE \eqref{29} with $t_0=0$, $t_k=k$, $a_k= \frac{1}{2}$, $k=1,2,\dots$, and $u_0=a$. Then IFrDE \eqref{29} has an unique solution $u^+(t;t_0,u_0)=\frac{a}{2^k}$ for $t\in(k,k+1]$, $k=0,1,2,\dots$. Let the Lyapunov function $V:\mathbb{R}_+\times \mathbb{R}\to\mathbb{R}_+$ be given by $V(t,x)= x^2\sin^2t$. It is locally Lipshitz with respect to its second argument $x$. According to Example \ref{examp5} and formula \eqref{16} we obtain the Dini fractional derivative of $V$, namely ${}^{c}D_{+}^{q}V(t,x)=2x\sin^2(t)f(t,x)\equiv 0$. All the conditions in \cite[Theorem 3.1]{St1} are satisfied and therefore, the inequality $ V(t,x(t;t_0,x_0))\leq u^+(t;t_0,u_0))$ has to be hold for all $t\geq t_0$. However, the inequality \[ V(t,2\sqrt{\frac{a}{2^k}}) = 4\frac{a}{2^k}\sin^2t\leq \frac{a}{2^k}, \] i.e. $\sin^2t\leq \frac{1}{4}$ is not satisfied for all $t\geq 0$. \end{example} \section{Comparison results for scalar impulsive Caputo fractional differential equations} We use the following results for Caputo fractional Dini derivative of a continuous Lyapunov function. \begin{lemma}[Comparison result \cite{AHR}] \label{lem1} Assume the following conditions are satisfied: \begin{itemize} \item[(1)] The function $x^*(t)=x(t;\tau_0,x_0)\in C^q([\tau_0,\tilde{T}],\Delta)$ is a solution of the FrDE \eqref{100} where $\Delta \subset \mathbb{R}^n,\ 0\in\Delta$, $\tau_0,\ \tilde{T}\in\mathbb{R}_+,\ \tau_0<\tilde{T}$ are given constants, $x_0\in\Delta$. \item[(2)] The function $ g \in C([\tau_0,\tilde{T}]\times \mathbb{R},\mathbb{R})$. \item[(3)] The function $V\in \Lambda^C([\tau_0,\tilde{T}],\Delta)$ and $$ {}_{\eqref{100}}^{c}D_{+}^{q}V(t,x;\tau_0,x_0 )\leq g(t,V(t,x))\quad \text{for } (t,x)\in [\tau_0,\tilde{T}]\times \Delta\,. $$ \item[(4)] The function $u^*(t)=u(t;\tau_0,u_0)$, $u^*\in C^q([\tau_0,\tilde{T}],\mathbb{R})$, is the maximal solution of the initial value problem \eqref{222} with $\tau=\tau_0$. \end{itemize} Then the inequality $V(\tau_0,x_0)\leq u_0$ implies $V(t,x^*(t))\leq u^*(t)$ for $t\in [\tau_0,\tilde{T}]$. \end{lemma} When $g(t,x)\equiv 0$ in Lemma \ref{lem1} we obtain the following result. \begin{corollary}[\cite{AHR}] \label{coro1} Let (1) in Lemma \ref{lem1} be satisfied and $V\in \Lambda^C([\tau_0,\tilde{T}],\Delta)$ be such that for any points $t \in [\tau_0,\tilde{T}]$, $x\in \Delta$ the inequality ${}_{\eqref{100}}^{c}D_{+}^{q}V(t,x;\tau_0,x_0)\leq 0$ holds. Then for $t\in [\tau_0,\tilde{T}]$ the inequality $V(t,x^*(t))\leq V(\tau_0,x_0) $ holds. \end{corollary} If the derivative of the Lyapunov function is negative, the following result is true. \begin{lemma}[\cite{AHR}] \label{lem2} Let Condition (1) of Lemma \ref{lem1} be satisfied and the function $V\in \Lambda^C([t_0,\tilde{T}],\Delta)$ be such that for any points $t \in [\tau_0,\tilde{T}]$, $x\in \Delta$ the $$ {}_{\eqref{100}}^{c}D_{+}^{q}V(t,x ;\tau_0,x_0)\leq -c(\|x\|)\,, $$ where $c\in \mathcal{K}$. Then for $t\in [\tau_0,\tilde{T}]$, \begin{equation} \label{456} V(t,x^*(t)) \leq V(\tau_0,x_0)-\frac{1}{\Gamma(q)} \int_{\tau_0}^t (t-s)^{q-1}c(\|x^*(s)\|)ds \,. \end{equation} \end{lemma} Now we prove some comparison results for the system of IFrDE \eqref{1} and piecewise continuous Lyapunov functions applying the generalized Caputo fractional Dini derivative \eqref{200}. Recall $\lim_{k\to \infty}t_k=\infty$. In this section we assume without loss of generality that $0\leq t_00$ is a constant. According to Example \ref{examp3} the solution of \eqref{29} is $x(t;t_0,u_0)=2\sqrt{\frac{a}{2^k}}$ on $(k,k+1]$, $k=0, 1,2,\dots$. Consider the IFrDE \eqref{29} with $t_0=0$, $t_k=k$, $a_k= \frac{1}{2}$, $k=1,2,\dots$, and $u_0=a$. Then IFrDE \eqref{29} has an unique solution $u^+(t;t_0,u_0)=\frac{a}{2^k}$ for $t\in(k,k+1]$, $k=0,1,2,\dots$. Let the Lyapunov function $V:\mathbb{R}_+\times \mathbb{R}\to\mathbb{R}_+$ be given by $V(t,x)=x^2\sin^2t$. By Example \ref{examp5} and formula \eqref{17} we obtain the Caputo fractional Dini derivative of $V$, namely ${}_{\eqref{29}}^{c}D_{+}^{q}V(t,x;0, x_0) =x^2{}_{0}^{RL}D^{q}[\sin^2t]$. Using $\sin^2t-0.5-0.5 \cos (2t)$ and ${}_{0}^{RL}D^{q}\cos(2t)=2^q\cos(2t+\frac{q\pi}{2})$ it follows that the inequality ${}_{\eqref{29}}^{c}D_{+}^{q}V(t,x;0, x_0)\leq0$ is not satisfied, i.e. condition (5)(i) of Lemma \ref{lem3} is not satisfied for $g(t,x)\equiv 0$ so we cannot claim that the inequality $V(t,x(t;0,x_0))\leq u^+(t;0,u_0))$ has to be hold for all $t\geq t_0$, i.e. the application of Lemma \ref{lem3} and the Caputo fractional Dini derivative does not lead to a contradiction as in \cite{St1} (compare with Example \ref{examp6}). \end{example} The result in Lemma \ref{lem3} is also true on the half line (recall \cite{AHR} that Lemma \ref{lem1} extends to the half line). \begin{corollary} \label{coro2} Suppose all the conditions of Lemma \ref{lem3} are satisfied with $[t_0,T]$ replaced by $[t_0,\infty)$. Then the inequality $V(t_0,x_0)\leq u_0$ implies $V(t,x^*(t))\leq u^*(t)$ for $t\geq t_0$. \end{corollary} If $\Psi_k(u)\equiv u$ for all $k=1,2,\dots$, we consider the scalar FrDE \eqref{222} as a comparison equation. \begin{lemma}[Comparison result by scalar FrDE] \label{lem4} Assume \begin{itemize} \item[(1)] Condition {\rm (H1)} is fulfilled for all $k\in \{i:\ t_i\in(t_0,T)\}$ where $t_0,\ T\in\mathbb{R}_+,\ t_00$ and $t_0\in \mathbb{R}_+$ be given. Without loss of generality we assume $t_00$ such that the inequality $|u_0|<\delta_1$ implies \begin{equation} \label{201} |u(t;t_0,u_0)|0$ such that $V(t_0,x)<\delta_1$ for $\|x\|<\delta_2$. Let $x_0\in \mathbb{R}^n$ with $ \|x_0\|<\delta_2$. Then $V(t_0,x_0)<\delta_1$. Consider any solution $x^*(t)=x(t;t_0,x_0)\in PC^q([t_0,\infty),\mathbb{R}^n)$ of the IFrDE \eqref{1} which exists according to condition (2). Now let $u_0^*=V(t_0,x_0)$. Then $u_0^*<\delta_1$ and inequality \eqref{201} holds for the unique maximal solution $\overline{u}(t;t_0,u_0^*)$ of the scalar IFrDE \eqref{2} (with $\tau=t_0$ and $u_0=u_0^*$). According to Corollary \ref{coro2} the inequality $V(t,x^*(t))\leq \overline{u}(t;t_0,u_0^*)$ holds for $t\geq t_0$. Then for any $t\geq t_0$ from condition (5)(iii) and inequality \eqref{201} we obtain $$ b(\|x^*(t)\|)\leq V(t,x^*(t))\leq \overline{u}(t;t_0,u_0^*)0$ such that for any $\tau_0\geq 0$ the inequality $|u_0|<\delta_1$ implies \begin{equation} \label{2000} |u(t;\tau_0,u_0)|0 $ so if $s<\delta_2$ then $a(s)<\delta_1$. Let $\delta=\min (\epsilon, \delta_2)$. Choose the initial value $x_0\in \mathbb{R}^n$ such that $\|x_0\|<\delta$. Therefore $x_0\in S(\lambda)$. Also, let $u_0^*=V(t_0,x_0)$. From the choice of the point $u_0^*$ and condition (3)(iii) we obtain $u_0^* \leq a(\|x_0\|) t_0:\ \|x^*(t)\geq \varepsilon\}$. Then \begin{equation} \label{887} \|x^*(t)\|<\varepsilon\quad\text{for }t\in[t_0,t^*)\quad\text{and}\quad \|x^*(t^*)\|=\varepsilon. \end{equation} If $t^*\neq t_k$, $k\in\mathbb{Z}_+$ or $t^*=t_p$ for some natural number $p$ and $\|x^*(t_p-0)\|=\varepsilon$ then \eqref{9011} is true. If for a natural number $p$ we have $t^*=t_p$ and $\|x^*(t_p-0)\|<\varepsilon$, then according to Lemma \ref{lem3} for $T=t^*$ and $\Delta=S(\lambda)$ we get $V(t,x^*(t))\leq u^*(t;t_0,u^*_0)$ on $[t_0,t^*]$. Then applying condition (3)(iii) and inequality \eqref{2000} we obtain $b(\varepsilon)=b(\|x^*(t^*)\|)\leq V(t^*,x^*(t^*))\leq u^*(t^*;t_0,u^*_0)$. Thus $\|x^*(t^*)| |\leq b^{-1}(u^*(t^*)) <\varepsilon$ and this contradicts the choice of $t^*$. Therefore, \eqref{9011} holds and then the zero solution of IFrDE \eqref{1} is uniformly stable. \end{proof} \begin{corollary} \label{coro5} Suppose \begin{itemize} \item[(1)] Conditions {\rm (H1)--(H2)} are satisfied. \item[(2)] Condition (2) of Theorem \ref{thm1} is satisfied. \item[(3)] Condition (3) of Theorem \ref{thm3} is satisfied with $g(t,x)= Au$ and $\Psi_k(u)= a_ku$ for $k=1,2,\dots$ where $A\leq 0$ and $a_k\in(0,1)$. \end{itemize} Then the zero solution of the IFrDE \eqref{1} is uniformly stable. \end{corollary} The above corollary follows from Example \ref{examp2} (if $A<0$) and Example \ref{examp3} (if $A=0$) and Theorem \ref{thm3}. If we consider the scalar FrDE \eqref{222} as a comparison equation then the following result for uniform stability is true: \begin{theorem} \label{thm4} Let the following conditions be satisfied: \begin{itemize} \item[(1)] Conditions (1) and (3) of Theorem \ref{thm2} are fulfilled. \item[(2)] Condition (2) of Theorem \ref{thm1} is fulfilled. \item[(3)] There exists a function $V\in \Lambda (\mathbb{R}_+,S(\lambda)) $ satisfying condition (2)(i) and 2(iii) of Theorem \ref{thm3} and \begin{itemize} \item[(ii)] for any points $t_k$, $k=1,2,\dots$ and $ x\in S(\lambda)$ we have $$ V(t_k+0,\Phi_k(x))\leq V(t_k,x); $$ \end{itemize} \item[(4)] The zero solution of the scalar FrDE \eqref{222} is uniformly stable. \end{itemize} Then the zero solution of the system of IFrDE \eqref{1} is uniformly stable. \end {theorem} Now we present some sufficient conditions for uniform asymptotic stability of the zero solution of a system of nonlinear IFrDE. \begin{theorem} \label{thm5} Let the following conditions be satisfied: \begin{itemize} \item[(1)] Conditions {\rm (H1)} and {\rm (H2)} are fulfilled. \item[(2)] Condition (2) of Theorem \ref{thm1} is fulfilled. \item[(3)] There exists a function $V\in \Lambda (\mathbb{R}_+,\mathbb{R}^n) $ such that \begin{itemize} \item[(i)] for any points $t_0\in \mathbb{R}_+$, and $x, x_0\in \mathbb{R}^n$ we have $$ {}_{\eqref{1}}^{c}D_{+}^{q}V(t,x ;t_0,x_0)\leq -c(\|x\|) $$ for $t\geq t_0$, $t\neq t_k$, $k=1,2,\dots$, where $c\in \mathcal{K}$; \item[(ii)] for any points $t_k$, $k=1,2,\dots$ and $ x\in \mathbb{R}^n$ we have $$ V(t_k+0,\Phi_k(x))\leq V(t_k,x); $$ \item[(iii)] $b(\|x\|)\leq V(t,x)\leq a(\|x\|)$ for $ t\in\mathbb{R}_+$, $x\in \mathbb{R}^n$, where $a,b \in \mathcal{K}$. \end{itemize} \end{itemize} Then the zero solution of the system of IFrDE \eqref{1} is uniformly asymptotically stable. \end{theorem} \begin{proof} From condition (3)(i) we have ${}_{\eqref{1}}^{c}D_{+}^{q}V(t,x ;t_0,x_0)\leq 0$. Applying Theorem \ref{thm4} with $g(t,u_0)\equiv 0$ we see that the zero solution of the system of IFrDE \eqref{1} is uniformly stable. Therefore, for the number $\lambda$ there exists $\alpha=\alpha(\lambda)\in (0,\lambda)$ such that for any $\tilde{t}_0\in\mathbb{R}_+$ and $\tilde{x}_0 \in\mathbb{R}^n$ the inequality $\|\tilde{x}_0\|<\alpha$ implies \begin{equation} \label{789} \|x(t;\tilde{t}_0,\tilde{x}_0)\|<\lambda\quad \text{for } t\geq \tilde{t}_0 \end{equation} where $x(t;\tilde{t}_0,\tilde{x}_0)$ is any solution of IFrDE \eqref{1} (with initial data $(\tilde{t}_0,\tilde{x}_0)$). Now we prove the zero solution of IFrDE \eqref{1} is uniformly attractive. Consider the constant $\beta\in(0,\alpha]$ such that $b^{-1}(a(\beta))< \alpha$. Let $\epsilon \in(0,\lambda]$ be an arbitrary number and $x^*(t)=x(t;t_0,x_0)$ be any solution of \eqref{1} such that $\|x_0\|<\beta$, $t_0\in\mathbb{R}_+$. Then $b(\|x_0\|)\leq a(\|x_0\|)\big(\frac{q\Gamma(q)a(\alpha)}{c(\gamma)}\big)^{1/q}$, $T=T(\epsilon)>0$ and $m\in \{1,2,\dots\}$ with $t_m0$ we obtain \begin{align*} %\label{4419} & V(t_0+T,x^*(t_0+T))\\ & \leq V(t_0,x_0)-\sum_{i=0}^{m-1}\frac{1}{\Gamma(q)}\int_{t_i}^{t_{i+1}} (t_{i+1}-s)^{q-1}c(\|x^*(s)\|)ds\\ &\quad -\frac{1}{\Gamma(q)}\int_{t_m}^{t_0+T} (t_0+T-s)^{q-1}c(\|x^*(s)\|)ds\\ & \leq a(\|x_0\|)-\sum_{i=0}^{m-1}\frac{c(\gamma)}{\Gamma(q)} \int_{t_i}^{t_{i+1}} (t_{i+1}-s)^{q-1}ds -\frac{c(\gamma)}{\Gamma(q)}\int_{t_m}^{t_0+T} (t_0+T-s)^{q-1}ds\\ & t^*=t_n$, $t\in (t_l,t_{l+1}]$, $l=n,n+1,\dots$, and $\Delta=\mathbb{R}^n$ and obtain \begin{align*} V(t,x^*(t)) &\leq V(t_n+0,x^*(t_n+0)) -\frac{1}{\Gamma(q)}\Big(\sum_{i=n}^{l-1}\int_{t_i}^{t_{i+1}} (t_{i+1}-s)^{q-1}c(\|x^*(s)\|)ds\\ &\quad +\int_{t_l}^t (t-s)^{q-1}c(\|x^*(s)\|)ds \Big) \\ &\leq V(t_n+0,x^*(t_n+0)). \end{align*} Then for any $t> t^*=t_n$ from conditions (2)(ii) and (2)(iii) we get \begin{align*} %\label{44271} b(\|x^*(t)\|) &\leq V(t, x^*(t)) \leq V(t_n, x^*(t_n+0))\\ &= V(t_n,\Phi_n(x^*(t_n-0)))\leq V(t_n, x^*(t_n-0))\\ & \leq a(\|x^*(t_n-0)\|)\leq a(\gamma). \end{align*} Then $\|x^*(t)\|\leq b^{-1}(a(\gamma))<\varepsilon$ and therefore \eqref{4450} holds for all $t> t^*$ (hence for $t\geq t_0+T$). \end{proof} \begin{remark} \label{rmk10} \rm The study of stability of a nonzero solution $x^*(t)$ of the IVP for IFrDE \eqref{1} could be easily reduced to studing stability of the zero solution of an appropriately chosen system of IFrDE. \end{remark} \section{Applications} Consider the generalized Caputo population model. \begin{example} \label{examp10} \rm Let the points $t_k$, $t_k 0$, $ t\neq t_k$ is \begin{equation} \label{6655} \begin{aligned} {}_{\eqref{347}}^{c}D_{+}^{q}V(t,x;0,x_0) &=2x \big(-g(t)x(1+x^2)\big)+(x^2-x_0^2)\frac{1}{t^q\Gamma(1-q)}\\ &\leq x^2\Big(-2g(t)(1+x^2)+ \frac{1}{t^q\Gamma(1-q)}\Big) \\ & \leq -2g(t)x^4\leq 0. \end{aligned} \end{equation} Then by Theorem \ref{thm1}, the trivial solution of IFrDE \eqref{347} is stable. \end{example} \subsection*{Acknowledgments} This research was partially supported by the Fund NPD, Plovdiv University, No. MU15-FMIIT-008. \begin{thebibliography}{00} \bibitem{AS} B. Ahmad, S. Sivasundaram; Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, \emph{Nonlinear Anal. Hybrid Syst.}, \textbf{3} (2009), 251--258. \bibitem{AB} R. Agarwal, M. Benchohra, B. A. Slimani; Existence results for differential equations with fractional order and impulses, \emph{Mem. Differ. Equ. Math. Phys}, \textbf{44} (2008), 1--21. \bibitem{AHR} R. Agarwal, D. O'Regan, S. Hristova; Stability of Caputo fractional differential equations by Lyapunov functions, \emph{Appl. Math.}, \textbf{60} (2015), 653-676. \bibitem{AHR1} R. Agarwal; S. Hristova; D. O'Regan; Lyapunov functions and strict stability of Caputo fractional differential equations, \emph{Adv. Diff. Eq.}, 2015, (2015) 346, DOI 10.1186/s13662-015-0674-5. \bibitem{AHR2} R. Agarwal, S. Hristova, D. O'Regan; Practical stability of Caputo fractional differential equations by Lyapunov functions, \emph{Diff. Eq. Appl.} \textbf{8} (2016), 53-68. \bibitem{DM1} N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos; Lyapunov functions for fractional order systems, \emph{Comm. Nonlinear Sci. Numer. Simul.}, \textbf{19} (2014), 2951--2957. \bibitem{BK} K. Balachandran, S. Kiruthika; Existence of solutions of abstract fractional impulsive semilinear evolution equations, \emph{Electron. J. Qual. Theory Differ. Equ.} \textbf{4} (2010) 1--12. \bibitem{BM} D. Baleanu, O. G. Mustafa; On the global existence of solutions to a class of fractional differential equations, \emph{Comput. Math. Appl.} \textbf{59} (2010), 1835--1841. \bibitem{BS} M. Benchohra, D. Seba; Impulsive fractional differential equations in Banach spaces, \emph{Electron. J. Qual. Theory Differ. Equ. } \textbf{8} (2009), 1--14 (Special Edition I). \bibitem{B} M. Benchohra, B. A. Slimani; Existence and uniqueness of solutions to impulsive fractional differential equations, \emph{Electronic Journal of Differential Equations} \textbf{2009} (2009), No. 10, 1--11. \bibitem{1} Sh. Das; \emph{Functional Fractional Calculus}, Springer-Verlag, Berlin Heidelberg, 2011. \bibitem{devi vlm} J. V. Devi, F. A. Mc Rae, Z. Drici; Variational Lyapunov method for fractional differential equations, \emph{Comput. Math. Appl.} \textbf{64} (2012), 2982--2989. \bibitem{2} K. Diethelm; \emph{The Analysis of Fractional Differential Equations}, Springer-Verlag, Berlin Heidelberg, 2010. \bibitem{DM} M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares; Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, \emph{Comm. Nonlinear Sci. Numer. Simul.} \textbf{22} (2015), 650--659. \bibitem {F} M. Feckan, Y. Zhou, J. Wang; On the concept and existence of solution for impulsive fractional differential equations, \emph{Commun. Nonlinear Sci. Numer. Simul.} \textbf{17} (2012), 3050--3060. \bibitem{F4} M. Feckan, Y. Zhou, J. Wang; Response to "Comments on the concept of existence of solution for impulsive fractional differential equations [Commun. Nonlinear Sci. Numer. Simul. 2014;19:4013.]", \emph{Commun. Nonlinear Sci. Numer. Simulat.} \textbf{19} (2014), 4213--4215. \bibitem{anapaper} O. Guner, A. Bekir, H. Bilgil; A note on exp-function method combined with complex transform method applied to fractional differential equations, \emph{Adv. Nonlinear Anal.} \textbf{4} (2015), no. 3, 201-208. \bibitem{LB} V. Lakshmikantham, D. D. Bainov, P. S. Simeonov; \emph{Theory of Impulsive Differential Equations}, World Scientific, Singapore, 1989. \bibitem{Lakfde} V. Lakshmikantham, S. Leela, J. V. Devi; \emph{Theory of Fractional Dynamical Systems}, Cambridge Scientific Publishers, 2009. \bibitem{LL} V. Lakshmikantham, S. Leela, M. Sambandham; Lyapunov theory for fractional differential equations, \emph{Commun. Appl. Anal.} \textbf{12} (2008), 365--376. \bibitem{Li1} Y. Li, Y. Chen, I. Podlubny; Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, \emph{Comput. Math. Appl.} \textbf{59} (2010), 1810--1821. \bibitem{Li3} C. P. Li, F. R. Zhang; A survey on the stability of fractional differential equations, \emph{Eur. Phys. J. Special Topics} \textbf{193} (2011), 27--47. \bibitem{molrad} G. Molica Bisci, V. R\u{a}dulescu; Ground state solutions of scalar field fractional Schrödinger equations, \emph{Calculus of Variations and Partial Differential Equations} \textbf{54} (2015), 2985-3008. \bibitem{podlubny} I. Podlubny; \emph{Fractional Differential Equations}, Academic Press, San Diego, 1999. \bibitem{radrepbook} V. R\u{a}dulescu, D. Repov\v{s}; \emph{Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis}, CRC Press, Taylor \& Francis Group, Boca Raton FL, 2015. \bibitem{kilbas} G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional Integrals and Derivatives: Theory and Applications}, Gordon and Breach, 1993. \bibitem{St1} I. Stamova; Global stability of impulsive fractional differential equations, \emph{Appl. Math. Comput.} \textbf{237} (2014), 605--612. \bibitem{ZN} G. Wang, B. Ahmad, L. Zhang, J. Nieto; Comments on the concept of existence of solution for impulsive fractional differential equations, \emph{Commun. Nonlinear Sci. Numer. Simulat.} \textbf{19} (2014), 401--403. \bibitem{F2} J. R. Wang, M. Feckan, Y. Zhou; Ulam's type stability of impulsive ordinary differential equations, \emph{J. Math. Anal. Appl.} \textbf{395} (2012), 258--264. \bibitem{F3} J. R. Wang, X. Li, W. Wei; On the natural solution of an impulsive fractional differential equation of order $q \in (1,2)$, \emph{Commun. Nonlinear Sci. Numer. Simul.} \textbf{17} (2012), 4384--4394. \bibitem{F1} J. R. Wang, Y. Zhou, M. Feckan; On recent developments in the theory of boundary value problems for impulsive fractional differential equations, \emph{Comput. Math. Appl.} \textbf{64} (2012), 3008--3020. \end{thebibliography} \end{document}