\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 60, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/60\hfil Stable solitary waves] {Stable solitary waves for one-dimensional Schr\"odinger-Poisson systems} \author[G. Zhang, W. Zhang, S. Liu \hfil EJDE-2016/60\hfilneg] {Guoqing Zhang, Weiguo Zhang, Sanyang Liu} \address{Guoqing Zhang \newline College of Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{shzhangguoqing@126.com} \address{Weiguo Zhang \newline College of Sciences, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{zwgzwm@126.com} \address{Sanyang Liu \newline College of Mathematics and Statistics, Xidian University, Xi'an 710071 Shanxi, China} \email{liusanyang@126.com} \thanks{Submitted November 9, 2015. Published February 29, 2016.} \subjclass[2010]{35J50, 35Q55, 37K45} \keywords{Solitary waves; orbital stability; Schr\"odinger-Poisson system} \begin{abstract} Based on the concentration compactness principle, we shoe the existence of ground state solitary wave solutions for one-dimensional Schr\"odinger-Poisson systems with large $L^2$-norm in the energy space. We also obtain orbital stability for ground state solitary waves. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Consider the one-dimensional Schr\"odinger-Poisson system \begin{equation} \begin{gathered} i\partial_{t}\psi+\partial_{xx}\psi+W\psi+b|\psi|^{p-2}\psi=0, \quad (t,x)\in \mathbb{R}^{1+1},\\ -\partial_{xx}W=|\psi|^2,\quad (t,x)\in \mathbb{R}^{1+1},\\ \psi(0,x)=\psi_{0}(x), \end{gathered}\label{e1} \end{equation} where $p>3$, $b$ is a real constant. The self-consistent Poisson potential $W$ is explicitly given by $$ W_{\psi}(t,x)=-\frac{1}{2}(|x|\ast|\psi(t,x)|^2) =-\frac{1}{2}\int_{-\infty}^{+\infty}|x-y||\psi(t,y)|^2dy. $$ Problem \eqref{e1} can be reduced to the nonlinear nonlocal Schr\"odinger equation \begin{equation} \begin{gathered} i\partial_{t}\psi+\partial_{xx}\psi-\frac{1}{2}(|x|\ast|\psi(t,x)|^2) \psi+b|\psi|^{p-2}\psi=0,\quad (t,x)\in \mathbb{R}^{1+1},\\ \psi(0,x)=\psi_{0}(x). \end{gathered}\label{e2} \end{equation} The model equation \eqref{e2} appears in various frameworks, such as wave propagation in fibre optics to biophysics \cite{h1}, one-dimensional reduction of electron density in plasma physics \cite{b2}. Recently, one-dimensional (1D) Schr\"odinger-Poisson system have been studied extensively. In 2005, Stimming \cite{s1} obtained the global existence result for \eqref{e2} by using the semi-group theory. In 2007, De Leo, Rial \cite{d1} studied the global well-posedness and smoothing effect of \eqref{e2}. In 2011, Masaki \cite{m1} proved that \eqref{e2} is globally well-posed in the energy space, by means of perturbation methods. We are interested in the search of solitary wave solutions of \eqref{e2}, i.e., solutions to \eqref{e2} in the form $$ \psi(t,x)=e^{-i\lambda t}u(x),~\lambda \in \mathbb{R}, $$ and $u$ solving \begin{equation} -\partial_{xx}u+\frac{1}{2}(|x|\ast|u|^2)u-b|u|^{p-2}u=\lambda u, \quad \lambda \in \mathbb{R}.\label{e3} \end{equation} As $b=0$, based on the rearrangement inequality, Choquard, Stubble \cite{c4} proved the existence and uniqueness result of ground states for \eqref{e3}. Hartmann, Zakvzewski \cite{h2} obtained the analytic solitary wave solutions which is approximated by a Gaussian, and soloved \eqref{e3} numerically. In this article, we look for solutions $u$ with a priori prescribed large $L^2$-norm by using the concentration compactness principle and the constraint minimization method. Notice that the Schr\"odinger-Poisson system in three dimensional space, Catto, Dolbeault, Sanchez, Soler \cite{c1} reviewed some recent results and open problems concerning the existence of solitary wave solutions in the frame work of the concentration compactness principle. This article is organized as follows. In Section 2, we give some preliminary results and state our main theorems. In Section 3, we prove the existence of ground state solitary wave solutions with sufficiently large $L^2$-norm for \eqref{e3}. \section{Preliminary results and main theorems}\label{sec2} For any $1\leq q<+\infty$, $L^{q}(\mathbb{R})$ is the usual Lebesgue space endowed with the norm $|u|^{q}_{q}=\int^{+\infty}_{-\infty}|u|^{q}dx$. $H^1(\mathbb{R})$ is the usual Sobolev space with the norm $\|u\|^2_{H^1(\mathbb{R})} =\int^{+\infty}_{-\infty}(|\partial_{x}u|^2+|u|^2)dx$. Consider the natural functional space $X=\{u: u\in H^1(\mathbb{R}),\sqrt{|x|}u\in L^2(\mathbb{R})\}$. The energy space $X$ \cite{m1} is a Hilbert space with norm given by $$ \|u\|^2_{X}=\|u\|^2_{H^1(\mathbb{R})} +\int_{-\infty}^{+\infty}|x|u^2(x)dx=\|u\|^2_{H^1(\mathbb{R})}+|u|^2_{\ast}, $$ where $|u|^2_{\ast}=\int_{-\infty}^{+\infty}|x|u^2(x)dx$. By Rellich's criterion \cite{r1}, we have the following result. \begin{lemma} \label{lem2.1} $X$ is compactly embedded in $L^{q}(\mathbb{R})$ for all $q\in [2,+\infty)$. \end{lemma} Masaki \cite{m1} proved the following lemma in 2011. \begin{lemma} \label{lem2.2} When $b>0$, $3\leq p<6$, $\psi_{0}(x)\in X$, problem \eqref{e1} is globally well-posed in the energy space $X$. \end{lemma} We consider the symmetric bilinear form $$ (u,v)\mapsto B_{0}(u,v)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x-y|u(x)v(y)\,dx\,dy, $$ and define the functional $V:H^1(\mathbb{R})\to \mathbb{R}\cup \{+\infty\}$ as \[ V(u)=B_{0}(u^2,u^2)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x-y|u^2(x)u^2(y)\,dx\,dy. \] \begin{lemma} \label{lem2.3} Let $\{u_{n}\}$ be a sequence in $L^2(\mathbb{R})$ such that $u_{n}\to u$ in $L^2(\mathbb{R})\setminus \{0\}$, $\{v_{n}\}$ be a bounded sequence in $L^2(\mathbb{R})$ and $\sup_{n\in \mathbb{N}}B_{0}(u_{n}^2,v_{n}^2)<\infty$. Then there exist $n_{0}\in \mathbb{N}$, $C>0$ such that $|u_{n}|_{\ast}0$ and $A\subset B_{R}(0)$ such that $|A|>0$ and $u_{n}^2(x)\geq\delta$ for all $n\geq n_{0}$. Since $$ |x-y|\geq \frac{|y|}{2}\geq \sqrt{|y|}\quad \text{for all $x\in B_{R}(0)$ and } y\in \mathbb{R}\setminus B_{2R}(0), $$ we have \begin{align*} B_{0}(u_{n},v_{n}) &\geq\int_{\mathbb{R}\setminus B_{2R}(0)} \int_{A}|x-y||u_{n}(x)|^2|v_{n}(y)|^2\,dx\,dy \\ &\geq\frac{\delta |A|}{2}\int_{\mathbb{R}\setminus B_{2R}(0)}|y||v_{n}(y)|^2dy\\ &\geq\frac{\delta |A|}{2}(|v_{n}|_{\ast}^2-2R|v_{n}|_2^2). \end{align*} Hence, we have $|u_{n}|_{\ast}0$. So, we obtain that $V(u_{n})\to V(u)$ as $n\to \infty$. By a simple calculation, we have $$ V'(u)v=4\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|x-y|u(x)^2u(y)v(y)\,dx\,dy, \quad \forall v\in X. $$ When $u_{n}\to u$ in $X$, we can argue as before and obtain \begin{align*} &|V'(u_{n})v-V'(u)v|\\ &=4\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|x-y|(u_{n}^2(x)u_{n}(y) -u^2(x)u(y))v(y)\,dx\,dy\\ &\leq 4[\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(|x|+|y|)(u_{n}(x) -u(x))(u_{n}(x)+u(x))|u_{n}(y)||v(y)|\,dx\,dy\\ &\hskip0.38cm +\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(|x|+|y|) (u_{n}(y)-u(y))|u(x)|^2|v(y)|\,dx\,dy]\\ &\leq 4(|u_{n}-u|_{\ast}|u_{n}+u|_{\ast}|u_{n}|_2^2|v|_2 +|u_{n}-u|_2|u|_{\ast}^2|v|_2) \\ &\leq 4C\|u_{n}-u\|_{X}\|v\|_{X},\quad \forall v\in X. \end{align*} In conclusion, we obtain that $V(u)$ is $C^1$ on $X$. Since $3\leq p<6$, by Lemma \ref{lem2.1}, we obtain that $|u|^{p}_{p}$ is $C^1$ on $X$. Hence, the functional $I$ is of class $C^1$ on $X$. On the other hand, it is easy to obtain that $N(u)$ is $C^1$ on $X$ by Lemma \ref{lem2.1}. \end{proof} Inspired by the papers \cite{c1,h1}, we look for the solution of the problem \eqref{e3} with a priori prescribed $L^2$-norm. The natural way is to consider the constrained critical points of the functional $I$ on the set $$ B_{M}=\{u\in X:~|u|_2=M\}. $$ So by a solution of \eqref{e3} we mean a couple $(\lambda_{M},u_{M})\in \mathbb{R}\times X$, where $\lambda_{M}$ is the Lagrange multiplier associated with the critical point $u_{M}$ on $B_{M}$. From a physical point of view, the most interesting case is the existence of solutions for \eqref{e3} with minimal energy (ground state solutions), that is the minimizers of \begin{equation} I_{M}=\inf_{u\in B_{M}} I(u). \label{e4} \end{equation} Functionals $I$, $N$ are translation invariant, i.e., for every $z\in \mathbb{R}$, $$ I(u(\cdot +z))=I(u),\quad N(u(\cdot +z))=N(u). $$ Therefore, the concentration compactness principle \cite{l1,l2} is the natural framework for the study of the existence of a minimizer, and for the analysis of the minimizing sequence of \eqref{e4}. It is known that, in this kind of problems, the main difficulty is the lack of compactness of the minimizing sequences $\{u_{n}\}$ in $B_{M}$; indeed, two possible bad scenarios are possible: (1) (Vanishing) \begin{equation} u_{n}\rightharpoonup 0;\label{e5} \end{equation} (2) (Dichotomy) \begin{equation} u_{n} \rightharpoonup \bar{u}\neq 0\quad \text{and}\quad 0<|\bar{u}|_20$, $30$, $30$, the functional $I$ is bounded from below on $B_{M}$. Indeed, from \eqref{e7} and positive property of $V(u)$, we have \begin{align*} I(u)&\geq \frac{1}{2}\int_{-\infty}^{+\infty}|\partial_{x}u|^2dx -\frac{b}{p}\int_{-\infty}^{+\infty}|u|^{p}dx\\ &\geq \frac{1}{2}|\partial_{x}u|^2_2 -\frac{b}{p}CM\frac{p(1-\delta)}{2}|\partial_{x}u|_2^{p\delta}. \end{align*} Since $30$, $\alpha$ is a real number, we have \begin{gather} \int_{-\infty}^{+\infty}|u_{\theta}|^2dx=|u_{\theta}|_2^2=\theta^2|u|_2^2, \nonumber\\ \int_{-\infty}^{+\infty}|\partial_{x}u_{\theta}|^2dx =\theta^{(2-2\alpha)}\int_{-\infty}^{+\infty}|\partial_{x}u|^2dx, \nonumber \\ \begin{aligned} &\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|x-y| |u_{\theta}(x)|^2|u_{\theta}(y)|^2\,dx\,dy\\ & =\theta^{(4+\alpha)}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|x-y| |u(x)|^2|u(y)|^2\,dx\,dy, \end{aligned} \label{e8} \\ \int_{-\infty}^{+\infty}|u_{\theta}|^{p}dx =\theta^{(1-\frac{\alpha}{2})p+\alpha}\int_{-\infty}^{+\infty}|u|^{p}dx. \nonumber \end{gather} \begin{lemma} \label{lem3.2} If $b>0$, $30$, such that \begin{gather*} I_{M'}<0,\quad \text{for all }M'\in (M_1,+\infty), \\ I_{M}M_1$ and $0\frac{10}{3}$ for $3\frac{4}{3}$, as $31. $$ In conclusion, we obtain that $g(\theta,u_{n})<0$ for all $\theta>1$ and $I_{\theta M'}<\theta^2I(u_{n})=\theta^2I_{M'}$. From the claim, we obtain that for $M'$ sufficiently large, \begin{align*} I_{M} &=I_{\frac{M}{M'}M'}<\frac{M^2}{M'^2}I_{M'}\\ &=\frac{(M^2-M'^2+M'^2)}{M'^2}I_{M'}\\ &=I_{M'}+\frac{(M^2-M'^2)}{M'^2}I_{\frac{M'}{\sqrt{M^2-M'^2}}\sqrt{M^2-M'^2}}\\ &0\quad text{and}\quad u_{n}\rightharpoonup u\neq 0~~\text{in}~~H^1(\mathbb{R}^2). $$ and the vanishing case does not hold. On the other hand, by Lemma \ref{lem3.2}, $I_{M}M_1$ and $00$, there exists $\delta(\varepsilon)>0$ such that if $\psi_{0}\in X$ satisfies $\inf_{v\in S_{M}}\|v-\psi_{0}\|_{X}<\delta(\varepsilon)$, then we have $$ \sup_{t>0}\inf_{v\in S_{M}}\|\psi(t,x)-v(x)\|_{X}<\varepsilon, $$ where $\psi(t,\cdot)$ is the solution of \eqref{e1} with initial datum $\psi_{0}$. \end{definition} \begin{proof}[Proof of Theorem \ref{thm2.6}] By [Theorem 1.5]{m1}, we obtain the solution of \eqref{e1} conserves $|\psi|^2_{L^2(\mathbb{R})}$ and the energy \begin{align*} E(t,\psi)&=\frac{1}{2}|\partial_{x}\psi|^2_2 +\frac{1}{4}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x-y||\psi(t,x)|^2|\psi(t,y)|^2\,dx\,dy \\ &\quad -\frac{b}{p}\int_{-\infty}^{+\infty}|\psi(t,x)|^{p}dx, \end{align*} i.e., $$ \int_{-\infty}^{+\infty}|\psi(t,x)|^2dx =\int_{-\infty}^{+\infty}|\psi_{0}(x)|^2dx, $$ and \begin{align*} &\frac{1}{2}|\partial_{x}\psi|^2_2+\frac{1}{4} \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|x-y||\psi(t,x)|^2|\psi(t,y)|^2\,dx\,dy -\frac{b}{p}\int_{-\infty}^{+\infty}|\psi|^{p}dx\\ &=\frac{1}{2}|\partial_{x}\psi_{0}|^2_2+\frac{1}{4} \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|x-y||\psi_{0}(x)|^2|\psi_{0}(y)|^2\,dx\,dy -\frac{b}{p}\int_{-\infty}^{+\infty}|\psi_{0}|^{p}dx. \end{align*} Suppose by contradiction that there exists a $M$ such that $S_{M}$ is not orbitally stable. Hence, there exist a subsequence $\{\psi_{n}(0,x)\}$ and $\{t_{n}\}\in \mathbb{R}$ such that $$ \inf_{v\in S_{M}}\|\psi_{n}(0,x)-v(x)\|_{X}\to 0,\quad \inf_{v\in S_{M}}\|\psi_{n}(t_{n},x)-v(x)\|_{X}\geq \varepsilon \quad \text{as } n\to \infty. $$ Then, we obtain that there exists $u_{M}\in X$ minimizer of $I_{M}$ and $\theta\in [0,2\pi]$ such that $v=e^{i\theta}u_{M}$, $$ |\psi_{n}(0,x)|_2\to |v|_2=M,\quad I(\psi_{n}(0,x))\to I(v)=I_{M}\quad \text{as }n\to \infty. $$ Actually, we can assume that $\psi_{n}(0,x)\in B_M$ (there exists $\alpha_n =\frac{M}{|\psi_{n}(0,x)|_2} \to 1$ so that $\alpha_n \psi_{n}(0,x) \in B_M$ and $I(\alpha_n \psi_{n}(0,x))\to I_M$, i.e., we can replace $\psi_{n}(0,x)$ with $\alpha_n \psi_{n}(0,x)$). So, we have $\{\psi_{n}(0,x)\}$ is a minimizing sequence for $I_{M}$ and $$ I(\psi_{n}(t_{n},x))=I(\psi_{n}(0,x)), $$ and $\{\psi_{n}(t_{n},x)\}$ is a minimizing sequence for $I_{M}$. Since we obtain that every minimizing sequence has a subsequence converging in $X-$norm to a minimum on $B_{M}$, and it is a contradiction. \end{proof} \subsection*{Acknowledgments} The authors would like to sincerely thank the referee for valuable comments and suggestions. This research was supported by the Shanghai Natural Science Foundation (No. 15ZR1429500). \begin{thebibliography}{99} \bibitem{b1} J. Bellazzini, G. Siciliano; \emph{Stable standing waves for a class of nonlinear Schr\"odinger-Poisson equations}, Z. Angew Math. Phys., 62 (2011), 267-280. \bibitem{b2} O. Bokanowski, J. L. Lopez, O. Sanchez, J. Soler; \emph{On an exchange interaction model for quantum transport: The Schr\"odinger-Poisson-Slater system}, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412. \bibitem{c1} I. Catto, J. Dolbeault, O. Sanchez, J. Solev; \emph{Existence of steady states for the Maxwell-Schr\"odinger-Poisson system: exploring the applicability of the Concentration-Compactness Principle}, Math. Models Methods Appl. Sci., 23 (2013), 1915-1938. \bibitem{c2} T. Cazenave; \emph{Semilinear Schr\"odinger Equation, Courant.} in: Lecture Notes in Mathematics, Vol. 10, New York: New York University, 2003. \bibitem{c3} T. Cazenave, P. L. Lions; \emph{Orbital stability of standing waves for some nonlinear Schr\"odinger equations}, Commum. Math. Phys., 85 (1982) 549-561. \bibitem{c4} P. Choquard, J. Stubbe; \emph{The one-dimensional Schr\"odinger-Newton equations}, Lett. Math. Phys., 81 (2007), 177-184. \bibitem{d1} M. De Leo, D. Rial; \emph{Well posedness and smoothing effect of Schr\"odinger-Poisson equation}, J. Math. Phys., 48 (2007) 093509. \bibitem{h1} A. Hasegawa; \emph{Optical Solitons in Fibres}, Springer, Berlin, 1990. \bibitem{h2} B. Hartmann, W. J. Zakvzewski; \emph{Soliton solutions of the nonlinear Schr\"odinger equation with nonlocal Coulomb and Yukawa interactions}, Physics Letters A, 366 (2007), 540-544. \bibitem{l1} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations}, the locally compact case I, Ann. I. H. Poincar$\acute{\text{e}}$-AN, 1 (1984), 109-145. \bibitem{l2} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations}, the locally compact case II, Ann. I. H. Poincar\'e-AN, 1 (1984), 223-283. \bibitem{m1} S. Masaki; \emph{Energy solution to a Schr\"odinger-Poisson system in the two-dimensional whole space}, SIAM J. Math. Anal., 43 (2011), 2719-2731. \bibitem{r1} M. Reed, S. Barry; \emph{Methods of Modern Mathematical physics}, Vol. 4, Analysis of Operators, Academic, London, 1978. \bibitem{s1} H. P. Stimming; \emph{The IVP for the Schr\"odinger-Poisson-$X_{\alpha}$ equation in one dimension}, Math. Models Methods Appl. Sci., 15 (2005), 1169-1180. \bibitem{w1} W. Willem; \emph{Minimax Theorems}, Progress in Nonlinear Differential Equations and Their Applications, Vol. 24, Birkha\"user, Boston, 1996. \end{thebibliography} \end{document}