\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 89, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/89\hfil Singular elliptic boundary-value problems] {Existence, boundary behavior and asymptotic behavior of solutions to singular elliptic boundary-value problems} \author[G. Gao, B. Yan \hfil EJDE-2016/89\hfilneg] {Ge Gao, Baoqiang Yan} \address{Ge Gao \newline School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China} \email{gaoge\_jianxin@163.com} \address{Baoqiang Yan \newline School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China} \email{yanbqcn@aliyun.com} \thanks{Submitted November 6, 2015. Published March 31, 2016.} \subjclass[2010]{35J25, 35J60, 35J75} \keywords{Elliptic boundary value problem; existence; boundary behavior; \hfill\break\indent asymptotic behavior} \begin{abstract} In this article, we consider the singular elliptic boundary-value problem $$ -\Delta u+f(u)-u^{-\gamma} =\lambda u \text{ in } \Omega,\quad u>0\text{ in } \Omega,\quad u=0 \text{ on } \partial\Omega. $$ Using the upper-lower solution method, we show the existence and uniqueness of the solution. Also we study the boundary behavior and asymptotic behavior of the positive solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} In this article, we consider the singular elliptic boundary-value problem \begin{equation} \begin{gathered} -\Delta u+f(u)-u^{-\gamma} =\lambda u \quad\text{in } \Omega,\\ u>0 \quad\text{in } \Omega,\\ u=0 \quad\text{on } \partial\Omega, \end{gathered} \label{e1.1} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$, $N\geq2$, with $C^{2,\beta}$ boundary $\partial\Omega$, $\gamma>0$, $\beta\in(0,1)$ and $\lambda>0$ is a real parameter. We use the following assumptions in this article. \begin{itemize} \item[(A1)] $f: \mathbb{R}^{+}\to \mathbb{R}$ is a continuous function. \item[(A2)] $s^{-1}{f(s)}$ is strictly increasing for $s>0$. \item[(A3)] $f: \mathbb{R}^{+}\to \mathbb{R}$ is strictly increasing. \end{itemize} Existence, boundary behavior and asymptotic behavior of solutions for nonlinear elliptic boundary value problems have been intensively studied in the previous decades. Berestycki [1] considered the problem \begin{equation} \begin{gathered} Lu+f(x,u)=\lambda au ,\quad\text{in } \Omega,\\ u=0,\quad \text{on } \partial\Omega, \end{gathered} \label{e1.2} \end{equation} where $L$ is a second order uniformly elliptic operator, $a\in C^{0}(\bar{\Omega})$, $a>0$ in $\bar{\Omega}$ and under the conditions that $f(x,0)=0$, $s \to (f(x,s)/s)$ is strictly increasing for $s>0$ and $ \lim_{s\to\infty}(f(x,s)/s)=+\infty$, it is proved that \eqref{e1.2} has one and only one positive solution $u_{\lambda}\in W^{2,p}(\Omega)$ for $\lambda>\lambda_1$, where $\lambda_1$ denotes the principle eigenvalue of $$ L\phi=\lambda a\phi \text{ in } \Omega, \quad \phi=0 \text{ on } \partial\Omega. $$ As a special case for \eqref{e1.2}, Fraile, L\'{o}pez-G\'{o}mez and Delis \cite{f1} studied \begin{equation} \begin{gathered} -\Delta u=\lambda u+f(u)-u^{p+1} \quad\text{in } \Omega,\\ u>0\quad \text{in } \Omega,\\ u=0\quad \text{on } \partial\Omega, \end{gathered} \label{e1.3} \end{equation} and described the structure of the positive solutions of \eqref{e1.3} in detail. Some other asymptotic behavior studies have been shown in \cite{s3,s4,s5}. Notice that in the above $f$ needs to be continuous or differential at $x=0$. On the other hand, singular elliptic boundary value problems in various forms have been studied extensively by many authors, see \cite{c1,c2,c3,d1,f2,g1,g3,h1,l1,s2,s6,z1,z2}. For instance, for the problem \begin{equation} \begin{gathered} -\Delta u-u^{-\alpha} =(\lambda u)^{p} \quad\text{in } \Omega,\\ u>0\quad \text{in } \Omega,\\ u=0 \quad \text{on } \partial\Omega, \end{gathered} \label{e1.4} \end{equation} by results in \cite{c3,f2,g1,s6}, it follows that if $\lambda=0$, \eqref{e1.4} possesses a unique classical solution and at least one classical solution for $\lambda\neq0$ and $p<1$. Coclite and Palmieri \cite{c2} showed that if $00 \quad\text{in } \Omega,\\ u=0 \quad\text{on } \partial\Omega\,. \end{gathered}\label{e1.5} \end{equation} If $K(x)<0$ for all $x\in\bar{\Omega}$, then \eqref{e1.5} has one and only one solution $u_{\lambda}$ for any $\lambda\in\mathbb{R}$, $c_1d(x)\leq u_{\lambda}(x)\leq c_{2}d(x)$ for any $x\in\bar{\Omega}$ and some $c_1, c_{2}>0$ independent of $x$; if $K(x)>0$ for all $x\in\bar{\Omega}$, there exist a $\tilde{\lambda}>0$ such that \eqref{e1.5} has at least one solution $u_{\lambda}$ for $\lambda>\tilde{\lambda}$, and \eqref{e1.5} has no solution for $\lambda<\tilde{\lambda}$. Other results can be found in \cite{c3,d1,g3,l1,z1}. Up to now, there are only a few results on existence, boundary behavior and asymptotic behavior of positive solutions for \eqref{e1.1}. Our goal in this paper is to show existence, boundary behavior and asymptotic behavior of the solutions for singular elliptic boundary-value problem \eqref{e1.1}. Using the upper-lower solution method, we obtain that \eqref{e1.1} has at least one solution, and if $0<\gamma<1$, \eqref{e1.1} has one and only one solution. In the meanwhile, the boundary behavior of the solution is established for $0<\gamma<1$. Finally, we obtain the asymptotic behavior of solutions under a special form of $f(u)$. \section{Existence and uniqueness of a solution for \eqref{e1.1}} First, we introduce notation and present some lemmas. In the next lemma, $W^{k,q}(\Omega)$ denotes the usual Sobolev space. \begin{lemma}[\cite{c3}] \label{lem2.1} Let $\vartheta_0$, $\vartheta$ be bounded open domains in $\mathbb{R}^{n}$ with $\bar{\vartheta_0}\subset \vartheta$. Suppose $L$ is a second order uniformly elliptic operator with coefficients continuous in $\bar{\vartheta}$ and $q>n$. Then there is a constant $K$ such that $$ \|w\|_{W^{2,q}(\vartheta_0)}\leq K(\|Lw\|_{L^{q}(\vartheta)} +\|w\|_{L^{q}(\vartheta)}) $$ for all $w\in W^{2,q}(\vartheta)$. The constant $K$ depends on $n,q$, the diameter of $\vartheta$, the distance from $\vartheta_0$ to $\partial\vartheta$, the ellipticity constant of $L$, and bounds for the coefficients of $L$ (in $L^{\infty}(\vartheta)$) and the moduli of continuity of the coefficients. \end{lemma} We consider the nonlinear elliptic boundary-value problem \begin{equation} \begin{gathered} Lu+f(x,u)=0 \quad\text{in } \Omega,\\ Bu=g \quad \text{on }\partial\Omega, \end{gathered} \end{equation} where $L$ is a second order uniformly elliptic operator $$ L=\sum_{i,j=1}^{n}a_{ij}\frac{\partial^{2}u}{\partial x^{i}\partial x^{j}} +\sum_{i=1}^{n}b_{i}\frac{\partial u}{\partial x^{i}}, \quad x=(x^{1},\dots,x^{n}), $$ and $B$ is one of the boundary operators \[ Bu=u, \] or \[ Bu=\frac{\partial u}{\partial v}+\beta(x)u, \quad x\in\partial \Omega. \] Here $\partial/\partial v$ denotes the outward conormal derivative, and we assume $\beta\geq0$ everywhere on the boundary, $\partial \Omega$. \begin{lemma}[\cite{s1}] \label{lem2.2} Let there exist two smooth functions $u_0(x)\geq v_0(x)$ such that \begin{gather*} Lu_0+f(x,u_0)\leq0,\quad Bu_0\geq g, \\ Lv_0+f(x,v_0)\geq0,\quad Bv_0\leq g. \end{gather*} Assume $f$ is a smooth function on $\min v_0 \leq u\leq \max u_0 $. Then there exists a regular solution $w$ of $$ Lw+f(x,w)=0,\quad Bw=g, $$ such that $v_0\leq w \leq u_0$. \end{lemma} Let $\phi_1$ denote an eigenfunction corresponding to the first eigenvalue $\lambda_1$ of \begin{gather*} -\Delta u=\lambda u \quad\text{in } \Omega,\\ u=0 \quad\text{on }\partial\Omega. \end{gather*} As is known, $\phi_1$ belongs to $C^{2,\beta}(\bar{\Omega})$, $\phi_1>0$ in $\Omega$ and $\lambda_1>0$. \begin{lemma}[\cite{l1}] \label{lem2.3} $\int_{\Omega}(\frac{1}{\phi_1})^{s}dx<\infty$ if and only if $s<1$. \end{lemma} Assume that \eqref{e1.1} has a positive solution $u_{\lambda}$ and let $x_0\in\Omega$ be the point where $u_{\lambda}$ reaches its maximum. Thus, $-\Delta u_{\lambda}(x_0)\geq 0$, which concludes that $$ \lambda\geq -u_{\lambda}^{-(\gamma+1)}(x_0) +\frac{f(u_{\lambda}(x_0))}{u_{\lambda}(x_0)}\,. $$ Define $$ G(s)=-s^{-(\gamma+1)}+\frac{f(s)}{s}, s>0. $$ \begin{theorem} \label{thm2.1} If $f(u)$ satisfies {\rm (A1)} and {\rm (A2)}, then \eqref{e1.1} has at least one solution $u_{\lambda}\in C(\bar{\Omega})\cap C^{2,\beta}(\Omega)$ for $\lambda>\lambda_1$, and there exist a constant $C>0$ such that $ u_{\lambda}\geq C\phi_1$. Moreover, if $0<\gamma<1$, \eqref{e1.1} has one and only one solution for $\lambda>\lambda_1$. \end{theorem} \begin{proof} (i) (Existence) First we consider the solution of the nonlinear elliptic bound\-ary-value problem \begin{equation} \begin{gathered} -\Delta u+f(u)-u^{-\gamma}=\lambda u \quad\text{in } \Omega,\\ u>0 \quad\text{in } \Omega,\\ u=1/k\quad \text{on }\partial\Omega, \end{gathered}\label{Plk} \end{equation} where $1/k0$ in $\Omega$ and $u_{\lambda}=0$ on $\partial\Omega$. It remains to see that $u_{\lambda}\in C^{2}(\Omega)$ and $$ -\Delta u_{\lambda}+f(u_{\lambda})-u_{\lambda}^{-\gamma} =\lambda u_{\lambda},\quad \text{in } \Omega. $$ Choose open subsets $\vartheta_1,\vartheta_{2}$ of $\Omega$ so that $\bar{\vartheta_{2}}\subset\vartheta_1\subset\bar{\vartheta_1}\subset\Omega$ and $q>N$. By Lemma 2.1 there is a constant $K=K(N,q,\vartheta_1,\vartheta_{2},\Delta)$ such that \begin{align*} \|u_{\lambda}^{(k)}\|_{W^{2,q}(\vartheta_{2})} &\leq K(\|\Delta u_{\lambda}^{(k)}\|_{L^{q}(\vartheta_1)} +\|u_{\lambda}^{(k)}\|_{L^{q}(\vartheta_1)})\\ &= K(\|f(u_{\lambda}^{(k)})-(u_{\lambda}^{(k)})^{-\gamma} -\lambda u_{\lambda}^{(k)}\|_{L^{q}(\vartheta_1)} +\|u_{\lambda}^{(k)}\|_{L^{q}(\vartheta_1)}), \end{align*} which implies that $\{u_{\lambda}^{(k)}|\,k\in N_{+}\}$ is bounded in $W^{2,q}_{\rm loc}(\Omega)$. Therefore $u_{\lambda}^{(k)}\to u_{\lambda}$ weakly in $W^{2,q}_{\rm loc}(\Omega)$. Choose $\alpha\in(0,1)$ and $q>N(1-\alpha)^{-1}$. If follows from the Sobolev embedding theorems that $\{u_{\lambda}^{(k)}\}$ is compact in $C^{1,\alpha}_{\rm loc}(\Omega)$. Thus we have $u_{\lambda}\in W^{2,p}_{\rm loc}(\Omega)$. The $L^{q}$ regularity theory for $\Delta$ now implies $u_{\lambda}\in W^{3,q}_{\rm loc}(\Omega)$ and hence $u_{\lambda}\in C^{2,\alpha}_{\rm loc}(\Omega)\subset C^{2}(\Omega)$. Notice that Lemma 2.2 ensures that $u_{\lambda}^{(k)}(x)$ is a solution of \eqref{Plk}, so $$ -\Delta u_{\lambda}^{(k)}+f(u_{\lambda}^{(k)})-(u_{\lambda}^{(k)})^{-\gamma} =\lambda u_{\lambda}^{(k)}\quad \text{in } \Omega. $$ In conjunction with the results above, let $k\to\infty$, therefore $$ -\Delta u_{\lambda}+f(u_{\lambda})-u_{\lambda}^{-\gamma} =\lambda u_{\lambda} \quad \text{in } \Omega. $$ Consequently, \eqref{e1.1} has at least one solution $u_{\lambda}\in C(\bar{\Omega})\cap C^{2,\beta}(\Omega)$ for $\lambda>\lambda_1$. Furthermore, since $\lim_{k\to\infty}u_{\lambda}^{(k)}(x)=u_{\lambda}(x)$ and $$ h_{k}G^{-1}(\lambda-\lambda_1)(\phi_1(x)+\delta_{k}) =\underline{u_{\lambda}^{(k)}}(x)\leq u_{\lambda}^{(k)}(x),\quad \text{in }\Omega, $$ $G^{-1}(\lambda-\lambda_1)>0$, $\delta_{k}=1/k\to0,h_{k}=1/(\delta_{k}+1)\to1$ as $k\to\infty$, so there exist a constant $C>0$ such that $C\phi_1\leq u_{\lambda}$ in $\Omega$. \smallskip (ii) (Uniqueness) If $0<\gamma<1$, we put $$ h(s)=\lambda s-f(s)+s^{-\gamma},\quad s>0, $$ hence $s^{-1}h(s)$ is strictly decreasing for $s>0$. Assume that $v(x)$ is another solution of \eqref{e1.1}. Then we argue by contradiction. Notice that $$ \Delta u+h(u)=0,\quad \Delta v+h(v)=0, $$ and $u, v>0$ in $\Omega$, $u=v$ on $\partial\Omega$. Since $C\phi_1(x)\leq u_{\lambda}(x)$, it is easy to see that $\Delta u\in L^{1}(\Omega)$ by Lemma 2.3. If $u(x)=v(x)$ is not true, we can assume that $u(x)>v(x)$, then there exist $\varepsilon_0,\delta_0>0$, and a ball $B\Subset\Omega$ such that \begin{gather*} u(x)-v(x)>\varepsilon_0, \quad x\in B, \\ \int_{B}uv(\frac{h(v)}{v}-\frac{h(u)}{u})dx>\delta_0. \end{gather*} Let $$ M=\max\{1,\|\Delta u\|_{L^{1}(\Omega)}\},\quad \varepsilon =\min\{1,\varepsilon_0,\frac{\delta_0}{4M}\}, $$ and $\theta$ be a smooth function on $R$, such that $\theta(t)=0$ if $t\leq \frac{1}{2}$; $\theta(t)=1$ if $t\geq1$; $\theta(t)\in(0,1)$ if $t\in(\frac{1}{2},1)$, $\theta'(t)\geq0$ for $t\in\mathbb{R}$. Then for $\varepsilon>0$, define the function $\theta_{\varepsilon}(t)$ by $$ \theta_{\varepsilon}(t)=\theta(\frac{t}{\varepsilon}), \quad t\in\mathbb{R}. $$ It follows from $\theta_{\varepsilon}(t)\geq0$ for $t\in\mathbb{R}$ that $$ (v\Delta u-u\Delta v)\theta_{\varepsilon}(u-v) =uv(\frac{h(v)}{v}-\frac{h(u)}{u})\theta_{\varepsilon}(u-v) \quad \text{in}\; \Omega. $$ On the other hand, by the continuity of $u,v$ and $\theta_{\varepsilon}$, and the fact that $u=v$ on $\partial\Omega$. It is easy to see that there exist a subdomain $\hat{\Omega}$ such that $B\subset\hat{\Omega}\Subset \Omega$ satisfying that $u(x)-v(x)<\frac{\varepsilon}{2}$ for all $x\in\Omega\backslash \hat{\Omega}$. Then $$ \int_{\hat{\Omega}}(v\Delta u-u\Delta v)\theta_{\varepsilon}(u-v)dx =\int_{\hat{\Omega}}uv(\frac{h(v)}{v}-\frac{h(u)}{u})\theta_{\varepsilon}(u-v)dx. $$ Denote $$ \Theta_{\varepsilon}(t)=\int_0^{t}s \theta'_{\varepsilon}(s)ds,\quad t\in\mathbb{R}\,. $$ It is easy to verify that $0\leq\Theta_{\varepsilon}(t)\leq2\varepsilon$ for $t\in\mathbb{R}$, and $\Theta_{\varepsilon}(t)=0$ for $t<\frac{\varepsilon}{2}$. Therefore \begin{align*} &\int_{\hat{\Omega}}(v\Delta u-u\Delta v)\theta_{\varepsilon}(u-v)dx \\ &=\int_{\partial\hat\Omega}v\theta_{\varepsilon}(u-v) \frac{\partial u}{\partial n}ds -\int_{\hat{\Omega}}(\nabla u\cdot\nabla v)\theta_{\varepsilon}(u-v)dx \\ &\quad -\int_{\hat{\Omega}}v\nabla u\theta'_{\varepsilon}(u-v) (\nabla u-\nabla v)dx-\int_{\partial\hat\Omega}u\theta_{\varepsilon}(u-v) \frac{\partial v}{\partial n}ds\\ &\quad +\int_{\hat{\Omega}}(\nabla v\cdot\nabla u)\theta_{\varepsilon}(u-v)dx +\int_{\hat{\Omega}}u\nabla v\theta'_{\varepsilon}(u-v)(\nabla u-\nabla v)dx\\ &=\int_{\hat{\Omega}}u\theta'_{\varepsilon}(u-v)(\nabla v-\nabla u) (\nabla u-\nabla v)dx +\int_{\hat{\Omega}}(u-v)\theta'_{\varepsilon}(u-v) \nabla u(\nabla u-\nabla v)dx\\ &\leq\int_{\hat{\Omega}}\nabla u\nabla(\Theta'_{\varepsilon}(u-v))dx \\ &=\int_{\partial\hat{\Omega}}\Theta_{\varepsilon}(u-v) \frac{\partial u}{\partial n}ds-\int_{\hat{\Omega}} \Delta u\Theta_{\varepsilon}(u-v)dx\\ &\leq 2\varepsilon\int_{\hat{\Omega}}|\Delta u|dx \\ &\leq2\varepsilon M<\frac{\delta_0}{2}. \end{align*} However, \begin{align*} \int_{\hat{\Omega}}uv(\frac{h(v)}{v}-\frac{h(u)}{u}) \theta_{\varepsilon}(u-v)dx &\geq\int_{B}uv(\frac{h(v)}{v} -\frac{h(u)}{u})\theta_{\varepsilon}(u-v)dx\\ &=\int_{B}uv(\frac{h(v)}{v}-\frac{h(u)}{u})dx >\delta_0, \end{align*} which is a contradiction. Thus the uniqueness is proved. \end{proof} Our method to prove the uniqueness of the solution is similar to and motivated by the proof of Shi and Yao \cite[Lemma 2.3]{s2}. \section{The boundary behavior of the solution to \eqref{e1.1}} \begin{theorem} \label{thm3.1} If $f(u)$ satisfies {\rm (A1)--(A3)} and $0<\gamma<1$, then the solution $u_{\lambda}$ of \eqref{e1.1} is strictly increasing with respect to $\lambda$. Furthermore, there exist two positive constants $c_1, c_{2}>0$ depending on $\lambda$ such that $c_1d(x)\leq u_{\lambda}(x)\leq c_{2}d(x)$ in $\Omega$. \end{theorem} \begin{proof} (i) (Dependence on $\lambda$) We assume $0<\lambda_1<\lambda_{2}$, and $u_{\lambda_1}$, $u_{\lambda_{2}}$ are corresponding unique solution to $\eqref{e1.1}$. Since $C\phi_1(x)\leq u_{\lambda}(x)$, it is easy to see that $\Delta u_{\lambda}\in L^{1}(\Omega)$ by Lemma \ref{lem2.3}. Thus, \begin{align*} 0&=\Delta u_{\lambda_{2}}-f(u_{\lambda_{2}}) +u_{\lambda_{2}}^{-\gamma}+\lambda_{2}u_{\lambda_{2}}\\ &=\Delta u_{\lambda_1}-f(u_{\lambda_1})+u_{\lambda_1}^{-\gamma} +\lambda_1u_{\lambda_1}\\ &<\Delta u_{\lambda_1}-f(u_{\lambda_1})+u_{\lambda_1}^{-\gamma} +\lambda_{2}u_{\lambda_1} \end{align*} for $x\in\Omega$ and $u_{\lambda_1}(x)=u_{\lambda_{2}}(x)$ on $\partial\Omega$. Therefore, similar to the proof of Theorem \ref{thm2.1} (ii), $$ u_{\lambda_1}(x)\leq u_{\lambda_{2}}(x),\quad x\in\bar{\Omega}. $$ Moreover, by the maximum principle, $$ u_{\lambda_1}(x)< u_{\lambda_{2}}(x),\quad x\in\Omega. $$ So $u_{\lambda}$ is increasing with respect to $\lambda$. \smallskip (ii) (Bounds for the solution) Fix $\lambda>0$, let $u_{\lambda}$ be the unique solution of \eqref{e1.1}. There exists a unique nonnegative solution $\xi\in C^{2,\beta}(\bar{\Omega})$ of \begin{gather*} -\Delta\xi=1 \quad \text{in } \Omega,\\ \xi=0 \quad \text{on }\partial\Omega. \end{gather*} By the weak maximum principle (see \cite{g2}), $\xi>0$ in $\Omega$. Put $z(x)=c\xi(x)$. Consider that we can find $\check{c}>0$ small enough such that $$ \lambda z(x)+(z(x))^{-\gamma} \geq \lambda\check{ c}\|\xi\|_{\infty}+(\check{c}\|\xi\|_{\infty})^{-\gamma}, $$ and $\hat{c}>0$ small enough such that $$ \hat{c}[\frac{-f(\hat{c}\|\xi\|_{\infty}) +(\hat{c}\|\xi\|_{\infty})^{-\gamma}}{2\hat{c}}-1] + \hat{c}\|\xi\|_{\infty}[\frac{-f(\hat{c}\|\xi\|_{\infty}) +(\hat{c}\|\xi\|_{\infty})^{-\gamma}}{2\hat{c}\|\xi\|_{\infty}}+\lambda]\geq0\,. $$ Select $00$ small enough. Since $\xi\in C^{2,\beta}(\bar{\Omega})$, $\xi>0$ in $\Omega$, and $\xi=0$ on $\partial\Omega$, by Gilbarg and Trudinger \cite[Lemma 3.4]{g2}, $$ \frac{\partial\xi}{\partial\nu}(y)<0, \quad\forall y\in\partial\Omega. $$ Therefore, there exist a positive constant $c_0$ such that $$ \frac{\partial\xi}{\partial\nu}(y) =\lim_{x\in\Omega,x\to y}\frac{\xi(y)-\xi(x)}{|x-y|}\leq -c_0,\quad \forall y\in\partial\Omega. $$ So for each $y\in\Omega$, there exist $r_{y}>0$, such that \begin{equation} \frac{\xi(x)}{|x-y|}\geq\frac{c_0}{2}, \quad\forall x\in B_{r_{y}}(y)\cap\Omega. \label{e3.1} \end{equation} Using the compactness of $\partial\Omega$, we can find a finite number $k$ of balls $B_{ry_{i}}(y_{i})$ such that $$ \partial\Omega\subset\cup_{i=1}^{k}B_{ry_{i}}(y_{i}). $$ Moreover, assume that for small $d_0>0$, $$ \{x\in\Omega:d(x)0$ in $\Omega$, shows that for some constant $\tilde{c}>0$, $$ \xi(x)\geq \tilde{c}d(x),\quad \forall x\in \Omega. $$ Thus, $z(x)\geq c_1d(x)$ in $\Omega$ for some constant $c_1>0$ follows by the definition of $z$. Since $$ \Delta u_{\lambda}-f(u_{\lambda})+u_{\lambda}^{-\gamma} +\lambda u_{\lambda}=0\leq \Delta z-f(z)+z^{-\gamma}+\lambda z, $$ and $u_{\lambda},z>0$ in $\Omega$, $u_{\lambda}=z$ on $\partial\Omega$, $\Delta z\in L^{1}(\Omega)$. It follows that $u_{\lambda}\geq z$ in $\bar{\Omega}$. Therefore, from the above proof, $c_1d(x)\leq u_{\lambda}(x)$ for all $x\in\Omega$, where $c_1$ is a positive constant. Next, we prove that $u_{\lambda}(x)\leq c_{2}d(x)$ for some constant $c_{2}>0$. Our method is similar to that by Gui and Lin \cite{g3}. Using the smoothness of $\partial\Omega$, we can find $\delta\in(0,1)$ such that for all $$ x_0\in \Omega_{\delta}:=\{x\in\Omega; d(x)\leq\delta\}, $$ there exists a $y\in\mathbb{R}^{N}\setminus\bar{\Omega}$, with $d(y,\partial\Omega)=\delta$, and $d(x_0)=|x_0-y|-\delta$. Let $K>1$ be such that $\text{diam}(\Omega)<(K-1)\delta$ and let $\omega$ be the unique solution of the Dirichlet problem \begin{gather*} -\Delta\omega=\lambda\omega-f(\omega)+\omega^{-\gamma} \quad \text{in } B_{K}(0)\setminus \overline{B_1}(0),\\ \omega>0 \quad \text{in } B_{K}(0)\setminus \overline{B_1}(0),\\ \omega=0 \quad \text{on }\partial(B_{K}(0)\setminus \overline{B_1}(0)), \end{gather*} where $B_{r}(0)$ is the open ball in $\mathbb{R}^{N}$ of radius $r$ and centered at the origin. By uniqueness, $\omega$ is radially symmetric. Hence, $\omega(x)=\tilde{\omega}(|x|)$ and \begin{equation} \begin{gathered} \tilde{\omega}''+\frac{N-1}{r}\tilde{\omega}' +\lambda\tilde{\omega}-f(\tilde{\omega})+\tilde{\omega}^{-\gamma} =0 \quad \text{for } r\in(1,K),\\ \tilde{\omega}>0 \quad\text{in } (1,K),\\ \tilde{\omega}(1)=\tilde{\omega}(K)=0. \end{gathered} \label{e3.2} \end{equation} Integrating in \eqref{e3.2} yields \begin{align*} \tilde{\omega}'(t) &=\tilde{\omega}'(a)a^{N-1}t^{1-N}-t^{1-N}\int_{a}^{t}r^{N-1} [\lambda\tilde{\omega}(r) -f(\tilde{\omega}(r))+(\tilde{\omega}(r))^{-\gamma}]dr\\ &=\tilde{\omega}'(b)b^{N-1}t^{1-N}+t^{1-N}\int_{t}^{b}r^{N-1} [\lambda\tilde{\omega}(r)-f(\tilde{\omega}(r)) +(\tilde{\omega}(r))^{-\gamma}]dr, \end{align*} where $1\max\{ 1,\delta^{2}\}$, then \begin{align*} & \Delta v+\lambda v-f(v)+v^{-\gamma}\\ &\leq \frac{c}{\delta^{2}}(\tilde{\omega}''(r) +\frac{N-1}{r}\tilde{\omega}'(r))+\lambda(c\tilde{\omega}(r)) -f(c\tilde{\omega}(r))+(c\tilde{\omega}(r))^{-\gamma}, \end{align*} where $$ r=\frac{|x-y_0|}{\delta}\in(1,K). $$ Using assumption (A2) we obtain $$ \lambda(c\tilde{\omega})-f(c\tilde{\omega})+(c\tilde{\omega})^{-\gamma}\\ \leq c(\lambda\tilde{\omega}-f(\tilde{\omega})+(\tilde{\omega})^{-\gamma}) \quad \text{in }(1,K). $$ The above relation leads us to \begin{align*} &\Delta v+\lambda v-f(v)+v^{-\gamma}\\ &\leq \frac{c}{\delta^{2}}(\tilde{\omega}'' + \frac{N-1}{r}\tilde{\omega}'+\lambda\tilde{\omega}-f(\tilde{\omega}) +\tilde{\omega}^{-\gamma})=0. \end{align*} Since $\Delta u_{\lambda}\in L^{1}(\Omega)$, then $u_{\lambda}\leq v$ in $\Omega$. This combined with \eqref{e3.3} yields $$ u_{\lambda}(x_0)\leq v(x_0) \leq C\min \{ K-\frac{|x_0-y_0|}{\delta},\frac{|x_0-y_0|}{\delta}-1\} \leq\frac{C}{\delta}d(x_0). $$ Hence $u_{\lambda}\leq(C\setminus \delta)d(x)$ in $\Omega_{\delta}$ and the last inequality follows. \end{proof} \section{Asymptotic behavior of the solution} In this section, we consider the asymptotic behavior of the positive solution of \eqref{e1.1} under the assumption that $f(u)=u^{p+1},p>0$, which satisfy (A1)--(A3). Thus, \begin{equation} \begin{gathered} -\Delta u+u^{p+1}-u^{-\gamma} =\lambda u \quad \text{in } \Omega,\\ u>0 \quad\text{in } \Omega,\\ u=0 \quad \text{on } \partial\Omega. \end{gathered}\label{e4.1} \end{equation} Notice that the function $g(u)$ defined by \begin{equation} g(u)=u^{-(\gamma+1)}-u^{p},\quad u>0, \label{e4.2} \end{equation} is continuous. Thus $ \lim_{u\to+\infty}g(u)=-\infty$. In terms of $g(u)$ problem \eqref{e4.1} can be written as $$ -\Delta u=(\lambda+g(u))u. $$ In the next two theorems we collect some general features and estimate the positive solutions of \eqref{e4.1} for $\lambda$ large. \begin{theorem} \label{thm4.1} The following assertions hold \begin{itemize} \item[(i)] $u_{\lambda}\leq c_{\lambda}$ for any positive solution $u_{\lambda}$ of \eqref{e4.1}, where $c_{\lambda}>0$ is the largest real number such that \begin{equation} \lambda+g(c_{\lambda})=0,\label{e4.3} \end{equation} and $g(u)$ is the function defined by \eqref{e4.2}. Moreover, \begin{equation} \lim_{\lambda\to\infty}\frac{c_{\lambda}}{\lambda^{1/p}}=1.\label{e4.4} \end{equation} \item[(ii)] Given $\varepsilon>0$ arbitrary, there exists $\lambda(\varepsilon)>\sigma_1^{\Omega}$ such that \begin{equation} |\frac{1}{\lambda}\frac{1}{u_{\lambda}^{\gamma+1}}|\leq\varepsilon\label{e4.5} \end{equation} for all $\lambda\geq\lambda(\varepsilon)$ on any compact subsets of $\Omega$. \end{itemize} \end{theorem} \begin{proof} (i) Assume that \eqref{e4.1} has a positive solution and let $x_0\in\Omega$ be the point where $u_{\lambda}$ reaches its maximum. Obviously, $-\Delta u_{\lambda}(x_0)\geq0$, and $$ \lambda+g(u_{\lambda}(x_0))\geq0. $$ Consider that $\lambda+g(u)$ is strictly decreasing for $u>0$ and $\lambda+g(c_{\lambda})=0$. Then, any positive solution $u_{\lambda}$ of \eqref{e4.1} satisfies $u_{\lambda}(x_0)\leq c_{\lambda}$, where $x_0$ is the point at which $u_{\lambda}$ reaches its maximum, hence $u_{\lambda}\leq c_{\lambda}$. As $\lim_{u\to+\infty}g(u)=-\infty$, we have $\lim_{\lambda\to+\infty}c_{\lambda}=+\infty$. From \eqref{e4.2} and \eqref{e4.3} it follows easily that $$ \frac{\lambda^{1/p}}{c_{\lambda}}=[1-\frac{1}{c_{\lambda}^{\gamma+p+1}}]^{1/p}, $$ and since $c_{\lambda}\to\infty$ as $\lambda\to\infty$, one has $$ \lim_{\lambda\to\infty}\frac{1}{c_{\lambda}^{\gamma+p+1}}=0 \quad\text{and}\quad \lim_{\lambda\to\infty}\frac{\lambda^{1/p}}{c_{\lambda}}=1. $$ Hence \eqref{e4.4} holds. \smallskip (ii) Since $G^{-1}(\lambda-\lambda_1)\phi_1(x)0$. There exists $\lambda_1(\varepsilon)$, if $\lambda\geq\lambda_1(\varepsilon)$ such that $$ |\frac{1}{u^{\gamma+p+1}}|\leq\frac{\varepsilon}{3}. $$ As $\lim_{\lambda\to\infty}\frac{c_{\lambda}^{p}}{\lambda}=1$, there exists $\lambda_{2}(\varepsilon)>0$, if $\lambda\geq\lambda_{2}(\varepsilon)$ such that $$ \frac{c_{\lambda}^{p}}{\lambda}\leq\frac{3}{2}. $$ Set $$ \lambda(\varepsilon)=\max\{\lambda_1(\varepsilon),\lambda_{2}(\varepsilon)\}. $$ Let $\lambda\geq\lambda(\varepsilon)$ and assume that \eqref{e4.1} has a positive solution $u_{\lambda}$. Then $$ |\frac{1}{\lambda}\frac{1}{u_{\lambda}(x)^{\gamma+1}}| =\Big\{\frac{u_{\lambda}(x)}{c_{\lambda}}\Big\}^{p} \frac{c_{\lambda}^{p}}{\lambda}|\frac{1}{u_{\lambda}(x)^{\gamma+p+1}}| \leq\frac{3}{2}\frac{\varepsilon}{3}=\frac{\varepsilon}{2} $$ because $u_{\lambda}\leq c_{\lambda}$. Thus, \eqref{e4.5} holds. \end{proof} Note that $\theta_{\lambda, m}$ is the unique positive solution of the problem \begin{gather*} -\frac{1}{\lambda}\Delta u=mu-u^{p+1} \quad \text{in } \Omega,\\ u=0 \quad \text{on }\partial\Omega. \end{gather*} \begin{theorem} \label{thm4.2} For each $\varepsilon>0$ arbitrary, there exists $\lambda(\varepsilon)>\sigma_1^{\Omega}$ such that \begin{equation} \lambda^{1/p}\theta_{\lambda,1-\varepsilon}\leq u_{\lambda} \leq \lambda^{1/p}\theta_{\lambda,1+\varepsilon}\label{e4.6} \end{equation} for all $\lambda\geq\lambda(\varepsilon)$ on any compact subsets of $\Omega$. In particular, \begin{equation} \lim_{\lambda\to\infty}\frac{u_{\lambda}}{\lambda^{1/p}}=1\label{e4.7} \end{equation} uniformly on any compact subsets of $\Omega$. \end{theorem} \begin{proof} The charge of variable $u=\lambda^{1/p}v$ transforms \eqref{e4.1} into \begin{equation} \begin{gathered} -\frac{1}{\lambda}\Delta v=v+\frac{1}{\lambda^{(\gamma+p+1)/p}v^{\gamma}}-v^{p+1} \quad \text{in } \Omega,\\ v>0 \quad\text{in }\Omega,\\ v=0\quad\text{on }\partial\Omega, \end{gathered}\label{e4.8} \end{equation} where $p>0$, $\gamma>0$ and $\lambda>0$ is a real parameter. By Theorem \ref{thm2.1} (see \cite{f1}), to prove this theorem it is sufficient to show that $$ \theta_{\lambda,1-\varepsilon}\leq v_{\lambda}\leq\theta_{\lambda,1+\varepsilon} $$ for all $\lambda\geq\lambda(\varepsilon)$ on any compact subsets of $\Omega$. Fixed $\varepsilon>0$, we first show that there exists $\lambda_1(\varepsilon)>\sigma_1^{\Omega}$ such that $\theta_{\lambda,1-\varepsilon}\leq v_{\lambda}$ for all $\lambda\geq\lambda_1(\varepsilon)$ on any compact subsets of $\Omega$. Let $v_{\lambda}$ be a positive solution of \eqref{e4.8}. If $\theta_{\lambda,1-\varepsilon}=v_{\lambda}$ for $\lambda$ large we have concluded. If $\theta_{\lambda,1-\varepsilon}\neq v_{\lambda}$, then $$ \frac{v_{\lambda}^{p+1}-\theta_{\lambda,1-\varepsilon}^{p+1}}{v_{\lambda} -\theta_{\lambda,1-\varepsilon}} =\theta_{\lambda,1-\varepsilon}^{p}+Q(x), $$ with $Q(x)>0$ for some $x\in\Omega$ and hence $$ \sigma_1[-\frac{1}{\lambda}\Delta-1+\varepsilon +\frac{v_{\lambda}^{p+1}-\theta_{\lambda,1-\varepsilon}^{p+1}}{v_{\lambda}- \theta_{\lambda,1-\varepsilon}}]>\sigma_1[-\frac{1}{\lambda} \Delta-1+\varepsilon+\theta_{\lambda,1-\varepsilon}^{p}]. $$ By the definition of $\theta_{\lambda,1-\varepsilon}$, we find that $$ \sigma_1[-\frac{1}{\lambda}\Delta-1+\varepsilon +\theta_{\lambda,1-\varepsilon}^{p}]=0. $$ Thus, $$ \sigma_1[-\frac{1}{\lambda}\Delta-1+\varepsilon+\frac{v_{\lambda}^{p+1}- \theta_{\lambda,1-\varepsilon}^{p+1}}{v_{\lambda}-\theta_{\lambda,1-\varepsilon}}]>0. $$ On the other hand, after some straightforward manipulations it follows from \eqref{e4.8} that \begin{equation} \big[-\frac{1}{\lambda}\Delta-1+\varepsilon+\frac{v_{\lambda}^{p+1}- \theta_{\lambda,1-\varepsilon}^{p+1}}{v_{\lambda}-\theta_{\lambda,1-\varepsilon}} \big](v_{\lambda}-\theta_{\lambda,1-\varepsilon}) =\big[\varepsilon+\frac{1}{\lambda}\frac{1}{(\lambda^{1/p}v_{\lambda})^{\gamma+1}} \big]v_{\lambda}.\label{e4.9} \end{equation} Moreover, it follows from \eqref{e4.5} that there exists $\lambda_1(\varepsilon)>\sigma_1^{\Omega}$ such that $$ \varepsilon+\frac{1}{\lambda}\frac{1}{(\lambda^{1/p}v_{\lambda})^{\gamma+1}}>0 $$ for all $\lambda\geq\lambda_1(\varepsilon)$ on any compact subsets of $\Omega$. Therefore, applying the maximum principle to \eqref{e4.9} we find that $\theta_{\lambda,1-\varepsilon}\leq v_{\lambda}$ for all $\lambda\geq\lambda_1(\varepsilon)$ and any positive solution $v_{\lambda}$ of \eqref{e4.8} on any compact subsets of $\Omega$ (see \cite{p1,w1}). We now prove that there exists $\lambda_{2}(\varepsilon)>\sigma_1^{\Omega}$ such that $v_{\lambda}\leq \theta_{\lambda,1+\varepsilon}$ for all $\lambda\geq\lambda_{2}(\varepsilon)$ on any compact subsets of $\Omega$. Let $v_{\lambda}$ be a positive solution of \eqref{e4.8}. If $\theta_{\lambda,1+\varepsilon}=v_{\lambda}$ for $\lambda$ large we have concluded. If $\theta_{\lambda,1+\varepsilon}\neq v_{\lambda}$ for $\lambda$, then $$ \frac{\theta_{\lambda,1+\varepsilon}^{p+1} -v_{\lambda}^{p+1}}{\theta_{\lambda,1+\varepsilon}-v_{\lambda}} =\theta_{\lambda,1+\varepsilon}^{p}+\hat{Q}(x), $$ with $\hat{Q}(x)>0$ for some $x\in \Omega$. Thus, arguing as above we find that $$ \sigma_1\big[-\frac{1}{\lambda}\Delta-1-\varepsilon +\frac{\theta_{\lambda,1+\varepsilon}^{p+1} -v_{\lambda}^{p+1}}{\theta_{\lambda,1+\varepsilon}-v_{\lambda}}\big] >\sigma_1\big[-\frac{1}{\lambda}\Delta-1-\varepsilon +\theta_{\lambda,1+\varepsilon}^{p}\big]=0. $$ On the other hand, after some straightforward manipulations it follows from \eqref{e4.8} that \begin{equation} \big[-\frac{1}{\lambda}\Delta-1-\varepsilon +\frac{\theta_{\lambda,1+\varepsilon}^{p+1} -v_{\lambda}^{p+1}}{\theta_{\lambda,1+\varepsilon}-v_{\lambda}}\big] (\theta_{\lambda,1+\varepsilon}-v_{\lambda}) =\big[\varepsilon-\frac{1}{\lambda}\frac{1}{(\lambda^{1/p}v_{\lambda})^{\gamma+1}} \big]v_{\lambda}.\label{e4.10} \end{equation} Moreover, it follows from \eqref{e4.5} that there exists $\lambda_{2}(\varepsilon)>\sigma_1^{\Omega}$ such that $$ \varepsilon-\frac{1}{\lambda}\frac{1}{(\lambda^{1/p}v_{\lambda})^{\gamma+1}}>0 $$ for all $\lambda\geq\lambda_{2}(\varepsilon)$ on any compact subsets of $\Omega$. Therefore, applying the maximum principle to \eqref{e4.10} we find that $v_{\lambda}\leq \theta_{\lambda,1+\varepsilon}$ for all $\lambda\geq\lambda_{2}(\varepsilon)$ and any positive solution $v_{\lambda}$ of \eqref{e4.8} on any compact subsets of $\Omega$ (see \cite{p1,w1}). Taking $\lambda(\varepsilon)=\max\{\lambda_1(\varepsilon), \lambda_{2}(\varepsilon)\}$, the proof of \eqref{e4.6} is completed. The rest of the proof follows from \cite[Theorem 2.1]{f1}. \end{proof} \subsection*{Acknowledgements} This research is supported by Young Award of Shandong Province (ZR2013AQ008) and the Fund of Science and Technology Plan of Shandong Province (2014GGH201010). \begin{thebibliography}{00} \bibitem{b1} H. Berestycki; \emph{Le nombre de solutions de certains probl\'{e}mes semi-lin\'{e}aires elliptiques}, J. Funct. Anal. 40 (1981), 1-29. \bibitem{c1} M. M. Coclite; \emph{On a singular nonlinear Dirichlet problem, II}, Boll. Unione Mat. Ital. Sez B(7). 5 (1991), 955-975. \bibitem{c2} M. M. Coclite, G. Palmieri; \emph{On a singular nonlinear Dirichlet problem}, Comm. Partial Differential Equations. 14 (1989), 1315-1327. \bibitem{c3} M. G. Crandall, P. H. Rabinowitz, L.Tartar; \emph{On a Dirichlet problem with a singular nonlinearity}, Comm. Partial Differential Equations. 2 (1977), 193-222. \bibitem{d1} M. Del Pino; \emph{A global estimate for the gradient in a singular elliptic boundary value problem}, Proc. Roy. Soc. Edinburgh. Sect A. 122 (1992), 341-352. \bibitem{f1} J. M. Fraile, J. L\'{o}pez-G\'{o}mez, J. C. Delis; \emph{On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems}, J. Differential. Equations. 123 (1995), 180-212. \bibitem{f2} W. Fulks, J. S. Maybee; \emph{A singular non-linear equation}, Osaka Math. J. 12 (1960), 1-19. \bibitem{g1} S. M. Gomes; \emph{On a singular nonlinear elliptic problem}, SIAM J. Math. Anal. 17 (1986), 1359-1369. \bibitem{g2} D. Gilbarg, N. S. Trudinger; \emph{Elliptic partial differential equations of second order}, second ed. Springer-Verlag, Berlin(1983). \bibitem{g3} C. Gui, F. H. Lin; \emph{Regularity of an elliptic problem with a singular nonlinearity}, Proc. Roy. Soc. Edinburgh. Sect A. 123 (1993), 1021-1029. \bibitem{h1} N. Hirano, C. Saccon, N. Shioji; \emph{Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem}, J. Differential. Equations. 245 (2008), 1997-2037. \bibitem{l1} A. C. Lazer, P. J. McKenna; \emph{On a singular nonlinear elliptic boundary-value problem}, Proc. Amer. Math. Soc. 3 (1991), 720-730. \bibitem{p1} M. H. Protter, H. F. Weinberger; \emph{Maximum principles in differential equations}, Prentice-Hall, Englewood Cliffs, NJ, 1967. \bibitem{s1} D. H. Sattinger; \emph{Monotone methods in nonlinear elliptic and parabolic boundary value problems}, Indiana University Mathematics Journal, 21 (1972), 979-1000. \bibitem{s2} J. Shi, M. Yao; \emph{On a singular nonlinear semilinear elliptic problem}, Proc. Roy. Soc. Edinburgh. Sect A. 128 (1998), 1389-1401. \bibitem{s3} T. Shibata; \emph{Precise spectral asymptotics for nonlinear Sturm-Liouville problems}, J. Differential. Equations. 180 (2002), 374-394. \bibitem{s4} T. Shibata; \emph{Three-term spectral asymptotics for nonlinear Sturm-Liouville problems}, Nonlinear. Differ. Equ. Appl. 9 (2002), 239-254. \bibitem{s5} T. Shibata; \emph{Global behavior of the branch of positive solutions for nonlinear Sturm-Liouville problems}, Annali di Matematica Pura ed Applicata. 186 (2007), 525-537. \bibitem{s6} C. A. Stuart; \emph{Existence and approximation of solutions of non-linear elliptic equations}, Math. Z. 147 (1976), 53-63. \bibitem{w1} W. Walter; \emph{A theorem on elliptic inequalities with an application to gradient bounds}, Math. Z. 200 (1989), 293-299. \bibitem{z1} Z. Zhang; \emph{On a Dirichlet problem with a singular nonlinearity}, J. Math. Anal. Appl. 194 (1995), 103-113. \bibitem{z2} Z. Zhang, J. Yu; \emph{On a singular nonlinear Dirichlet problem with a convection term}, SIAM J. Math. Anal. 32 (2000), 916-927. \end{thebibliography} \end{document}