\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 95, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/95\hfil Half-linear Euler equation] {Nonoscillation criteria and energy functional for even-order half-linear two-term \\ differential equations} \author[O. Do\v{s}l\'y, V. R\accent23u\v{z}i\v{c}ka \hfil EJDE-2016/95\hfilneg] {Ond\v{r}ej Do\v{s}l\'y, Vojt\v{e}ch R\accent23u\v{z}i\v{c}ka} \address{Ond\v{r}ej Do\v{s}l\'y \newline Department of Mathematics and Statistics, Masaryk University, Kotl\'a\v{r}sk\'a 2, CZ-611 37 Brno, Czech Republic} \email{dosly@math.muni.cz} \address{Vojt\v{e}ch R\accent23u\v{z}i\v{c}ka \newline Department of Mathematics and Statistics, Masaryk University, Kotl\'a\v{r}sk\'a 2, CZ-611 37 Brno, Czech Republic} \email{211444@mail.muni.cz} \thanks{Submitted July 27, 2015. Published April 12, 2016.} \subjclass[2010]{34C10} \keywords{Even-order half-linear differential equation; energy functional; \hfill\break\indent nonoscillation, Wirtinger inequality} \begin{abstract} We investigate oscillatory properties of even-order half-linear differential equations and conditions for negativity of the associated energy functional. First, using the relationship between positivity of the functional and nonoscillation of the investigated equation, we prove Hille-Nehari type nonoscillation criteria which extend criteria known in the linear case. In the second part of the paper, we present conditions which guarantee that the energy functional attains a negative value, i.e., it is unbounded below. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} We consider the even-order half-linear two-term differential equation \begin{equation} \label{HL} (-1)^n\bigl(t^{\alpha}\Phi(y^{(n)})\bigr)^{(n)}+c(t)\Phi(y)=0, \end{equation} where $\Phi(y)=|y|^{p-2}y$, $p>1$, is the odd power function and $\alpha\in \mathbb{R}$. If $p=2$, then \eqref{HL} reduces to the \emph{linear} even-order Sturm-Liouville differential equation \begin{equation} \label{LE} (-1)^n\bigl(t^{\alpha}y^{(n)}\bigr)^{(n)}+c(t)y=0 \end{equation} whose oscillation and spectral theory is relatively deeply developed. We refer to the books \cite{Glazman,Weidmann}, the papers \cite{D-PRSE-91,D-MN-97,D-EJQTDE,E-K-Z,Fiedler,H-L,M-Pf-APM}, and the references given therein. Equation \eqref{HL} is a particular case of the general even-order half-linear differential equation \begin{equation} \label{HLG} \sum_{k=0}^n (-1)^k \big(r_k(t)\Phi(y^{(k)})\big)^{(k)}=0 \end{equation} which, in the linear case $p=2$, takes the form \begin{equation} \label{LEG} \sum_{k=0}^n (-1)^k \big(r_k(t)y^{(k)}\big)^{(k)}=0. \end{equation} The investigation of oscillatory properties of \eqref{LEG} is based on the relationship between this equation and its quadratic energy functional \begin{equation} \label{QF2} \mathcal{F}(y;a,b)=\int_a^b \Big[\sum_{k=0}^n r_k(t)\bigl(y_k(t)\bigr)^2\Big]\,dt \end{equation} and on the fact that using the substitution \begin{equation*} x=\begin{pmatrix} y\\y'\\ \vdots\\ y^{(n-1)}\end{pmatrix},\quad u=\begin{pmatrix} \sum_{k=1}^n(-1)^{k-1}\bigl(r_ky^{(k)}\bigr)^{(k)} \\ \vdots \\-\bigl(r_ny^{(n)}\bigr)'+r_{n-1}y^{(n-1)}\\ r_ny^{(n)} \end{pmatrix} \end{equation*} equation \eqref{LEG} can be written as the linear Hamiltonian system \begin{equation} \label{LHS} x'=Ax+B(t)u,\quad u'=C(t)x-A^Tu \end{equation} with \begin{gather*} B(t)=\operatorname{diag}\big\{0,\dots,0,\frac{1}{r_n(t)}\big\},\quad C(t)=\operatorname{diag}\{r_0(t),\dots,r_{n-1}(t)\}, \\ A=A_{i,j}=\begin{cases} 1 &j=i+1,\; i=1\dots,n-1,\\ 0 & \text{elsewhere}. \end{cases} \end{gather*} In particular, using the so-called Reid Roundabout Theorem for \eqref{LHS} (see \cite[Theorem 6.3, p.~284]{Reid-book}), it is proved that $\mathcal{F}(y;T,\infty)>0$ for every $0\not\equiv y \in W^{n,2}_0[T,\infty)$ (the definition of this space is recalled later) if and only if no nontrivial solution of \eqref{LEG} has more than one zero point of multiplicity $n$ in $[T,\infty)$, i.e., there exists no pair of distinct points $t_1,t_2\in [T,\infty)$ such that \begin{equation} \label{conj-points} y^{(i)}(t_1)=0=y^{(i)}(t_2),\quad i=0,\dots,n-1. \end{equation} Following the linear case, equation \eqref{HLG} is said to be \emph{nonoscillatory} if there exists $T\in \mathbb{R}$ such that for any nontrivial solution of this equation there is no pair of distinct points in $[T,\infty)$ such that \eqref{conj-points} holds. Points $t_1,t_2$ with this property are said to be \emph{conjugate points} relative to \eqref{HLG}. Equation \eqref{HLG} can be written as a Hamiltonian type system \begin{equation} \label{LHS-1/2} x'=Ax+B(t)\Phi^{-1}(u),\quad u'=C(t)\Phi(x)-A^Tu \end{equation} with \begin{equation} \label{xu} x=\begin{pmatrix} y\\y'\\ \vdots\\y^{(n-1)}\end{pmatrix},\quad u=\begin{pmatrix} \sum_{k=1}^{n} (-1)^{k-1}\bigl(r_k\Phi(y^{(k)})\bigr)^{(k)}\\\vdots\\ -\bigl(r_n\Phi(y^{(n)})\bigr)'+ r_{n-1}\Phi(y^{(n-1)})\\ r_n\Phi(y^{(n)}) \end{pmatrix}. \end{equation} The functions $\Phi,\Phi^{-1}$ of a vector argument are defined in a natural way as \begin{equation*} \Phi(x)=\begin{pmatrix}\Phi(x_1)\\ \Phi(x_2)\\ \vdots\\ \Phi(x_n) \end{pmatrix},\quad \Phi^{-1}(u)=\begin{pmatrix}\Phi^{-1}(u_1)\\ \Phi^{-1}(u_2)\\ \vdots \\ \Phi^{-1}(u_n)\end{pmatrix} \end{equation*} for column vectors $x=(x_i)_{i=1}^n$ and $u=(u_i)_{i=1}^n$, where the scalar function $\Phi^{-1}(y)=|y|^{q-2}y$ is the inverse function of $\Phi$, i.e., $q$ can be expressed as $q=\frac{p}{p-1}$. The number $q$ is called the \textit{conjugate exponent} of $p$ and satisfies the equality $\frac{1}{p}+\frac{1}{q}=1$. However, a Roundabout type theorem for \eqref{LHS-1/2} is missing, so the theory of \eqref{LHS-1/2} and \eqref{HLG} is much less developed than in the linear case. Concerning oscillatory properties of \eqref{HL} and \eqref{HLG}, as far as we know, only the papers \cite{D-R-EJQTDE, O-R-EJQTDE} and the book \cite[Sec. 9.4]{D-R-book} deal with this problem. This article consists essentially of two parts. The first one can be regarded as a continuation of \cite{D-R-EJQTDE}. In our paper we prove Hille-Nehari nonoscillation criteria for \eqref{HL} which extend previously proved (in \cite{D-MN-97,D-O-CZMJ}) nonoscillation criteria for \eqref{LE}. The second one is devoted to the investigation of conditions which imply that the $p$-degree energy functional associated with \eqref{HL} attains a negative value. \section{Preliminary results} In our investigation, an important role is played by the test functions from certain Sobolev spaces which are defined as follows. We denote \begin{align*} W^{n,p}_0[T,\infty) =\Big\{& y \colon [T,\infty) \to \mathbb{R} : y^{(n-1)}\in\mathcal{AC}[T,\infty);\ y^{(n)}\in\mathcal{L}^p(T,\infty);\\ & \text{there exists $T_1>T$ such that $y(t) = 0$ for $t\geq T_1$}\\ &\text{and } y^{(i)}(T)=0 \text{ for } i=0,\dots,n-1 \Big\} \end{align*} and \begin{align*} W^{n,p}_0(\mathbb{R})=\Big\{& y \colon \mathbb{R} \to \mathbb{R} : y^{(n-1)}\in\mathcal{AC}(\mathbb{R});\ y^{(n)}\in\mathcal{L}^p(\mathbb{R}); \\ &\text{and there exists $T_1\in \mathbb{R}$ such that $y(t)= 0$ for } |t|\geq T_1 \Big\}. \end{align*} We use the following variational lemma which is proved e.g. in \cite[Sec. 9.4]{D-R-book}. \begin{lemma} \label{L:variational} Suppose that there exists $T\in \mathbb{R}$ such that \begin{equation} \label{EF-n} {\mathcal F}(y;T,\infty)=\int_T^\infty \Big[\sum_{k=0}^n r_{k}(t) |y^{(k)}|^p\Big]\,dt>0 \end{equation} for every nontrivial $y\in W^{n,p}_0[T,\infty)$. Then equation \eqref{HLG} is nonoscillatory, i.e., no solution of \eqref{HLG} has more than one zero point of multiplicity $n$ in $[T,\infty)$. \end{lemma} Another principal tool we use is the Wirtinger type inequality which we will apply in the following form, see \cite[Lemma 2.1.1]{D-R-book}. \begin{lemma} \label{L:0} Let $M$ be a positive continuously differentiable function for which $M'(t)\ne 0$ in $[T,\infty)$ and let $y \in W^{1,p}_0[T,\infty)$. Then \begin{equation} \label{wirt} \int_T^\infty |M'(t)||y|^p\,dt \leq p^{\,p}\int_T^\infty \frac{M^p(t)}{|M'(t)|^{p-1}}|y'|^p\,dt. \end{equation} \end{lemma} If we take $(-\infty,\infty)$ instead of $[T,\infty)$ and $W^{1,p}_0(\mathbb{R})$ instead of $W^{1,p}_0[T,\infty)$ in Lemma \ref{L:0}, then the corresponding statement also holds. The previous inequality, with $M^p(t)/|M'(t)|^{p-1}=t^{\alpha}$ and $\alpha\ne p-1$, applied to $y\in W^{1,p}_0[T,\infty),$ reduces to the inequality \begin{equation} \label{alpha-ne-p-1} \int_T^\infty t^{\alpha}|y'|^p\,dt \geq \gamma_{p,\alpha}\int_T^\infty t^{\alpha-p}|y|^p\,dt,\quad \gamma_{p,\alpha}=\Big(\frac{|p-1-\alpha|}{p}\Big)^p. \end{equation} If $\alpha=p-1$, then we have the inequality \begin{equation} \label{alpha=p-1} \int_T^\infty t^{p-1}|y'|^p\,dt \geq \gamma_p\int_T^\infty \frac{|y|^p}{t\log^p t}\,dt,\quad \gamma_p=\gamma_{p,0}=\Big(\frac{p-1}{p}\Big)^p. \end{equation} We will also use the following auxiliary inequality. \begin{lemma} \label{L:1} Let $\beta\in \mathbb{R}$ and $y\in W^{1,p}_0[T,\infty)$, then \begin{equation} \label{1} \int_T^\infty \frac{|y|^p}{t^{p\beta+1}\log^p t}\,dt\leq \frac{1}{\gamma_p}\int_T^\infty t^{p-1}\big| \big(\frac{y}{t^\beta}\big)'\big|^p\,dt. \end{equation} \end{lemma} \begin{proof} For $y\in W^{1,p}_0[T,\infty)$, we denote $z=y/t^\beta$ and by using integration by parts and the H\"older inequality we have \begin{align*} \int_T^\infty \frac{|y|^p}{t^{p\beta+1}\log^p t}\,dt &= \int_T^\infty \frac{|z|^p}{t\log^p t}\,dt \\ &= \frac{1}{1-p} \cdot \frac{|z|^p}{\log^{p-1}t}\Big|_T^\infty -\frac{p}{1-p}\int_T^\infty \frac{\Phi(z)}{t^{1/q}\log^{p-1}t} \cdot \frac{z'}{t^{-\frac{1}{q}}}\,dt \\ &\leq \frac{p}{p-1} \Big(\int_T^\infty \frac{|z|^p}{t\log^p t}\,dt\Big)^{1/q} \Big(\int_T^\infty t^{p-1}|z'|^p\,dt\Big)^{1/p} \\ &\leq \gamma_p^{-\frac{1}{q}} \big(\frac{p}{p-1}\big) \Big(\int_T^\infty t^{p-1}|z'|^p\,dt\Big)^{1/q} \Big(\int_T^\infty t^{p-1}|z'|^p\,dt\Big)^{1/p} \\ &= \frac{1}{\gamma_p} \int_T^\infty t^{p-1}\big|\big(\frac{y}{t^\beta}\big)' \big|^p\,dt, \end{align*} where between the third and the forth line of the previous computation inequality \eqref{alpha=p-1} has been used. \end{proof} The proof of the next lemma can be found e.g. in \cite{D-MN-97}. \begin{lemma} \label{L:2} Let $m\in \{0,\dots,n-1\}$, then \begin{equation*} y^{(n)}=\Big\{\frac{1}{t}\big[t^{m+1}\big(\frac{y}{t^m}\big)'\big]^{(m)} \Big\}^{(n-m-1)}. \end{equation*} \end{lemma} \section{Nonoscillation criteria} \label{S3} In this section we formulate and prove Hille-Nehari type nonoscillation criteria for \eqref{HL}. As we have pointed out in \cite{D-R-EJQTDE}, an important role in the investigation of oscillatory properties of \eqref{HL} plays the fact whether or not $ \alpha\in \{p-1,2p-1,\dots,np-1\}=:{\mathcal M}_p, $ the case $\alpha\not\in {\mathcal M}_p$ being easier than the other one. The next theorem deals with the case $\alpha\in {\mathcal M}_p$. \begin{theorem} \label{T:1} Suppose that $\alpha=jp-1$ for some $j\in\{1,\dots,n\}$ and \begin{equation} \label{2} \liminf_{t\to\infty} \log^{p-1} t \int_t^\infty c_{-}(s)s^{p(n-j)}\,ds>K \end{equation} where $c_{-}(t)=\min\{0,c(t)\}$ and \begin{equation*} K=-\frac{1}{p}\big(\frac{p-1}{p}\big)^{p-1}[(j-1)!(n-j)!]^p. \end{equation*} Then equation \eqref{HL} is nonoscillatory. \end{theorem} \begin{proof} Denote $k=\frac{np-1-\alpha}{p}=n-j\in \mathbb{N}$ and for $y\in W^{n,p}_0[T,\infty)$ denote $z=\frac{y}{t^k}$. Let $T$ be so large that the limited expression in \eqref{2} is greater than $K$ for $t\geq T$. Using Lemma \ref{L:1} (to obtain the last line from the previous one), we have \begin{align*} \int_T^\infty c(t)|y|^p\,dt &\geq \int_T^\infty c_{-}(t)|y|^p\,dt = \int_T^\infty c_{-}(t)t^{pk}\big|\big(\frac{y}{t^k}\big)\big|^p\,dt \\ &= p\int_T^\infty c_{-}(t)t^{pk}\Big(\int_T^t \Phi(z)z'\,ds \Big)dt \\ &=p\int_T^\infty \Phi(z)z'\frac{1}{\log^{p-1} t}\log^{p-1} t\int_t^\infty c_{-}(s)s^{pk}\,ds\,dt \\ &> pK\int_T^\infty \Phi(z)z'\frac{1}{\log^{p-1}t}\,dt \geq pK\int_T^\infty \frac{|\Phi(z)|}{t^{1/q}\log^{p-1}t} \cdot t^{1/q}|z'|\,dt \\ &\geq pK \Big(\int_T^\infty \frac{|y|^p}{t^{pk+1}\log^{q(p-1)}t}\,dt\Big)^{1/q} \Big(\int_T^\infty t^{\frac{p}{q}}|z'|^p\,dt\Big)^{1/p} \\ &= pK\Big(\int_T^\infty \frac{|y|^p}{t^{pk+1}\log^p t}\,dt\Big)^{1/q} \Big(\int_T^\infty t^{p-1}\big|\big(\frac{y}{t^k}\big)'\big|^p\,dt\Big)^{1/p} \\ &\geq \frac{pK}{\gamma_p^{1/q}}\int_T^\infty t^{p-1} \big|\big(\frac{y}{t^k}\big)'\big|^p\,dt \end{align*} for nontrivial $y\in W^{n,p}_0[T,\infty)$. The second line of the previous computation comes from the equality $(|z|^p)'=p\Phi(z)z'$ by integrating over $[T,t]$ and using the definition of $z$. To obtain the fifth line the H\"older inequality is used together with the equality $|\Phi(z)|^q=|z|^p$. Next we apply Lemma \ref{L:2} to $\int_T^\infty t^{\alpha}|y^{(n)}|^p\,dt$. We put $m=k$ in Lemma \ref{L:2}, i.e., $n-m-1=(n-k)-1=j-1$. Further, denote \begin{equation*} u(t)=t^{k+1}\Big(\frac{y(t)}{t^k}\Big)', \quad v(t)=\frac{1}{t}\Big[t^{k+1}\Big(\frac{y(t)}{t^k}\Big)'\Big]^{(k)} = \frac{1}{t}\left[u(t)\right]^{(n-j)}. \end{equation*} Then using repeated application of the Wirtinger inequality \eqref{alpha-ne-p-1} we have \begin{align*} \int_T^\infty t^{\alpha}|y^{(n)}|^p\,dt &= \int_T^\infty t^{jp-1}|v^{(j-1)}|^p\,dt\\ &\geq \left[(j-1)!\right]^p \int_T^\infty t^{p-1}|v|^p\,dt \\ &=[(j-1)!]^p \int_T^\infty t^{-1}|u^{(n-j)}|^p\,dt \\ &\geq [(j-1)!(n-j)!]^p\int_T^\infty t^{-1-(n-j)p}|u|^p\,dt \\ &=[(j-1)!(n-j)!]^p \int_T^\infty t^{-1-(n-j)p}t^{(n-j+1)p} \big|\big(\frac{y}{t^k}\big)'\big|^p\,dt \\ &=[(j-1)!(n-j)!]^p\int_T^\infty t^{p-1}\big|\big(\frac{y}{t^k}\big)'\big|^p\,dt \end{align*} for $y\in W^{n,p}_0[T,\infty)$. Summarizing the previous computations, \begin{align*} &\int_T^\infty \big\{t^{\alpha}|y^{(n)}|^p+c(t)|y|^p\big\}\,dt\\ &>\Big\{[(j-1)!(n-j)!]^p+\frac{pK}{\gamma_p^{1/q}}\Big\} \int_T^\infty t^{p-1}\big|\big(\frac{y}{t^k}\big)'\big|^p\,dt=0 \end{align*} for nontrivial $y\in W^{n,p}_0[T,\infty)$. This means, by Lemma \ref{L:variational}, that \eqref{HL} is nonoscillatory. \end{proof} The next example illustrates the nonoscillation criterion in Theorem \ref{T:1} and shows that the constant $K$ in \eqref{2} cannot be improved. \begin{example} \label{E:1} \rm Consider the equation \begin{equation} \label{equation1} (-1)^n\bigl( t^{jp-1}\Phi(y^{(n)})\bigr)^{(n)}+ \frac{\gamma}{t^{(n-j)p+1}\log^2 t}\Phi(y)=0 \end{equation} for some $j\in\{1,\dots,n\}$. Then \begin{equation*} \log^{p-1} t \int_t^\infty \frac{\gamma s^{(n-j)p}}{s^{(n-j)p+1}\log^p s}= \frac{\gamma}{p-1}. \end{equation*} Hence, by Theorem \ref{T:1}, equation \eqref{equation1} is nonoscillatory if $$ \gamma>-\big(\frac{p-1}{p}\big)^p[(j-1)!(n-j)!]^p. $$ In particular, if $n=1$ in \eqref{equation1}, then $j=1$ and the criterion from Theorem \ref{T:1} complies with the known result that the second order equation \begin{equation*} -\bigl(t^{p-1}\Phi(y')\bigr)'+\frac{\gamma}{t\log^p t}\Phi(y)=0 \end{equation*} is nonoscillatory if and only if $\gamma\geq -\big(\frac{p-1}{p}\big)^p$. Note also that we cannot apply Theorem \ref{T:1} if the limit in \eqref{2} equals the constant $K$ as shows the example of the second order Riemann-Weber type equation \begin{equation*} -\bigl(t^{p-1}\Phi(y')\bigr)'+\Big[-\big(\frac{p-1}{p}\big)^p \frac{1}{t\log^p t}+ \frac{\mu}{t\log^p t\log^2(\log t)}\Big]\Phi(y)=0 \end{equation*} which is nonoscillatory if $\mu\geq-\frac{1}{2}\big(\frac{p-1}{p}\big)^{p-1}$ and oscillatory in the opposite case, see \cite{E-Sch}. \end{example} The fundamental role in the proof of the next theorem is played by a nonoscillation criterion for the \emph{second order} half-linear differential equations. To formulate it, consider the pair of second order differential equations \begin{equation} \label{c} -\bigl(r(t)\Phi(x')\bigr)'+c(t)\Phi(x)=0 \end{equation} and its perturbation \begin{equation} \label{cd} -\bigl(r(t)\Phi(x')\bigr)'+[c(t)+d(t)]\Phi(x)=0, \end{equation} where $r,c,d$ are continuous functions with $r(t)>0$. The following nonoscillation criterion is proved in \cite[Theorem 3]{D-L}. \begin{proposition} \label{P:1} Suppose that \eqref{c} is nonoscillatory and possesses a positive solution $h$ satisfying \begin{itemize} \item[(i)] $h'(t)\ne 0$ for large $t$; \item[(ii)] \begin{equation*} \int^\infty \frac{dt}{r(t)h^2(t)|h'(t)|^{p-2}}=\infty; \end{equation*} \item[(iii)] There exists a finite limit \begin{equation*} \lim_{t\to\infty} r(t)h(t)\Phi(h'(t))=:L\ne 0. \end{equation*} \end{itemize} Moreover, suppose that the integral $\int^\infty d(t)h^p(t)\,dt$ is convergent. Then equation \eqref{cd} is nonoscillatory provided \begin{gather} \label{limsup} \liminf_{t\to\infty} G(t)\int_t^\infty d(s)h^p(s)\,ds>- \frac{1}{2q},\\ \label{liminf} \limsup_{t\to\infty} G(t)\int_t^\infty d(s)h^p(s)\,ds<\frac{3}{2q}, \end{gather} where $G(t)=\int^t r^{-1}(s)h^{-2}(s)|h'(s)|^{2-p}\,ds$ and $q$ is the conjugate exponent of $p$. \end{proposition} Note that the previous proposition is proved in \cite{D-L} under the assumption $h'(t)>0$, but a straightforward modification of the proof shows that it extends also to the case when $h'(t)<0$ for large $t$. The energy functional on an interval $[T,\infty)$ associated with \eqref{cd} is \begin{equation*} \int_T^\infty \left[r(t)|y'|^p +(c(t)+d(t))|y|^p\right]\,dt \end{equation*} and this functional is positive for every $0\not\equiv y\in W_0^{1,p}[T,\infty)$ if and only if \eqref{cd} is nonoscillatory and $T$ is sufficiently large, see \cite{D-R-book}. In the next theorem we use the notation \begin{equation*} % \label{gamma} \gamma_{n,p,\alpha}:=\prod_{j=1}^n \Big( \frac{|jp-1-\alpha|}{p}\Big)^p \end{equation*} and we investigate \eqref{HL} as a perturbation of the Euler type half-linear differential equation \begin{equation*} (-1)^n \left(t^\alpha\Phi(y^{(n)})\right)^{(n)}- \frac{\gamma_{n,p,\alpha}}{t^{np-\alpha}}\Phi(y)=0. \end{equation*} \begin{theorem} \label{T:2} Suppose that $\alpha \not \in \{p-1,2p-1,\dots,np-1\}$ and the integral $$ \int^\infty \left(c(t)+\frac{\gamma_{n,p,\alpha}}{ t^{\alpha-np}}\right) t^{np-1-\alpha}\,dt $$ is convergent. Equation \eqref{HL} is nonoscillatory provided \begin{gather} \label{C-1} \liminf_{t\to\infty} \log t\int_t^\infty \left[c(s)+ \frac{\gamma_{n,p,\alpha}}{s^{np-\alpha}}\right]s^{np-1-\alpha}\,ds> -\frac{p(p-1)}{2(np-1-\alpha)^2}\gamma_{n,p,\alpha},\\ \label{C-2} \limsup_{t\to\infty} \log t\int_t^\infty \left[c(s)+ \frac{\gamma_{n,p,\alpha}}{s^{np-\alpha}}\right]s^{np-1-\alpha}\,ds< \frac{3p(p-1)}{2(np-1-\alpha)^2}\gamma_{n,p,\alpha}. \end{gather} \end{theorem} \begin{proof} Denote $d_0(t):=(c(t)+\gamma_{n,p,\alpha}t^{\alpha-np})$. The energy functional on $[T,\infty)$ associated with \eqref{HL} is \begin{align*} \mathcal{F}(y)&= \int_T^\infty \big[t^\alpha |y^{(n)}|^p +c(t)|y|^p\big]\,dt\\ &=\int_T^\infty \left( t^\alpha|y^{(n)}|^p-\gamma_{n,p,\alpha}t^{\alpha-np}|y|^p\right)\,dt + \int_T^\infty d_0(t)|y|^p\,dt. \end{align*} The first term in the first integral on the previous line can be estimated using the Wirtinger inequality as follows \begin{equation*} \int_T^\infty t^{\alpha} |y^{(n)}|^p\,dt \geq \gamma_{n-1,p,\alpha}\int_T^\infty t^{\alpha-(n-1)p}|y'|^p\,dt. \end{equation*} Using this inequality, \begin{align*} \mathcal{F}(y) &=\gamma_{n-1,p,\alpha} \Big\{ \int_T^\infty \Big[ \frac{t^{\alpha}}{\gamma_{n-1,p,\alpha}}|y^{(n)}|^p +\Big( \frac{d_0(t)}{\gamma_{n-1,p,\alpha}} -\frac{\gamma_{n,p,\alpha}t^{\alpha-np}}{\gamma_{n-1,p,\alpha}} \Big)|y|^p\Big] \,dt \Big\} \\ &\geq \gamma_{n-1,p,\alpha} \Big\{ \int_T^\infty \Big[ \frac{|y'|^p}{t^{(n-1)p-\alpha}} +\Big( \frac{d_0(t)}{\gamma_{n-1,p,\alpha}} -\Big( \frac{|np-1-\alpha|}{p}\Big)^p \frac{1}{t^{np-\alpha}} \Big)|y|^p\Big]\,dt \Big\}. \end{align*} The last integral is the energy functional associated with the second order half-linear differential equation \begin{equation} \label{d} -\Big(t^{\alpha-(n-1)p}\Phi(x')\Big)'+ \Big[-\Big(\frac{|np-1-\alpha|}{p}\Big)^pt^{\alpha-np}+ \frac{d_0(t)}{\gamma_{n-1,p,\alpha}}\Big]\Phi(x)=0 \end{equation} and this functional is positive for every $0\not\equiv y\in W_0^{1,p} [T,\infty)$ if and only if \eqref{d} is nonoscillatory and $T$ is sufficiently large. Next, we apply Proposition \ref{P:1} to \eqref{d} with $$ r(t)=t^{\alpha-(n-1)p}, \quad c(t)= -\Big(\frac{|np-1-\alpha|}{p}\Big)^p t^{\alpha-np} \quad \text{and} \quad d(t)=\frac{d_0(t)}{\gamma_{n-1,p,\alpha}}. $$ The equation \begin{equation*} -\left(t^{\alpha-(n-1)p}\Phi(x')\right)'- \Big(\frac{|np-1-\alpha|}{p}\Big)^pt^{\alpha-np}\Phi(x)=0 \end{equation*} has a solution $h(t)=t^{(np-1-\alpha)/p}$ (i.e. nonoscillatory) for which $h'(t)\ne 0$ for $t>0$. By a direct computation we have \begin{gather*} r(t)h(t)\Phi(h'(t))=\Phi\Big(\frac{np-1-\alpha}{p}\Big)\ne 0, \\ r(t)h^2(t)|h'(t)|^{p-2}=\Big(\frac{|np-1-\alpha|}{p}\Big)^{p-2}t, \end{gather*} hence (ii) and (iii) of Proposition \ref{P:1} are satisfied. Moreover, \begin{equation*} G(t)=\int^t r^{-1}(s)h^{-2}(s)|h'(s)|^{2-p}\,ds = \Big(\frac{p}{|np-1-\alpha|}\Big)^{p-2}\log t. \end{equation*} Then \eqref{limsup} reads as follows (note that $q=p/(p-1)$) \begin{equation*} \liminf_{t\to\infty} \Big(\frac{p}{|np-1-\alpha|}\Big)^{2-p} \log t \int_t^\infty \frac{d_0(s)}{\gamma_{n-1,p,\alpha}}s^{np-1-\alpha}\,ds >-\frac{1}{2}\big(\frac{p-1}{p}\big) \end{equation*} and substituting for $d_0(s)$ we have \begin{align*} \liminf_{t\to\infty} \log t\int_t^\infty \left(c(s)+\frac{\gamma_{n,p,\alpha}}{s^{np-\alpha}}\right) s^{np-1-\alpha}\,ds &> -\frac{p-1}{2p}\Big(\frac{|np-1-\alpha|}{p}\Big)^{p-2}\gamma_{n-1,p,\alpha} \\ &=-\frac{p(p-1)\gamma_{n,p,\alpha}}{2(np-1-\alpha)^2}. \end{align*} Similarly, \eqref{liminf} reduces to \begin{equation*} \limsup_{t\to\infty} \log t\int_t^\infty \left(c(s)+\frac{\gamma_{n,p,\alpha}}{s^{np-\alpha}}\right) s^{np-1-\alpha}\,ds< \frac{3p(p-1)\gamma_{n,p,\alpha}}{2(np-1-\alpha)^2}. \end{equation*} Hence, if \eqref{C-1}, \eqref{C-2} hold, equation \eqref{d} is nonoscillatory and the functional \begin{equation*} \int_T^\infty \Big[ \frac{|y'|^p}{t^{(n-1)p-\alpha}} -\Big(\frac{|np-1-\alpha|}{p}\Big)^p\frac{|y|^p}{t^{np-\alpha}}+ \frac{d_0(t)}{\gamma_{n-1,p,\alpha}}|y|^p\Big]\,dt>0 \end{equation*} if $T$ is sufficiently large what we needed to prove. \end{proof} \begin{remark} \rm If $d(t)\leq 0$ in \eqref{cd}, then, of course, condition \eqref{liminf} is redundant. If $d(t)\geq 0$, then \eqref{cd} is a minorant to \eqref{c} and its nonoscillation follows from the half-linear Sturmian theory, see \cite{D-R-book}. \end{remark} \begin{corollary} \label{C:2} Consider the higher order Riemann-Weber type half-linear differential equation \begin{equation} \label{RW} (-1)^n \bigl(t^{\alpha}\Phi(y^{(n)})\bigr)^{(n)} -\Big[\frac{\gamma_{n,p,\alpha}}{t^{np-\alpha}} +\frac{\mu}{t^{np-\alpha}\log^2 t}\Big]\Phi(y)=0 \end{equation} with $\alpha\not\in {\mathcal M}_p$. Then \eqref{RW} is nonoscillatory if \begin{equation} \label{inequality-mu} \mu<\frac{p(p-1)\gamma_{n,p,\alpha}}{2(np-1-\alpha)^2}. \end{equation} \end{corollary} \begin{proof} We denote $c(t)=-[\frac{\gamma_{n,p,\alpha}}{t^{np-\alpha}} +\frac{\mu}{t^{np-\alpha}\log^2 t}]$ and we show that assumptions of Theorem~\ref{T:2} are satisfied. We have $$ \int_t^\infty \left(c(s)+\frac{\gamma_{n,p,\alpha}}{ s^{\alpha-np}}\right) s^{np-1-\alpha}\,ds = -\int_t^\infty \frac{\mu}{s\log^2 s}\,ds = -\frac{\mu }{\log t}. $$ Condition \eqref{C-2} is obvious (see proof of Theorem~\ref{T:2} and Remark~1) and condition \eqref{C-1} is reduced to the condition $$ \mu<\frac{p(p-1)\gamma_{n,p,\alpha}}{2(np-1-\alpha)^2}. $$ \end{proof} \begin{example} \rm Consider the case $n=1$ in the previous corollary. Then equation \eqref{RW} reduces to the second order Riemann-Weber type equation \begin{equation} \label{RW2} \bigl(t^\alpha \Phi(y')\bigr)'+\Big[\Big(\frac{|p-1-\alpha|}{p}\Big)^p t^{\alpha-p}+\frac{\mu}{t^{p-\alpha}\log^2 t}\Big]\Phi(y)=0. \end{equation} It is known, see \cite{D-Y}, that this equation is nonoscillatory if $$ \mu\leq \mu_{p,\alpha},\quad \mu_{p,\alpha}:=\frac{p-1}{2p} \Big(\frac{|p-1-\alpha|}{p}\Big)^{p-2} $$ and oscillatory in the opposite case. This result shows that inequality in \eqref{inequality-mu} is exact since in the case $n=1$ $$ \frac{p(p-1)\gamma_{n,p,\alpha}}{2(np-1-\alpha)^2}= \frac{p(p-1)}{2(p-1-\alpha)^2}\Big(\frac{|p-1-\alpha|}{p}\Big)^p =\mu_{p,\alpha}. $$ This result also shows that the constant in the right-hand side of inequality \eqref{C-1} cannot be improved. \end{example} \section{Negativity of the energy functional} \label{sec4} As a motivation, let us consider the second order half-linear differential equation \begin{equation} \label{HLL} -\bigl(r(t)\Phi(y')\bigr)'+c(t)\Phi(x)=0 \end{equation} with continuous functions $c,r$ and $r(t)>0$. It was proved in \cite{D-MS} that if $$ \int_{-\infty}r^{1-q}(t)\,dt=\infty=\int^\infty r^{1-q}(t)\,dt,\quad \frac{1}{p}+\frac{1}{q}=1, $$ and $$ \int_{-\infty}^{\infty} c(t)\,dt\leq 0, \quad c(t)\not\equiv 0, $$ then \eqref{HLL} is \emph{conjugate} on ${\mathbb R}$, i.e., there exists a nontrivial solution with at least two different zeros on $\mathbb{R}$. Conjugacy of \eqref{HLL} is equivalent to the existence of a nontrivial function $y\in W_0^{1,p}(\mathbb{R})$ for which the energy functional associated with \eqref{HLL} \begin{equation} {\mathcal F}(y;\mathbb{R}) =\int_{-\infty}^{\infty} \left[r(t)|y'|^p+c(t)|y|^p\right]\,dt \end{equation} attains a negative value. %and this implies that it is unbounded below. In the terminology of linear equations, see \cite{G-Z}, a differential operator with the property that there exists a function from a suitable Sobolev space for which the associated energy functional is negative is called \emph{supercritical}. Concerning the $2n$-order linear differential equation \begin{equation} \label{SL-n} (-1)^n \left(r(t)y^{(n)}\right)^{(n)}+c(t)y=0 \end{equation} a similar statement was proved first in \cite{M-Pf-PRSE} for a fourth order linear equation and later it was extended to general $2n$-order equation \eqref{SL-n} in \cite{D-PRSE-89}. This result says that if there exists an integer $m$, $0\leq m\leq n-1$, such that $$ \int_{-\infty} t^{2m}r^{-1}(t)dt=\infty = \int^{\infty} t^{2m}r^{-1}(t)dt $$ and there exists a polynomial $Q(t)=a_kt^k+\dots+a_1t+a_0$ of the degree $0\leq k\leq n-m-1$ such that $$ \int_{-\infty}^{\infty} Q^2(t)c(t)\,dt<0, $$ then \eqref{SL-n} is conjugate on $\mathbb{R}$, i.e., there exists a nontrivial solution of \eqref{SL-n} having two different zeros of multiplicity $n$ in $\mathbb{R}$. Again, this statement is equivalent to the fact that the associated energy functional $$ \int_{-\infty}^{\infty}\left[r(t)|y^{(n)}|^2+c(t)|y|^2\right]\,dt $$ attains a negative value for some $y\in W^{n,p}_0(\mathbb{R})$. In the next theorem we present a partial extension of these results to \eqref{HL} with $\alpha=0$. \begin{theorem} \label{T:conjugacy} Suppose that \begin{equation} \label{positivity} \int_{-\infty}^{\infty} c(t)\,dt<0 \end{equation} and $c(t)\leq 0$ for $t$ close to $-\infty$ and $\infty$. Then the energy functional \begin{equation} \label{QFF} {\mathcal F}_n(y;\mathbb{R})=\int_{-\infty}^{\infty} \left[|y^{(n)}|^p+ c(t)|y|^p\right]\,dt \end{equation} associated with the equation \begin{equation} \label{alpha=0} (-1)^n \bigl(\Phi(y^{(n)})\bigr)^{(n)}+c(t)\Phi(y)=0 \end{equation} attains a negative value over $W^{n,p}_0(\mathbb{R})$. \end{theorem} \begin{proof} According to \eqref{positivity}, there exist $t_10$) \begin{equation*} \Delta_n:=\begin{pmatrix} 1 & 1 & \dots & 1\\ n & (\delta+n) & \dots &(n-1)\delta +n\\ n(n-1) & (\delta\!+\!n)(\delta\!+\!n\!-\!1) &\dots &[(n\!-\!1)\delta\!+\!n][(n\!-\!1)\delta\!+\!n\!-\!1]\\ & & \vdots & \\ \prod_{l=1}^{i-1}(n\!-\!l\!+\!1) & \prod_{l=1}^{i-1}(\delta\!+\!n\!-\!l\!+\!1) & \dots &\prod_{l=1}^{i-1}[(n\!-\!1)\delta\! +\!n\!-\!l\!+\!1]\\ & & \vdots & \\ n! & (\delta\!+\!n)\cdots(\delta\!+\!2) & \dots & [(n\!-\!1)\delta\!+\!n]\cdots[(n\!-\!1)\delta\!+\!2] %\end{array}\right|. \end{pmatrix}. \end{equation*} \begin{lemma} Let $\delta>0$ and $n \in \mathbb{N}$. Then $$ \det(\Delta_n)= \delta^{\frac{n(n-1)}{2}} \prod_{k=1}^n \left(k-1\right)!. $$ \end{lemma} \begin{proof} Let $n \in \mathbb{N}$ be arbitrary but fixed in the following considerations. Denote $A:=\Delta_n$, where $A=\left( a_{i,j} \right)_{i,j=1}^n$. Hence $$ a_{i,j}=\prod_{l=1}^{i-1} \left[(j-1)\delta+n-l+1 \right]. $$ Using elementary row operations, we will find a triangular matrix with the determinant equal to that of the original matrix $A$. For this purpose, we will construct a finite sequence of square matrices $A^{[1]},\dots,A^{[n]}$ such that $A^{[1]}=( a_{i,j}^{[1]})_{i,j=1}^n=A$ and the matrix $A^{[k]} = ( a_{i,j}^{[k]} )_{i,j=1}^n$ will be obtained from the matrix $A^{[k-1]}$ by applying $n-1-(k-2)$ elementary row operations for $k=2,\dots,n$. More precisely, we obtain the matrix $A^{[k]}$ by subtracting a suitable multiple of $(i-1)$-th row of the matrix $A^{[k-1]}$ from the $i$-th row of the matrix $A^{[k-1]}$, and we repeat this for each $i \geq k$ (for $i