\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2016 (2016), No. 97, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2016 Texas State University.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2016/97\hfil Critical elliptic problems with fractional Laplacian] {Multiple solutions for critical elliptic problems with fractional Laplacian} \author[G. Lin, X. Zheng \hfil EJDE-2016/97\hfilneg] {Guowei Lin, Xiongjun Zheng} \address{Guowei Lin \newline Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China} \email{lgw2008@sina.cn} \address{Xiongjun Zheng \newline Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China} \email{xjzh1985@126.com} \thanks{Submitted January 11, 2016. Published April 14, 2016.} \subjclass[2010]{35J60, 35J61, 35J70, 35J99} \keywords{Fractional Laplacian, critical exponent, multiple solutions, category} \begin{abstract} This article is devoted to the study of the nonlocal fractional equation involving critical nonlinearities \begin{gather*} (-\Delta)^{\alpha/2} u=\lambda u+|u|^{2^{\ast}_{\alpha}-2}u \quad \text{in } \Omega,\\ u=0 \quad \text{on } \partial \Omega, \end{gather*} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$, $N \geq 2\alpha$, $\alpha\in(0,2)$, $ \lambda\in(0,\lambda_{1})$ and $2^*_{\alpha}=\frac{2N}{N-\alpha}$ is critical exponent. We show the existence of at least $\operatorname{cat}_{\Omega}(\Omega) $ nontrivial solutions for this problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} This article concerns the critical elliptic problem with the fractional Laplacian \begin{equation}\label{e1.1} \begin{gathered} (-\Delta)^{\alpha/2} u=\lambda u+|u|^{2^{\ast}_{\alpha}-2}u \quad \text{in } \Omega,\\ u=0 \quad \text{on } \partial \Omega, \end{gathered} \end{equation} where $\Omega$ is a smooth bounded domain of $\mathbb{R}^N$ with $N> \alpha$, $\alpha \in (0,2)$ is fixed and $2^{\ast}_{\alpha}=\frac{2N}{N-\alpha}$ is the critical Sobolev exponent. In a bounded domain $\Omega\subset \mathbb{R}^N$, the operator $(-\Delta)^{\alpha/2}$ can be defined as in \cite{BCPa,CT} as follows. Let $\{(\lambda_k,\varphi_k)\}^\infty_{k=1}$ be the eigenvalues and corresponding eigenfunctions of the Laplacian $-\Delta$ in $\Omega$ with zero Dirichlet boundary values on $\partial\Omega$ normalized by $\|\varphi_k\|_{L^2(\Omega)} = 1$, i.e. \[ -\Delta \varphi_k = \lambda_k \varphi_k\quad{\rm in}\ \Omega;\quad \varphi_k = 0\quad{\rm on}\ \partial\Omega. \] We define the space $H^{\alpha/2}_0(\Omega)$ by \[ H^{\alpha/2}_0(\Omega)=\{u=\sum_{k=1}^\infty u_k\varphi_k\in L^2(\Omega): \sum_{k=1}^\infty u_k^2\lambda_k^{\frac \alpha2}<\infty\}, \] which is equipped with the norm \[ \|u\|_{H^{\alpha/2}_0(\Omega)} =\Big(\sum_{k=1}^\infty u_k^2\lambda_k^{\frac \alpha2}\Big)^{\frac 12}. \] For $u\in H^{\alpha/2}_0(\Omega)$, the fractional Laplacian $(-\Delta)^{\alpha/2}$ is defined by \[ (-\Delta)^{\alpha/2}u = \sum_{k=1}^\infty u_k\lambda_k^{\alpha/2}\varphi_k. \] Problem \eqref{e1.1} is the Br\'{e}zis-Nirenberg type problem with the fractional Laplacian. Br\'{e}zis and Nirenberg \cite{BN} considered the existence of positive solutions for problem \eqref{e1.1} with $\alpha = 2$. Such a problem involves the critical Sobolev exponent $2^* = \frac {2N}{N-2}$ for $N\geq 3$, and it is well known that the Sobolev embedding $H^1_0(\Omega)\hookrightarrow L^{2^*}(\Omega)$ is not compact even if $\Omega$ is bounded. Hence, the associated functional of problem \eqref{e1.1} does not satisfy the Palais-Smale condition, and critical point theory cannot be applied directly to find solutions of the problem. However, it is found in \cite{BN} that the functional satisfies the $(PS)_c$ condition for $c\in (0, \frac 1N S^{N/2})$, where $S$ is the best Sobolev constant and $\frac 1N S^{N/2}$ is the least level at which the Palais-Smale condition fails. So a positive solution can be found if the mountain pass value corresponding to problem \eqref{e1.1} is strictly less than $\frac 1N S^{N/2}$. Problems with the fractional Laplacian have been extensively studied, see for example \cite{BCP, BCPa, CabS, CT, CDDS, CSS, CS, T, TX} and the references therein. In particular, the Br\'{e}zis-Nirenberg type problem was discussed in \cite{T} for the special case $\alpha = \frac 12$, and in \cite{BCP} for the general case, $0<\alpha<2$, where existence of one positive solution was proved. To use the idea in \cite{BN} to prove the existence of one positive solution for the fractional Laplacian, the authors in \cite{BCP, T} used the following results in \cite{CS} (see also \cite{BCPa}): for any $u\in H^\alpha_0(\Omega)$, the solution $v\in H^1_{0,L}(\mathcal{C}_\Omega)$ of the problem \begin{equation}\label{e1.2} \begin{gathered} -\operatorname{div}(y^{1-\alpha}\nabla v) = 0, \quad \text{in } \mathcal{C}_{\Omega}=\Omega\times(0,\infty),\\ v=0,\quad \text{on } \partial_L\mathcal{C}_{\Omega}=\partial\Omega\times(0,\infty),\\ v = u , \quad\text{on } \Omega\times\{0\}, \end{gathered} \end{equation} satisfies $$ -\lim_{y\to 0^+}k_\alpha y^{1-\alpha}\frac {\partial v}{\partial y} = (-\Delta)^{\alpha}u, $$ where we use $(x,y)= (x_1,\dots,x_N,y)\in \mathbb{R}^{N+1}$, and \begin{equation}\label{e1.3} H^1_{0,L}(\mathcal{C}_\Omega) = \big\{w\in L^2(\mathcal{C}_\Omega): w = 0 \text{ on } \partial_L\mathcal{C}_\Omega, \int_{\mathcal{C}_\Omega}y^{1-\alpha}|\nabla w|^2\,dx\,dy<\infty\big\}. \end{equation} Therefore, the nonlocal problem \eqref{e1.1} can be reformulated as the local problem \begin{equation}\label{e1.4} \begin{gathered} -\operatorname{div}(y^{1-\alpha}\nabla w) = 0, \quad \text{in }\mathcal{C}_{\Omega},\\ v=0, \quad \text{on } \partial_L\mathcal{C}_{\Omega},\\ \lim_{y\to 0^+}y^{1-\alpha}\frac {\partial w}{\partial \nu} = |w(x,0)|^{2^*_\alpha-2}w(x,0)+ \lambda w(x,0), \quad \text{on } \Omega\times\{0\}, \end{gathered} \end{equation} where $\frac {\partial }{\partial \nu}$ is the outward normal derivative of $\partial \mathcal{C}_{\Omega}$. Hence, critical points of the functional \begin{equation}\label{e1.5} \begin{aligned} J(w) &= \frac 12 \int_{\mathcal{C}_\Omega}y^{1-\alpha}|\nabla w|^2\,dx\,dy -\frac 1{2^*_\alpha}\int_{\Omega\times\{0\}} |w(x,0)|^{2^*_\alpha}\,dx \\ &\quad -\frac \lambda 2\int_{\Omega\times\{0\}} |w(x,0)|^2\,dx \end{aligned} \end{equation} defined on $H^1_{0,L}(\mathcal{C}_\Omega)$ correspond to solutions of \eqref{e1.4}, and the trace $u = tr\, w$ of $w$ is a solution of \eqref{e1.1}. A critical point of the functional $J(u)$ at the mountain pass level was found in \cite{BCP, T}. On the other hand, it can be shown by using the Pohozaev type identity that the problem \begin{gather*} (-\Delta)^{\alpha/2} u= |u|^{p-1}u \quad \text{ in } \Omega,\\ u=0\quad \text{on } \partial\Omega \end{gather*} has no nontrivial solution if $p+1\geq \frac{2N}{N-\alpha}$ and $\Omega$ is star-shaped, see for example \cite{BCPa} and \cite{T}. It is well-known that if $\Omega$ has a rich topology, \eqref{e1.1} with $\alpha = 2,\, \lambda = 0$ has a solution, see \cite{BC, CP, W} etc. In this paper, we assume $0<\lambda<\lambda_1$, where $\lambda_1$ is the first eigenvalue of the fractional Laplacian $(-\Delta)^{\alpha/2}$. We investigate the existence of multiple solutions of problem \eqref{e1.1}. Let $A$ be a closed subset of a topology space $X$. The category of $A$ is the least integer $n$ such that there exist $n$ closed subsets $A_1,\dots, A_n$ of $X$ satisfying $A = \cup_{j=1}^n A_j$ and $A_1,\dots, A_n$ are contractible in $X$. Our main result is as follows. \begin{theorem}\label{thm:1.1} If $\Omega$ is a smooth bounded domain of $\mathbb{R^{N}}$, $N\geq 4,\,0<\alpha<2$ and $0<\lambda<\lambda_{1}$, problem \eqref{e1.4} has at least $\operatorname{cat}_{\Omega}(\Omega)$ nontrivial solutions. Equivalently, \eqref{e1.1} possesses at least $\operatorname{cat}_{\Omega}(\Omega)$ positive solutions. \end{theorem} We say that $w \in H^1_{0,L}(\mathcal{C}_{\Omega})$ is a solution to \eqref{e1.4} if for every function $ \varphi \in H^1_{0,L}(\mathcal{C}_{\Omega})$, we have \begin{equation}\label{e1.6} k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha}\langle\nabla w , \nabla \varphi \rangle\, dx\,dy=\int_{\Omega} (\lambda w+w^{\frac{N+\alpha}{N-\alpha}})\varphi\,dx. \end{equation} We will find solutions of $J$ at energy levels below a value related to the best Sobolev constant $S_{\alpha,N}$, where \begin{equation}\label{e1.7} S_{\alpha,N}=\inf_{w\in H^1_{0,L}({\mathcal{C}_{\Omega}}),w\neq 0} \frac{k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha}|\nabla w|^2\,dx\,dy} {(\int_{\Omega}|w(x,0)|^{2^*_{\alpha}}\,dx)^{2/(2^*_{\alpha})}}, \end{equation} which is not achieved in any bounded domain and is indeed achieved in the case $\Omega=\mathbb{R}^{N+1}_{+}$. We know from \cite{BCP} that the trace $u_{\epsilon}(x)=w_{\epsilon}(x,0)$ of the family of minimizers $w_{\epsilon}$ of $S_{\alpha,N}$ takes the form \begin{equation}\label{e1.8} u(x)=u_{\epsilon}(x)=\frac{\epsilon^{\frac{N-\alpha}{2}}}{(|x|^2+\epsilon^2) ^{\frac{N-\alpha}{2}}}, \end{equation} with $\epsilon>0$. Using this property, we are able to find critical values of $J$ in a right range. In section 2, we prove the $(PS)_c$ condition and the main result is shown in section 3. \section{Palais-Smale condition} In this section, we show that the functional $J(w)$ satisfies $(PS)_c$ condition for $c$ in certain interval. By a $(PS)_c$ condition for the functional $J(w)$ we mean that a sequence $\{w_n\}\subset H^1_{0,L}(\mathcal{C}_{\Omega})$ such that $J(w_n)\to c,\, J'(w_n)\to 0$ contains a convergent subsequence. Define on the space $H^1_{0,L}(\mathcal{C}_{\Omega})$ the functionals \begin{gather*} \psi(w)=\int_{\Omega}(w^{+}(x,0))^{2^*_{\alpha}}\,dx,\\ \varphi_{\lambda}(w)=k_{\alpha}\int_{C_{\Omega}}y^{1-\alpha} |\nabla w|^2dx\,dy-\lambda \int_{\Omega}|w(x,0)|^2dx. \end{gather*} We may verify as in \cite{W} that on the manifold $$ V=\{w\in H^1_{0,L}(\mathcal{C}_{\Omega}):\psi (w)=1\}, $$ $\psi'(w)\neq 0$ for every $w\in V$. Hence, the tangent space of $V$ at $v$ is given by $$ T_{v}V :=\{w\in H^1_{0,L}(\mathcal{C}_{\Omega}): \langle \psi'(v) , w\rangle = 0 \}, $$ and the norm of the derivative of $ \varphi_{\lambda}(w)$ at $v$ restricted to $V$ is defined by $$ \|\varphi'_{\lambda}(v)\|_{\ast}=\sup_{w\in T_{v}V ,\|w\|=1} |\langle\varphi'_{\lambda}(v),w\rangle|. $$ It is well known that $$ \|\varphi_{\lambda}'(w)\|_{\ast}=\min_{\mu\in\mathbb{R}} \| \varphi'_{\lambda}(w)-\mu\psi' (w) \|. $$ A critical point $v\in V$ of $\varphi_{\lambda}$ is a point such that $\|\varphi'_{\lambda}(v)\|_{\ast} = 0$. Since $\lambda_1$ is the first eigenvalue of the fractional Laplacian $(-\Delta)^{\alpha/2}$, it can be characterized as $$ \lambda_{1}=\inf_{w\in H^1_{0,L}({C_{\Omega}}),w\neq 0} \frac{k_{\alpha}\int_{C_{\Omega}}y^{1-\alpha}|\nabla w|^2\,dx\,dy} {\int_{\Omega}|w(x,0)|^2\,dx}. $$ If $0<\lambda<\lambda_{1}$, we see that $$ \|w\|_{1} :=\Big(k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha}|\nabla w|^2 \,dx\,dy-\lambda \int_{\Omega} w^2(x,0)\,dx\Big)^{1/2} $$ is an equivalent norm on $H^1_{0,L}(\mathcal{C}_{\Omega})$. \begin{lemma}\label{lm:2.1} Any sequence $\{v_{n}\}\subset H^1_{0,L}(\mathcal{C}_{\Omega})$ such that $$ d :=\sup_{n}J(v_{n})0$ small enough such that $\overline B_{\rho} \subseteq C_{\Omega}$, we define the function $\eta(x,y)=\eta_{\rho}(x,y)=\eta_0(\frac {|(x,y)|}{\rho})$. Then $\eta w_{\epsilon}\in H_{0,L}^1(C_{\Omega})$. It is standard to establish the following estimates, see \cite{BCP} for details. \begin{lemma}\label{lm:2.3} The family $\{\eta w_{\epsilon}\}\subset H_{0,L}^1(\mathcal{C}_{\Omega})$ and its trace on ${y=0}$ satisfy \begin{equation}\label{e2.2} \|\eta w_{\epsilon}\|^2=\|w_{\epsilon}\|^2+O(\epsilon^{N-\alpha}), \end{equation} If $N>2\alpha$, \begin{equation}\label{e2.3} \|\eta w_{\epsilon}\|^2_{L^2(\Omega)}=C\epsilon^{\alpha}+O(\epsilon^{N-\alpha}), \end{equation} If $N=2\alpha$, \begin{equation}\label{e2.4} \|\eta w_{\epsilon}\|^2_{L^2(\Omega)}=C\epsilon^{\alpha} \log (\frac{1}{\epsilon})+O(\epsilon^{\alpha}) \end{equation} for $\epsilon>0$ small enough and some $C>0$. \end{lemma} \begin{lemma}\label{lm:2.4} Assume $N\geq2\alpha$, $0< \lambda<\lambda_{1}$, then \begin{equation}\label{e2.5} Q_\lambda =\inf_{w\in V}\varphi_{\lambda}(w)\frac{\rho}{2}}|u_{\epsilon}|^{2^{\ast}_{\alpha}}\,dx =\int_{\{|x|\geq\frac{\rho}{2}\}}\frac{\epsilon^{N}}{(|x|^2+\epsilon^2)^{N}}\,dx \leq\frac{N2^{N}}{\rho^{N}}\epsilon^{N}, $$ we have \begin{align*} \int_{\Omega}|\eta u_{\epsilon}|^{2^{\ast}_{\alpha}}\,dx &\geq\int_{\{|x|\leq\frac{\rho}{2}\}}|u_{\epsilon}|^{2^*_{\alpha}}dx =\|u_{\epsilon}\|^{2^*_{\alpha}}_{L^{2^*_{\alpha}}(\Omega)} -\int_{\{|x|\geq\frac{\rho}{2}\}}|u_{\epsilon}|^{2^*_{\alpha}}dx\\ &\geq\|u_{\epsilon}\|^{2^{\ast}_{\alpha}}_{L^{2^*_{\alpha}}(\Omega)}+O(\epsilon^{N}). \end{align*} By Lemma \ref{lm:2.3}, for $N>2\alpha$, we have \begin{align*} &\frac{k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha} |\nabla( \eta w_{\epsilon})|^2\,dx\,dy -\lambda\int_{\Omega}| \eta u_{\epsilon}|^2\,dx} {(\int_{\Omega}|\eta u_{\epsilon}|^{2^*_{\alpha}}\,dx)^{\frac{2}{2^*_{\alpha}}}}\\ &\leq\frac{k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha} |\nabla w_{\epsilon}|^2\,dx\,dy -\lambda C\epsilon^{\alpha}+O(\epsilon^{N-\alpha})} {\|u_{\epsilon}\|^2_{L^{2^*_{\alpha}}(\Omega)}+O(\epsilon^{N})}\\ &\leq S_{\alpha,N}-\frac{\lambda C\epsilon^{\alpha}} {\|u_{\epsilon}\|^2_{L^{2^*_{\alpha}(\Omega)}}}+O(\epsilon^{N-\alpha}) 0$. Now, let $\{w_{n}\}\subset H^1_{0,L}(\mathcal{C}_{\Omega})$ be a minimizing sequence of $Q_\lambda>0$ such that $w_{n}\geq0$ and $\|w_{n}(x,0)\|_{L^{2^*_{\alpha}}(\Omega)}=1$. The boundedness of $\{w_{n}\}$ implies that \begin{gather*} w_{n}(x,y) \rightharpoonup w(x,y)\quad \text{in } H^1_{0,L}(\mathcal{C}_{\Omega}),\\ w_{n}(x, 0) \to w(x,0)\quad \text{in } L^{q}(\Omega),\\ w_{n}(x, 0)\to w(x,0)\quad \text{a.e. in} \quad \Omega, \end{gather*} where $1\leq q\leq 2^*_{\alpha}$. Since $$ \|w_{n}\|^2 = \|w_{n}-w\|^2+\|w\|^2+o(1), $$ by the Brezis-Lieb Lemma, \begin{align*} &\|w_{n}\|^2-\lambda\|w_{n}(x,0)\|^2_{L^2(\Omega)}\\ &=\|w_{n}-w\|^2+\|w\|^2-\lambda\|w_{n}(x,0)\|^2_{L^2(\Omega)}+o(1)\\ &\geq S_{\alpha,N}\|w_{n}(x,0)-w(x,0)\|^2_{L^{2^*_{\alpha}}(\Omega)} + Q_\lambda\|w(x,0)\|^2_{L^{2^{\ast}_{\alpha}}(\Omega)}+o(1)\\ &\geq(S_{\alpha,N}-Q_\lambda)\|w_{n}(x,0)-w(x,0) \|^{2^{\ast}_{\alpha}}_{L^{2^*_{\alpha}}(\Omega)} + Q_\lambda\|w_{n}(x,0)\|^{2^{\ast}_{\alpha}}_{L^{2^{\ast}_{\alpha}}(\Omega)}+o(1)\\ &=(S_{\alpha,N}-Q_\lambda)\|w_{n}(x,0)-w(x,0) \|^{2^*_{\alpha}}_{L^{2^*_{\alpha}}(\Omega)}+ Q_\lambda+o(1). \end{align*} Hence, we obtain $$ o(1)+Q_\lambda\geq(S_{\alpha,N} -Q_\lambda)\|w_{n}(x,0)-w(x,0)\|^{2^{\ast}_{\alpha}}_{L^{2^*_{\alpha}}(\Omega)} +Q_\lambda +o(1). $$ The $S_{\alpha,N}>Q_\lambda$ implies $w_{n}(x,0)\to w(x,0)$ in $ L^{2^{\ast}_{\alpha}}(\Omega)$ and $ \|w(x,0)\|_{L^{2^{\ast}_{\alpha}}(\Omega)}=1$. This yields $$ Q_\lambda \leq\|w\|^2-\lambda\|w(x,0)\|^2_{L^2(\Omega)} \leq\lim_{n\to+\infty}(\|w_{n}\|^2-\lambda\|w_{n}(x,0)\|^2_{L^2(\Omega)}) \leq Q_\lambda; $$ that is, $w$ is a minimizer for $Q_\lambda$. \end{proof} \section{Proof of main theorem} Taking into account the concentration-compactness principle in \cite{L}, we may derive the following result, its proof can be found in \cite{BCP}. \begin{lemma}\label{lm:3.1} Suppose ${w_{n}}\rightharpoonup w$ in $H^1_{0,L}(\mathcal{C}_{\Omega})$, and the sequence $\{y^{1-\alpha}|\nabla w_{n}|^2\}$ is tight, i.e. for any $\eta>0$ there exists $\rho_0>0$ such that for all $n$, \[ \int_{\{y>\rho_0\}}\int_\Omega y^{1-\alpha}|\nabla w_{n}|^2\,dx\,dy<\eta. \] Let $u_{n}=t_{r}w_{n}$ and $u=t_{r}w$ and let $\mu$, $\nu$ be two non negative measures such that \begin{equation}\label{e3.1} y^{1-\alpha}|\nabla w_{n}|^2\to \mu \quad \text{and} \quad |u_{n}|^{2^{\ast}_{\alpha}}\to \nu \end{equation} in the sense of measures as $n\to\infty $. Then, there exist an at most countable set $I$ and points ${x_{i}}\in \Omega$ with $i\in I$ such that \begin{itemize} \item[(1)] $\nu =|u|^{2^{\ast}_{\alpha}}+\Sigma_ {k\in I} \nu_{k}\delta_{x_{k}}$, $\nu_{k} >0$, \item[(2)] $\mu =y^{1-\alpha}|\nabla w|^2+\Sigma_ {k\in I} \mu_{k}\delta_{x_{k}}$, $\mu_{k}>0$, \item[(3)] $ \mu_{k} \geq S_{\alpha,N} \nu_{k}^{\frac{2}{2^{\ast}_{\alpha}}}$. \end{itemize} \end{lemma} On the manifold $V$, we define the mapping $\beta: V\to \mathbb{R}^N$ by $$ \beta (w):=\int_{\Omega}x(w^{+}(x,0))^{2^*_{\alpha}}\,dx, $$ which has the following properties. \begin{lemma}\label{lm:3.2} Let $\{w_{n}\}\subset V$ be a sequence such that $$ \| w_{n}\|^2_{H^1_{0,L}(\mathcal{C}_{\Omega})} =\int_{\mathcal{C}_{\Omega}}k_{\alpha}y^{1-\alpha}|\nabla w_{n}|^2\,dx\,dy \to S_{\alpha,N} $$ as $n\to \infty $, then $ \operatorname{dist}(\beta(w_{n}),\Omega )\to 0$, as $n \to\infty$. \end{lemma} \begin{proof} Suppose by contradiction that $ \operatorname{dist}(\beta(w_{n}),\Omega )\not\to 0$ as $n \to\infty $. We may verify that $\{w_n\}$ is tight. By Lemma \ref{lm:3.1}, there exist sequences $\{\mu_k\}$ and $\{\nu_k\}$ such that \begin{gather}\label{e3.2} S_{\alpha,N} =\lim_{n\to\infty}\| w_{n}\|^2 =k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha}|\nabla w|^2\, dx\,dy +\Sigma_{k\in I} \mu_{k}, \\ \label{e3.3} 1=\lim_{n\to\infty}\int_{\Omega}\| u_{n}\|^2 =\int_{\Omega}|u|^{2^{\ast}_{\alpha}}\,dx+\Sigma_{k\in I} \nu_{k}. \end{gather} By the Sobolev inequality and Lemma \ref{lm:3.1}, from \eqref{e3.2} we deduce that $$ S_{\alpha,N} =\| w\|^2_{H^1_{0,L}(\mathcal{C}_{\Omega})}+\Sigma_{k\in I} \mu_{k} \geq S_{\alpha,N}\|u\|_{L^{2^*_{\alpha}}(\Omega)}^2 +S_{\alpha,N} (\Sigma_{k\in I} \nu_{k})^{\frac{2}{2^*_{\alpha}}}. $$ Hence, \begin{equation}\label{e3.4} \|u\|_{L^{2^{\ast}_{\alpha}}(\Omega)}^2+ (\Sigma_{k\in I} \nu_{k})^{\frac{2}{2^{\ast}_{\alpha}}}\leq 1 . \end{equation} Equations \eqref{e3.3} and \eqref{e3.4} imply either $\Sigma_{k\in I} \nu_{k}=0$ or $\|u\|_{L^{2^*_{\alpha}}(\Omega)}^{2^*_{\alpha}}=0$. If $\Sigma_{k\in I} \nu_{k}=0$, that is $\|u\|^{2^*_{\alpha}}_{L^{2^*_{\alpha}}}(\Omega)=1$, the lower semi-continuity of norms yields $$ S_{\alpha,N}\geq \| w\|^2_{H^1_{0,L}(\mathcal{C}_{\Omega})} =\frac{k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha}|\nabla w|^2\,dx\,dy} {(\int_{\Omega}|u|^{2^*_{\alpha}}\,dx)^{\frac{2}{2^*_{\alpha}}}}. $$ While by the Sobolev trace inequality, $$ S_{\alpha,N}\leq \frac{k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha} |\nabla w|^2\,dx\,dy} {(\int_{\Omega}|u|^{2^{\ast}_{\alpha}}\,dx)^{\frac{2}{2^*_{\alpha}}}}, $$ it then implies that $S_{\alpha,N}$ is achieved, which is a contradiction to the fact that $S_{\alpha,N}$ is not achieved unless $\mathcal{C}_{\Omega}=\mathbb{R_{+}}^{N+1}$. Thus, $\|u\|^{2^*_{\alpha}}_{L^{2^*_{\alpha}}}(\Omega)\neq 1$. Consequently, $\Sigma_{k\in I} \nu_{k}=1$ and $u = 0$. Furthermore, by the uniqueness of the extension of $u$, we have $w=0$. Now, it is standard to show that $\nu$ is concentrated at a single $x_0$ of $\bar\Omega$. So we have $$ \beta (w_{n})\to \int_{\Omega}x\, d\nu(x)=x_0\in\bar\Omega, $$ this is a contradiction. \end{proof} Since $\Omega$ is a smooth bounded domain of $\mathbb{R^{N}}$, we choose $r>0$ small enough so that $$ \Omega_{r}^{+}=\{x\in \mathbb{R^{N}}: \operatorname{dist}(x ,\Omega))< r\} \quad \text{and} \quad \Omega_{r}^{-} =\{x\in \Omega: \operatorname{dist}(x ,\partial\Omega)> r\} $$ are homotopically equivalent to $\Omega$. Moreover we assume that the ball $B_r(0)\subset\Omega$, and then $ \mathcal{C}_{B_r(0)}:=B_r(0)\times(0,+\infty)\subset \mathcal{C}_{\Omega}$. We define $$ V_0:=\{w \in H^1_{0,L}(\mathcal{C}_{B_r(0)}): \int_{\mathcal{C}_{B_r(0)}}w_{+}^{2^*_{\alpha}}(x,0)\,dx=1 \}\subset V $$ as well as $$ Q_0=\inf_{w\in V_0} \varphi_{\lambda}(w). $$ Denote by $\varphi_{\lambda}^{Q_0}:=\{w\in V: \varphi_{\lambda}(w)0$ is cylinder symmetric and $\|w_0\|_{L^{2^*_{\alpha}}(B_r(0))}=1$, $$ Q_0 =\int_{\mathcal{C}_{B_r(0)}}k_{\alpha}y^{1-\alpha}|\nabla w_0|^2\,dx\,dy -\lambda\int_{B_r(0)}|w_0(x,0)|^2\,dx. $$ For $z\in\Omega_{r}^{-}$, we define $\gamma: \Omega_{r}^{-}\to \varphi_{\lambda}^{Q_0}$ by $$ \gamma(z) = \begin{cases} w_0(x-z,y), &(x,y)\in B_r(z)\times (0,+\infty),\\ 0, &(x,y)\notin B_r(z)\times (0,+\infty). \end{cases} $$ Since $w_0(x,0)$ is a radial function, $$ \beta\circ\gamma(z) =\int_{B_r(z)}x(w_0)^{2^*_{\alpha}}_{+}(x-z,0))\,dx =\int_{B_r(0)}x(w_0)^{2^*_{\alpha}}_{+}(x,0)\,dx+z =z. $$ Hence, $\beta\circ\gamma=id$. Assume that $\varphi_{\lambda}^{Q_0}=A_{1}\cup A_{2}\cup \dots \cup A_{n}$, where $A_{j}, j=1,2\dots n$, is closed and contractible in $\varphi_{\lambda}^{Q_0}$, i.e. there exists $h_{j}\in C([0,1]\times A_{j},\varphi_{\lambda}^{Q_0})$ such that, for every $u$, $ v\in A_{j}$, $$ h_{j}(0,u)=u,\quad h_{j}(1,u)=h_{j}(1,v). $$ Let $B_{j} :=\gamma^{-1}(A_{j})$, $1\leq j\leq n$. The sets $B_{j}$ are closed and $\Omega_{r}^{-}=B_{1}\cup B_{2}\dots\cup B_{n}$. By Lemma \ref{lm:3.3}, we know $\beta (h_{j}(t,\gamma(x)))\in\Omega_{r}^{+}$. Using the deformation $g_{j}(t,x)=\beta (h_{j}(t,\gamma(x)))$, we see that $B_j$ is contractible in $\Omega_r^+$. Indeed, for every $x$, $y\in B_{j}$, there exist $\gamma(x)$, $\gamma(y)\in A_{j}$ such that \begin{gather*} g_{j}(0,x)=\beta(h_{j}(0,\gamma(x)))=\beta(\gamma(x))=x,\\ g_{j}(1,x)=\beta(h_{j}(1,\gamma(x)))=\beta(h_{j}(1,\gamma(y)))=g_{j}(1,y). \end{gather*} It follows that $\operatorname{cat}_{\varphi_{\lambda}^{Q_0}}\varphi_{\lambda}^{Q_0} \geq \operatorname{cat}_{\Omega_{r}^{+}}(\Omega_{r}^{-}) =\operatorname{cat}_{\Omega}(\Omega)$. \end{proof} \begin{lemma}\label{lm:3.5} If $\varphi_{\lambda}|_{V}$ is bounded from below and satisfies the $(PS)_{c}$ condition for any $$ c \in [\inf_{w\in V}\varphi_{\lambda}, Q_0], $$ then $\varphi_{\lambda}|_{V}$ has a minimum and level set $\varphi_{\lambda}^{Q_0}$ contains at least $\operatorname{cat}_{\varphi_{\lambda}^{Q_0}}\varphi_{\lambda}^{Q_0}$ critical points of $\varphi_{\lambda}|_{V}$. \end{lemma} The proof of the above lemma can be found in \cite{W}. \begin{proof}[Proof of Theorem \ref{thm:1.1}] By Lemma \ref{lm:3.5}, for $0<\lambda<\lambda^*$, the level set $\varphi_{\lambda}^{Q_0}$ contains at least $m:=\operatorname{cat}_{\varphi_{\lambda}^{Q_0}}\varphi_{\lambda}^{_0}$ critical points $w_{1}$, $w_{2},\dots ,w_{m}$ of $\varphi_{\lambda}|_{V}$. For $j=1,2,\dots,m$, there exist $\mu_{j}\in\mathbb{R}$ such that, for $h\in H_{0,L}^1(\mathcal{C}_\Omega)$, $$ k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha} \nabla w _{j}\nabla h\, dx\,dy-\lambda\int_{\Omega}wh \,dx -\mu_{j}\int_{\Omega}(w_{j}^{+})^{2^{\ast}_{\alpha}-1} h\,dx=0. $$ Choosing $h=w_{j}^{-}$, we have $$ 0= k_{\alpha}\int_{C_{\Omega}}y^{1-\alpha} |\nabla w _{j}^{-}|^2dx\,dy -\lambda\int_{\Omega}|w_{j}^{-}|^2dx.$$ Since $0<\lambda<\lambda_{1}$, it implies $w_{j}^{-}=0$ and $$ k_{\alpha}\int_{\mathcal{C}_{\Omega}}y^{1-\alpha} |\nabla w _{j} |^2\,dx\,dy -\lambda\int_{\Omega}|w_{j}|^2\,dx-\mu_{j}\int_{\Omega}(w_{j}^{+} )^{2^*_{\alpha}}\, dx=0. $$ Therefore, $\mu_{j}=\varphi_{\lambda}(w_{j})$ and $v_{j}:=\mu_{j}^{\frac{N-\alpha}{2\alpha}}w_{j}$ is a positive solution of \eqref{e1.4}, $tr_{\Omega}(v_{j})$ is a solution of \eqref{e1.1}. By Lemma \ref{lm:3.4}, problems \eqref{e1.4} and \eqref{e1.1} have at least $\operatorname{cat}_{\Omega}(\Omega)$ positive solutions. \end{proof} \begin{thebibliography}{99} \bibitem{BC} A. Bahri, J. M. Coron; \emph{On a nonlinear elliptic equation involving the critical sobolev exponent: The effect of the topology of the domain}, Comm. Pure Appl. Math., 41 (1988), 253--294. \bibitem{BCP} B. Barrios, E. Colorado, A. de Pablo, U. S\'{a}nchez; \emph{On some critical problems for the fractional Laplacian oprator}, J. Differential Equations, 252 (2012), 6133--6162. \bibitem{BCPa} C. Br\~{a}ndle, E. Colorado, A. de Pablo; A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh, Sect. 143A (2013), 39--71. \bibitem{BN} H. Brezis, L. Nirenberg; \emph{ Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent}, Comm. Pure Appl. Math., 36 (1983), 437--478. \bibitem{CabS} X. Cabr\'{e}, Y. Sire; \emph{Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates}, Ann. Inst. H. Poincar\'e Anal. Non Linaire, 31 (2014), 23--53. \bibitem{CT} X. Cabr\'{e}, J. Tan; \emph{Positive solutions of nonlinear problems involving the square root of the Laplacian}. Adv. Math., 224 (2010), 2052--2093. \bibitem{CDDS} A. Capella, J. D\'{a}vila, L. Dupaigne, Y. Sire; \emph{Regularity of radial extremal solutions for some non local semilinear equations}, Comm. in Part. Diff. Equa., 36 (2011) 1353--1384. \bibitem{CP} G. Cerami, D. Passaseo; \emph{Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology}, Nonlinear Analysis: TMA, 18(1992), 109--119. \bibitem{CSS} L. A. Caffarelli, S. Salsa, L. Silvestre; \emph{Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian}. Invent. Math., 171 (2008), no. 2, 425--461. \bibitem{CS} L. Caffarelli, L. Silvestre; \emph{An extention problem related to the fractional Laplacian}, Comm. in Part. Diff. Equa., 32 (2007), 1245--1260. \bibitem{L} P. L. Lions; \emph{ The concentration-compactness principle in the calculus of variations: the limit case}, Rev. Mat. Iberoamericana 1 (1985), 45--121, 145--201. \bibitem{T} J. Tan; \emph{The Brezis-Nirenberg type problem involving the square root of the Laplacian}. Calc. Var. Partial Differential Equations, 42 (2011), 21--41. \bibitem{TX} J. Tan, J. Xiong; \emph{A Harnack inequality for fractional Laplace equations with lower order terms}. Discrete Contin. Dyn. Syst., 31 (2011), 975--983. \bibitem{W} M. Willem; \emph{Minimax Theorems}, Birkhauser, Basel, 1996. \end{thebibliography} \end{document}