Electronic Journal of Differential Equations, Vol. 2019 (2019), No. 90, pp. 1-32. Title: Existence of solutions for non-local elliptic systems with Hardy-Littlewood-Sobolev critical nonlinearities Authors: Yang Yang. (Jiangnan Univ., Wuxi, Jiangsu, China) Qian Yu Hong (Jiangnan Univ., Wuxi, Jiangsu, China) Xudong Shang (Nanjing Normal Univ., Taizgou, Jiangsu, China) Abstract: In this work, we establish the existence of solutions for the nonlinear nonlocal system of equations involving the fractional Laplacian, \begin{gather*} \begin{aligned} (-\Delta)^s u & = au+bv+\frac{2p}{p+q}\int_{\Omega}\frac{|v(y)|^q}{|x-y|^\mu}dy|u|^{p-2}u \\ &\quad +2\xi_1\int_{\Omega}\frac{|u(y)|^{2^*_\mu}}{|x-y|^\mu}dy|u|^{2^*_\mu-2}u\quad \text{in } \Omega,\\ (-\Delta)^s v & = bu+cv+\frac{2q}{p+q}\int_{\Omega}\frac{|u(y)|^p}{|x-y|^\mu}dy|v|^{q-2}v \\ &\quad +2\xi_2\int_{\Omega}\frac{|v(y)|^{2^*_\mu}}{|x-y|^\mu}dy|v|^{2^*_\mu-2}v\quad \text{in } \Omega, \end{aligned}\\ u =v=0 \quad\text{in } \mathbb{R}^N\setminus\Omega, \end{gather*} where $(-\Delta)^s$ is the fractional Laplacian operator, $\Omega$ is a smooth bounded domain in $\mathbb{R}^N$, $02s$, $0<\mu