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Abstract. In this work we considered a discretization for a fractional-order
model based on the Intra-Venous Glucose Tolerance Test (IVGTT). We prove

the existence and uniqueness of the solution of the model, and the non-

negativity and boundedness of solutions. Moreover, we establish sufficient
conditions of stability or instability for the proposed fractional-order model

and its discretization. Numerical computations are carried out for illustrating

the analytic results.

1. Introduction and statement of main results

The relation between glucose and insulin, its regulatory hormone, has been stud-
ied by many researchers for several years. The glucose and insulin system problem
arises when the level of glucose concentration is far from the normal range. Insulin
reduces the liver’s production of spontaneous glucose and also allows tissues to in-
crease glucose uptake. Many scientists are concerned with mathematical models
concerned with glucose-insulin dynamics and clinical studies to account for a range
of significant markers of Diabetes Mellitus growth. The complex glucose-insulin
relationship has been studied; see [7, 8, 11, 27, 29, 31, 32, 33, 36]. These models
consist of simply linear ordinary differential equations and were considered unac-
ceptable for different reasons, such as parameters have poor fits to experimental
data or are not identifiable [26]. To diagnose a diabetic individual, various glucose
tolerance tests have been applied in the clinics and experimental researches. Bolie
[9], Ackerman et al [1, 2], Gatewood et al [20], Bergman et al [8], Steil et al [34],
Caumo et al [13], Gaetano and Arino [18], Gresl et al [21] offered the glucose-insulin
linear models homeostasis based on Intra-Venous Glucose Tolerance Test (IVGTT)
method. The “Minimal Model” was proposed in 1980 by Bergman et al [7, 8], and
was updated in 1986. This model, which describes IVGTT experimental data well
with the smallest collection of [7, 8, 29, 36] identifiable and meaningful parameters,
can be considered to be the most famous model used in glucose metabolism physio-
logical research. In [18, 23], Gaetano and Arino and Li et al had reinvestigated the
dynamical behavior of the “Minimal Model” in both modeling and physiological
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aspect to understanding blood glucose regulatory system:

dG(t)

dt
= −p1G(t)− p4I(t)G(t)

βG(t) + 1
+ p7, G(0) = Gb + p0,

dI(t)

dt
= p6G(t)− b2I(t), I(0) = Ib + p0p3.

(1.1)

with Gi = Gb, for t ∈ [−p5, 0), where G(t) [mg/dL], I(t) [mU/L] are the con-
centration of blood glucose and insulin, Gb [mg/dL] is the concentration of basal
blood glucose, Ib [mU/L] is the concentration of basal blood insulin, p1 [1/min]
is the Insulin independent glucose clearance rate, p2 [1/min] is the active insulin
clearance rate (upt. decrease), p3 [L/(min2mU)] is the increase caused by insulin in
uptake ability, p4 [1/min] is the destroy rate of blood insulin, p5 [mg/dL] is the aim
glucose level, p6 [mUdL/Lmgmin] is the Pancreatic free rate after glucose bolus,
and p7 (mg/dl)[1/min] is the concentration at time 0 of the Plasma insulin, above
basal insulinemia, immediately after the glucose bolus intake.

Recently, some real processes in physics, biology, epidemiology and other sci-
entific fields have been modelled by many scientists using fractional calculus; see
[3, 4, 5, 6, 12, 14, 15, 16, 22, 30]. There is a significant potential for the principle of
fractional calculus to transform the way we see the model and regulate the environ-
ment around us. It is naturally that the fractional order differential equations are
used because it is related to systems with memory which exists in most biological
systems [35]. Also they are, at least, as stable as their integer-order counterpart
[19, 24]. Hence, we suggest to establish a system of fractional glucose-insulin for
modeling (1.1), based on the model presented in [23]:

DqG(t) = −p1G(t)− p4I(t)G(t)

βG(t) + 1
+ p7,

DqI(t) = p6G(t)− p2I(t),

(1.2)

with G(0) = Gb + p0, I(0) = Ib + p0p3, Gi = Gb, for t ∈ [−p5, 0).
We are also interested in applying, motivated by the above works, the discretiza-

tion method of piecewise constant arguments to the model (1.2):

Gn+1 = Gn +
mq

Γ(q + 1)

[
− p1Gn −

p4InGn
βGn + 1

+ p7

]
,

In+1 = In +
mq

Γ(q + 1)
[p6Gn − p2In],

(1.3)

where m > 0 represents the time interval of production.
In this article, the fractional glucose-insulin model (1.2) and its discretized (1.3)

are investigated. The existence, uniqueness, non-negativity and boundedness of the
solutions for the model (1.2) is proved. Moreover, sufficient conditions of stability
or instability of the models (1.2) and (1.3) are obtained. Some conditions on the
existence of bifurcation of systems (1.2) and (1.3) are presented by using bifurcation
theory. Furthermore, the numerical diagrams are carried out for illustrating the
analytic results.

2. Preliminaries

The Caputo fractional-order derivative is used in this paper.
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Definition 2.1 ([30]). If q ∈ R+ is a non integer order, the fractional integral
Iqf(t) of the function f(t), t > 0 is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(z) =
∫∞

0
e−ttz−1dt is the Euler gamma function.

Definition 2.2 ([30]). The Caputo fractional derivative Dqf(t) of order q > 0,
n− 1 < q < n, n ∈ N is defined as

Dqf(t) =

 1
Γ(n−q)

∫ t
0

f(n)(s)
(t−s)q+1−n ds, , n− 1 < q < n,

dn

dtn f(t), q = n.

By using a method from by Li et al [25], we study the existence and uniqueness
of the solutions of the fractional system (1.2) in Ω× (0, T ] with

Ω = {(G, I) ∈ R2 : max(|G|, |I|) ≤ Φ}.

Theorem 2.3. For any X0 = (G0, I0) ∈ Ω, there is a unique solution X(t) ∈ Ω
with initial condition X0 of the model (1.2), for all t ≥ 0.

Proof. For X,X ∈ Ω, suppose a mapping H(X) = (H1(X), H2(X)) is defined as
follows:

H1(X) = −p1G(t)− p4I(t)G(t)

βG(t) + 1
+ p7,

H2(X) = p6G(t)− p2I(t).

(2.1)

Therefore,

‖H(X)−H(X)‖
= |H1(X)−H1(X)|+ |H2(X)−H2(X)|

=
∣∣∣− p1G−

p4IG

βG+ 1
+ p7 + p1G+

p4I G

βG+ 1
− p7

∣∣∣+ |p6G− p2I − p6G+ p2I|

=
∣∣∣− p1(G−G)− p4

βIGG+ IG− βGIG− IG
(βG+ 1)(βG+ 1)

∣∣∣+ |p6(G−G) + p2(I − I)|

≤ (p1 + p6 + p4Φ)η|G−G|+ (p2 + p4βΦ2)|I − I|
≤ Γ‖X −X‖,

(2.2)
where

Γ = max{p1 + p6 + p4Φ, p2 + p4βΦ2}.

The Lipschitz condition on H(X) is thus fulfilled. This proves that the model’s
solutions (1.2) exist and are unique. �

To study the non-negativity and boundedness of the solutions of the model (1.2),
the method used by [25] is utilized.

Theorem 2.4. The solutions of (1.2), which start from R2
+ are nonnegative and

uniformly bounded.
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Proof. From (1.2), one has

DqG(t)|G=0 = p7 ≥ 0,

DqI(t)|I=0 = p6Gb ≥ 0.
(2.3)

Following [10, Lemmas 5 and 6], one can derive that the non-negativity of the
solutions of (1.2). By taking H(t) = G(t) + I(t), one obtains

DqH(t) = (p6 − p1)G(t)− p2I −
p4I(t)G(t)

βG(t) + 1
+ p7 . (2.4)

Hence, for all λ > 0,

DqH(t) + λH(t) ≤ (λ+ p6 − p1)G(t) + (λ− p2)I + p7. (2.5)

One can choose λ < min{p1 − p6, p2}. Thus

DqH(t) + λH(t) ≤ p7 . (2.6)

Following [17, Lemma 9], one obtains

0 ≤ H(t) ≤ H(0)Eq(−λ(t)q) + r(t)qEq,q+1(−λ(t)q)), (2.7)

where Eq is the Mittag-Leffler function. Also following [17, Lemma 5 and Corollary
6], one obtains

0 ≤ H(t) ≤ p7

λ
, t→∞ (2.8)

Hence, the solutions of (1.2) starting from R2
+ are uniformly bounded in the open

region V , where

V =
{

(G, I) ∈ R2
+ : H(t) ≤ p7

λ
+ ε, for all ε > 0}.

�

3. Model description and its discretization

We apply the discretization method to model (1.2). Following the piecewise
constant arguments, the discretization of model (1.2) is given as

DqG(t) = −p1G
(
m
[ t
m

])
−
p4I(m[ tm ])G(m[ tm ])

βG(m[ tm ]) + 1
+ p7 ,

DqI(t) = p6G
(
m
[ t
m

])
− p2I

(
m
[ t
m

])
,

(3.1)

with G(0) = G0, I(0) = I0. The steps of the suggested discretization method are
the following:

Step 1. Let t ∈ [0,m), then t
m ∈ [0, 1). Thus, one gets

DqG1 = −p1G0 −
p4I0G0

βG0 + 1
+ p7,

DqI1 = p6G0 − p2I0.

The solution of (3.1) is given as

G1(t) = G0 +
mq

Γ(q + 1)

(
− p1G0 −

p4I0G0

βG0 + 1
+ p7

)
,

I1(t) = I0 +
mq

Γ(q + 1)

(
p6G0 − p2I0

)
.
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Step 2. Let t ∈ [m, 2m). Then t
m ∈ [1, 2). Thus, one obtains

DqG2(t) = −p1G1(m)− p4I1(m)G1(m)

βG1(m) + 1
+ p7,

DqI2(t) = p6G1(m)− p2I1(m).

The solution of (3.1) is given by

G2(t) = G1(m) +
(t−m)q

Γ(q + 1)

(
− p1G1(m)− p4I1(m)G1(m)

βG1(m) + 1
+ p7

)
,

I2(t) = I1(m) +
(t−m)q

Γ(q + 1)

(
p6G1(m)− p2I1(m)

)
.

Thus, by repeating the process, we can deduce that the solution of (3.1) is

Gn+1(t) = Gn(nm) +
(t− nm)q

Γ(q + 1)

(
− p1Gn(nm)− p4In(nm)G1(nm)

βGn(nm) + 1
+ p7

)
,

In+1(t) = In(nm) +
(t− nm)q

Γ(q + 1)

[
p6Gn(nm)− p2In(nm)

]
.

Thus (1.3) follows.

4. Fixed point and stability of equilibria

To find the fixed points, let

DqG(t) = 0,

DqI(t) = 0.

Thus, the equilibrium point E1 = (G∗, I∗) of (1.2) is given by

G∗ =
(qp2p7 − p1p2)±

√
(qp2p7 − p1p2)2 + 4p2p7(qp1p2 + p4p6)

2(qp2p7 − p1p2)
,

I∗ =
p6

p2
G∗.

To linearize the fractional model (1.2), about E1 = (G∗, I∗), we remove the nonlin-
ear terms. Then, one obtains the linear variational system

DqG(t) = −A1G(t)−A2I(t),

DqI(t) = A3G(t)−A4I(t).

where

A1 =
(
p1 +

p4I
∗

qG∗ + 1
− qp4I

∗G∗

(qG∗ + 1)2

)
, A2 =

p4G
∗

qG∗ + 1
, A3 = p6, A4 = p2.

Then, the Jacobian matrix J(E1) at E1 for the fractional model (1.2) is

J(E1) =

[
−A1 −A2

A3 −A4

]
Its characteristic equation is

P1(λ) = λ2 + (A1 +A4)λ+A1A4 +A3A2 = 0. (4.1)

Its eigenvalues are

λ1,2 =
1

2

(
tr(J)±

√
tr2(J)− 4∆

)
,
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with tr(J) = −(A1 +A4), and ∆ = A1A4 +A2A3. Therefore,

| arg λ1| >
qπ

2
, | arg λ2| >

qπ

2
,

i.e., ∣∣∣√4∆− tr2(J)

tr(J)

∣∣∣ > tan
qπ

2
,

i.e., ∣∣∣√4[A1A4 +A2A3]− (A1 +A4)2

A1 +A4

∣∣∣ > tan
qπ

2
is a sufficient condition for the local asymptotic stability of E1. Also, the Hopf
bifurcation of system (1.2) occurs when

| arg λ1| =
qπ

2
, | arg λ2| =

qπ

2
,

i.e., ∣∣√4∆− tr2(J)

tr(J)

∣∣ = tan
qπ

2
,

then ∣∣∣√4[A1A4 +A2A3]− (A1 +A4)2

A1 +A4

∣∣∣ = tan
qπ

2
.

Equation (4.1) can be converted to

λ2 +D1λ+D2 = 0, (4.2)

where D1 = A1 +A4, D2 = A1A4 +A2A3. Let Ψi > 0 (i = 1, 2),

Ψ1 = D1, Ψ2 = D1D2.

Lemma 4.1. If Ψ1 > 0 and Ψ2 > 0, then the equilibrium point of the fractional
model (1.2) is asymptotically stable.

Remark 4.2. The conditions Ψ1 > 0 and Ψ2 > 0 are sufficient condition for
Lemma 4.1. If all the roots of equation (4.1) satisfy | arg λ| > qπ/2. then Lemma
4.1 may still hold.

5. Stability of the discretized fractional-order model

Throughout this section, we analyze the stability of the fixed point of the frac-
tional model (1.3), which has the fixed equilibrium point E1 = (G∗, I∗), where

G∗ =
(qp2p7 − p1p2)±

√
(qp2p7 − p1p2)2 + 4p2p7(qp1p2 + p4p6)

2(qp2p7 − p1p2)
,

I∗ =
p6

p2
G∗.

Then

J(E1) =

[
1− p1h− p4I

∗h
(βG∗+1)2 − p4G

∗h
(βG∗+1)

hp6 1− p2h

]
,

is the Jacobian matrix of system (1.3), at E1 with h = mq/Γ(q + 1), and its
eigenvalues are

λ1,2 =
1

2

(
tr(J)±

√
tr2(J)− 4∆

)
,
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where

tr(J) = 2−
(
p1 + p2 +

p4I
∗

(βG∗ + 1)2

)
h,

∆ = 1−
(
p1 + p2 +

p4I
∗h

(βG∗ + 1)2

)
h+

(
p1p2 +

p2p4I
∗

(βG∗ + 1)2
+

p4p6G
∗

βG∗ + 1

)
h2.

In section 4, a sufficient condition for the local asymptotic stability of E1 is given
by

| arg λ1| >
qπ

2
, | arg λ2| >

qπ

2
,

i.e., ∣∣∣√4∆− tr2(J)

tr(J)

∣∣∣ > tan
qπ

2
.

The Hopf bifurcation of system (1.3) (see [28]) occurs when

| arg λ1| =
qπ

2
, | arg λ2| =

qπ

2
,

i.e., ∣∣∣√4∆− tr2(J)

tr(J)

∣∣∣ = tan
qπ

2

6. Numerical simulations

Numerical simulations of system (1.2) are given to verify our analytical results
by using the matlab programm.
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Figure 1. Dynamics and phase plain of the Glucose-Insulin dy-
namics for p1 = 0.03082, p2 = 0.02093, p3 = 1.062 × (10−5),
Ib = 7.3, Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 4.33,
q = 0.99, f = .09, s = .2

Example 6.1. Let p1 = 0.03082, p2 = 0.02093, p3 = 1.062 × 10−5, Ib = 7.3,
Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 4.33, q = 0.99, f = .09, s = .2. The
corresponding eigenvalues are λ1 = −0.0591 + 0.0131i, λ2 = −0.0591− 0.0131i for
q = 0.90, which satisfy the condition | arg λ| = 2.9239 > qπ/2 = 1.5551. Therefore,
system (1.2) is stable on E1 = (1.0296, 0.1647), See Figure 1.
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Figure 2. Dynamics and phase plain of the Glucose-Insulin dy-
namics for p1 = 0.0002, p2 = 0.02093, p3 = 1.062×(10−5), Ib = 7.3,
Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 4.33, q = 0.75,
f = .200111119, s = 3.23
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Figure 3. Dynamics and phase plain of the Glucose-Insulin dy-
namics for p1 = 0.0002, p2 = 0.02093, p3 = 1.062×(10−5), Ib = 7.3,
Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 4.33, q = 0.05,
f = 0.029, s = 2.23

Example 6.2. Let p1 = 0.0002, p2 = 0.02093, p3 = 1.062× (10−5), Ib = 7.3, Gb =
92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 4.33, q = 0.75, f = .200111119, s = 3.23.
The corresponding eigenvalues are λ1 = −0.0295 + 0.0302i, λ2 = −0.0295−0.0302i
at q = 0.99. Thus, the condition | arg λ| = 2.3443 > qπ/2 = 1.1781 is satisfied.
Therefore, system (1.2) is stable on E1 = (1.2261, 0.1962); see Figure 2.

Example 6.3. Let p1 = 0.0002, p2 = 0.02093, p3 = 1.062 × (10−5), Ib = 7.3,
Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 4.33, q = 0.05, f = 0.029,
s = 2.23. The corresponding eigenvalues are λ1 = −0.0576, λ2 = −0.1229 for
q = 0.99, which satisfy the condition | arg λ| = 3.1416 > qπ/2 = 0.0785. Therefore,
system (1.2) is stable on E1 = (4.1709, 0.6674), see Figure 3.

Example 6.4. Let p1 = 0.03082, p2 = 0.02093, p3 = 1.062 × (10−5), Ib = 7.3,
Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = .33, f = 0.009, s = 0.2. The
corresponding eigenvalues are λ1 = 0.1984, λ2 = −0.0402 for q = 0.75, which satisfy
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Figure 4. Dynamics and phase plain of the Glucose-Insulin dy-
namics for p1 = 0.03082, p2 = 0.02093, p3 = 1.062 × (10−5),
Ib = 7.3, Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 0.33,
q = 0.75, f = 0.009, s = 0.2
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Figure 5. Dynamics and phase plain of the Glucose-Insulin dy-
namics for p1 = 0.03082, p2 = 0.02093, p3 = 1.062 × (10−5),
Ib = 7.3, Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = .33,
q = 0.55, f = 0.009, s = 0.2

the condition |argλ| = 0 < qπ/2 = 1.1781. Therefore, system (1.2) is unstable on
E1 = (−4.0598,−0.6496), see Figure 4.

Example 6.5. Assume that p1 = 0.03082, p2 = 0.02093, p3 = 1.062 × (10−5),
Ib = 7.3, Gb = 92, p4 = 0.3, p5 = 94, p6 = 0.003349, p7 = 0.33, f = 0.009, s = 0.2.
The corresponding eigenvalues are λ1 = 0.1984, λ2 = −0.0402 for q = 0.55, which
satisfy the condition | arg λ| = 0 < qπ/2 = 0.8639. Therefore, system (1.2) is
unstable on E1 = (−4.0598,−0.6496), see Figure 5.

Conclusion. In this work, the fractional-order model (1.2) based on the IVGTT
was analyzed to learn the dynamics of the interaction of the glucose and insulin
in the human body. A simple discretization scheme was applied to discretize
fractional-order system model (1.2). Our results suggested the conditions on the
parameters, such the existence of the periodic solution surrounding the equilibrium
point. A Hopf bifurcation arises in the analysis. Numerical simulations are carried
out to demonstrate the results obtained. Three concrete examples of stability and
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two examples of instability of certain equilibria are given. From the above discus-
sions, one can deduce that the model is physiologically consistent and the suggested
model may be a useful tool for further research on Diabetes Mellitus.

The experimental data in this work was taken from the reference [29].
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