Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 31, pp. 1-13. Title: Nodal solutions for nonlinear Schrodinger systems Authors: Xue Zhou (Yunnan Normal Univ., Kunming, China) Xiangqing Liu (Yunnan Normal Univ., Kunming, China) Abstract: In this article we consider the nonlinear Schr\"odinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j (x) = 0,\quad \hbox{on } \partial \Omega , \; j=1,\ldots,k , }$$ where $\Omega\subset \mathbb{R}^N $ ($N=2,3 $) is a bounded smooth domain, $\lambda_j> 0$, $j=1,\dots,k$, $ \beta_{ij} $ are constants satisfying $\beta_{jj}>0$, $\beta_{ij}=\beta_{ji}\leq0 $ for $ 1\leq i< j\leq k$. The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method. Submitted December 9, 2023. Published April 24, 2024. Math Subject Classifications: 35A15, 35B20, 35J10. Key Words: Schrodinger system; sign-changing solutions; truncation method; method of invariant sets of descending flow.