Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 80, pp. 1-16. Title: Local and global solvability of fractional porous medium equations in critical Besov-Morrey spaces Authors: Ahmed El Idrissi (Sultan Moulay Slimane Univ., Beni Mellal, Morocco) Halima Srhiri (Sultan Moulay Slimane Univ., Beni Mellal, Morocco) Brahim El Boukari (Sultan Moulay Slimane Univ., Beni Mellal, Morocco) Jalila El Ghordaf (Sultan Moulay Slimane Univ., Beni Mellal, Morocco) Abstract: In this article we study fractional porous medium equations in Besov-Morrey spaces. Using the Littlewood-Paley theory and the smoothing effect of the heat semi-group, we obtain local well-posedness of this model. Also, we obtain global well-posedness for small initial data in the critical Besov-Morrey spaces $ \dot{\mathcal{N}}_{p,h,\infty}^{-2m+\frac{n}{p}}(\mathbb{R}^n)$ with $1/2