Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 82, pp. 1-17. Title: Hardy operators and commutators on generalized central function spaces Author: Le Trung Nghia (Ton Duc Thang Univ., Ho Chi Minh City, Vietnam) Abstract: In this article, we study the boundedness of operators of Hardy type on generalized central function spaces, such as the generalized central Hardy space $\mathbf{HA}^{p,r}_\varphi(\mathbb{R}^n)$, the generalized central Morrey space $\dot{\mathbf{M}}^{p,r}_\varphi (\mathbb{R}^n)$, and the generalized central Campanato space $\dot{{\rm CMO}}^{p,r}_\varphi (\mathbb{R}^n)$, with $p\in(1,\infty)$, and $\varphi(t):(0,\infty)\to (0,\infty)$. We first show that $\mathbf{HA}^{p',r'}_\varphi (\mathbb{R}^n)$ is the predual of $\dot{{\rm CMO}}^{p,r}_\varphi (\mathbb{R}^n)$. After that, we investigate the boundedness of operators of Hardy type on those spaces. By duality, we obtain the boundedness characterization of function $b\in \dot{{\rm CMO}}^{p,r}_\varphi (\mathbb{R}^n)$ via the $\dot{\textbf{M}}^{p,r}_\varphi (\mathbb{R}^n)$-boundedness of commutator $[b,\mathcal{H}^*]$. Submitted July 2, 2025. Published August 08, 2025. Math Subject Classifications: 42B20, 42B35, 42B30, 46A20. Key Words: Hardy operators; commutator; generalized central function space; central atomic space.