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Abstract

In this paper, we study the stability of solutions for semilinear wave equations whose
boundary condition includes an integral that represents the memory effect. We show that
the dissipation is strong enough to produce exponential decay of the solution, provided
the relaxation function also decays exponentially. When the relaxation function decays
polynomially, we show that the solution decays polynomially and with the same rate.
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1 . Introduction

The main purpose of this work is to study the asymptotic behavior of solution of the

semilinear wave equation with a boundary condition of memory type. For this, we consider the

following initial boundary-value problem

utt − (µ(x, t)ux)x + h(u) = 0 in (0, 1) × (0,∞), (1.1)

u(0, t) = 0, u(1, t) +

∫ t

0
g(t− s)µ(1, s)ux(1, s)ds = 0, ∀t > 0 (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in (0, 1). (1.3)

The integral equation (1.2) is a boundary condition which includes the memory effect. Here,

by u we are denoting the displacement and by g the relaxation function. By µ = µ(x, t) we

represent a function of W 1,∞
loc (0,∞ : H1(0, 1)), such that µ(x, t) ≥ µ0 > 0, µt(x, t) ≤ 0 and

µx(x, t) ≤ 0 for all (x, t) ∈ (0, 1) × (0,∞). We will assume in the sequel that the function

h ∈ C1(R) satisfies the following conditions:

h(s)s ≥ 0 ∀s ∈ R, (1.4)
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∃δ > 0 : h(s)s ≥ (2 + δ)H(s), ∀s ∈ R, (1.5)

|h(s) − h(t)| ≤ b(1 + |s|ρ−1 + |t|ρ−1)|s− t|, ∀s, t ∈ R, (1.6)

b > 0, ρ ≥ 1

where

H(z) =

∫ z

0
h(s)ds.

We refer to [4] for the physical motivation of this model.

Frictional dissipative boundary condition for the wave equation was studied by several authors,

see for example [4, 5, 8, 9, 10, 11, 12, 16, 17] among others. In these works existence of solutions

and exponential stabilization were proved for linear or nonlinear equations. In contrast with the

large literature for frictional dissipative, for boundary condition with memory, we have only a

few works as for example [2, 3, 7, 13, 14]. Let us explain briefly each of the above works. In

[2] Ciarletta established theorems of existence, uniqueness and asymptotic stability for a linear

model of heat conduction. In this case the memory condition describes a boundary that can

absorb heat and due to the hereditary term, can retain part of it. In [3] Fabrizio & Morro

consider a linear electromagnetic model with boundary condition of memory type and proved

the existence, uniqueness and asymptotic stability of the solutions. While in [13] was shown the

existence of global smooth solution for the one dimensional nonlinear wave equation, provided

the initial data (u0, u1) is small in the H3 ×H2-norm and also that the solution tends to zero as

time goes to infinity. In all the above works was left open the rate of decay. In [7] Rivera & Doerty

consider a nonlinear one dimensional wave equation with a viscoelastic boundary condition and

proved the existence, uniqueness of global smooth solution, provided the initial data (u0, u1) is

small in the H2×H1-norm and also that the solution decays uniformly in time(exponentially or

algebraically). Finally, in [14] Qin proved a blow up result for the nonlinear one dimensional wave

equation with boundary condition and memory. Our main result is to show that the solution

of system (1.1)- (1.3) decays uniformly in time, with rates depending on the rate of decay of

the relaxation function. More precisely, denoting by k the resolvent kernel of g ′ (the derivative

of the relaxation function) we show that the solution decays exponentially to zero provided k

decays exponentially to zero. When k decays polynomially, we show that the corresponding

solution also decays polynomially to zero with the same rate of decay.

The method used here is based on the construction of a suitable Lyapunov functional L

satisfying

d

dt
L(t) ≤ −c1L(t) + c2e

−γt or
d

dt
L(t) ≤ −c1L(t)1+

1
α +

c2

(1 + t)α+1

for some positive constants c1, c2, α and γ. To study the existence of solution of (1.1)- (1.3) we
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introduce the space

V := {v ∈ H1(0, 1); v(0) = 0}.

The notation used in this paper is standard and can be found in Lions’s book [6]. In the sequel

by c (sometime c1, c2, . . .) we denote various positive constants independent of t and on the

initial data. The organization of this paper is as follows. In section 2 we establish a existence

and regularity result. In section 3 we prove the uniform rate of exponential decay. Finally in

section 4 we prove the uniform rate of polynomial decay.

2 . Existence and Regularity

In this section we shall study an existence and regularity of solutions to equation (1.1)-(1.3).

To this end we will assume that the relaxation function g is positive and non decreasing and we

shall use (1.2) to estimate the value of µ(1, t)ux(1, t). Denoting by

(f ∗ ϕ)(t) =

∫ t

0
f(t− s)ϕ(s)ds,

the convolution product operator and differentiating (1.2) we arrive at the following Volterra

equation

µ(1, t)ux(1, t) +
1

g(0)
g′ ∗ µ(1, t)ux(1, t) = −

1

g(0)
ut(1, t).

Using the Volterra inverse operator, we obtain

µ(1, t)ux(1, t) = −
1

g(0)
{ut(1, t) + k ∗ ut(1, t)},

where the resolvent kernel satisfies

k +
1

g(0)
g′ ∗ k =

1

g(0)
g′.

With τ = 1
g(0) and using the above identity, we write

µ(1, t)ux(1, t) = −τ{ut(1, t) + k(0)u(1, t) − k(t)u0(1) + k′ ∗ u(1, t)}. (2.1)

Reciprocally, taking initial data such that u0(1) = 0, the identity (2.1) implies (1.2). Since we

are interested in relaxation function of exponential or polynomial type and the identity (2.1)

involve the resolvent kernel k, we want to know if k has the same properties. The following

Lemma answers this question. Let g be a relaxation function and k its resolvent kernel, that is

k(t) − k ∗ g(t) = g(t). (2.2)
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Lemma 2.1 If g is a positive continuous function, then k also is a positive continuous function.

Moreover,

1. If there exist positive constants c0 and γ with c0 < γ such that

g(t) ≤ c0e
−γt,

then, the function k satisfies

k(t) ≤
c0(γ − ε)

γ − ε− c0
e−εt,

for all 0 < ε < γ − c0.

2. Given p > 1, let us denote by cp := supt∈R+

∫ t

0 (1 + t)p(1 + t − s)−p(1 + s)−p ds. If there

exists a positive constant c0 with c0cp < 1 such that

g(t) ≤ c0(1 + t)−p,

then, the function k satisfies

k(t) ≤
c0

1 − c0cp
(1 + t)−p.

Proof. Note that k(0) = g(0) > 0. Now, we take t0 = inf{t ∈ R
+ : k(t) = 0}, so k(t) > 0

for all t ∈ [0, t0[. If t0 ∈ R+, from equation (2.2) we get that −k ∗ g(t0) = g(t0) but this is a

contradiction. Therefore k(t) > 0 for all t ∈ R
+
0 . Now, let us fix ε, such that 0 < ε < γ − c0 and

denote by

kε(t) := eεtk(t), gε(t) := eεtg(t).

Multiplying equation (2.2) by eεt we get kε(t) = gε(t) + kε ∗ gε(t), hence

sup
s∈[0,t]

kε(s) ≤ sup
s∈[0,t]

gε(s) +

∫
∞

0
c0e

(ε−γ)sds sup
s∈[0,t]

kε(s) ≤ c0 +
c0

(γ − ε)
sup

s∈[0,t]
kε(s).

Therefore

kε(t) ≤
c0(γ − ε)

γ − ε− c0
,

which implies our first assertion. To show the second part let us consider the following notation

kp(t) := (1 + t)pk(t), gp(t) := (1 + t)pg(t).

Multiplying equation (2.2) by (1+t)p we get kp(t) = gp(t)+

∫ t

0
kp(t−s)(1+t−s)−p(1+t)pg(s) ds,

hence

sup
s∈[0,t]

kp(s) ≤ sup
s∈[0,t]

gp(s) + c0cp sup
s∈[0,t]

kp(s) ≤ c0 + c0cp sup
s∈[0,t]

kp(s).
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Therefore

kp(t) ≤
c0

1 − c0cp
,

which proves our second assertion. �

Remark: The finiteness of the constant cp can be found in [15, Lemma 7.4].

Due to this Lemma, in the remainder of this paper, we shall use (2.1) instead of (1.2). Let us

denote by

(f2ϕ)(t) =

∫ t

0
f(t− s)|ϕ(t) − ϕ(s)|2ds.

The following lemma states an important property of the convolution operator.

Lemma 2.2 For f, ϕ ∈ C1([0,∞[: R) we have

∫ t

0
f(t− s)ϕ(s)dsϕt = −

1

2
f(t)|ϕ(t)|2 +

1

2
f ′2ϕ

−
1

2

d

dt

[
f2ϕ− (

∫ t

0
f(s)ds)|ϕ|2

]
.

The proof of this lemma follows by differentiating the term f2ϕ.

The first order energy of system (1.1)-(1.3) is given by

E(t) =
1

2

∫ 1

0
[|ut|

2 + µ(x, t)|ux|
2 + 2H(u)]dx +

τ

2
(k(t)|u(1, t)|2 − k′(t)2u(1, t)).

We summarize the well-posedness of (1.1)-(1.3) in the following theorem.

Theorem 2.1 Let k ∈ C2(R+) be such that

k,−k′, k′′ ≥ 0. (2.3)

If (u0, u1) ∈ H2(0, 1) ∩ V × V satisfies the compatibility condition

µ(1, 0)
∂u0

∂x
(1) = −τu1(1), (2.4)

then there exists only one solution u of the system (1.1)-(1.3) satisfying

u ∈ L∞(0, T ;H2(0, 1) ∩ V ) ∩W 1,∞(0, T ;V ) ∩W 2,∞(0, T ;L2(0, 1)).

Proof. To prove this Theorem we shall use the Galerkin method. Let {wj} be a complete

orthogonal system of V such that

{u0, u1} ∈ Span{w0, w1}.

Let us consider the following Galerkin approximation

um(t) :=
m∑

j=0

hj,m(t)wj .
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Standard results about ordinary differential equations guarantee that there exists only one so-

lution of the approximate system,
∫ 1

0
um

ttwjdx+

∫ 1

0
µ(x, t)

∂um

∂x

∂wj

∂x
dx+

∫ 1

0
h(um)wjdx

= −τ{um
t (1, t) + k(0)u(1, t) − k(t)u0(1) + k′ ∗ u(1, t)}wj(1), (2.5)

for 0 ≤ j ≤ m, satisfying the following initial conditions

um(0) = u0, um
t (0) = u1.

Our first step is to show that the approximate solutions remain bounded for any m ∈ N. To do

this, let us multiply equation (2.5) by h′j,m(t) and summing up the product results in j we get

1

2

d

dt

∫ 1

0
{|um

t |2 + µ(x, t)|um
x |2 + 2H(um)}dx =

∫ 1

0
µt(x, t)|u

m
x |2dx

−τ{|um
t (1, t)|2 + k(0)u(1, t)ut(1, t) − k(t)u0(1)ut(1, t) + k′ ∗ u(1, t)ut(1, t)}. (2.6)

Using Lemma 2.2 for the term

k′ ∗ u(1, t)ut(1, t)

and the properties of k, k′ and k′′ from assumption (2.3) we conclude by (2.6)

d

dt
E(t, um) ≤ cE(0, um).

Taking into account the definition of the initial data of um we conclude that

E(t, um) ≤ c, ∀t ∈ [0, T ], ∀m ∈ N. (2.7)

Next, we shall find an estimate for the second order energy. First, let us estimate the initial

data um
tt (0) in the L2 − norm. Letting t → 0+ in the equation (2.5), multiplying the result by

h′′j,m(0) and using the compatibility condition (2.4) we get

||um
tt (0)||

2
2 =

∫ 1

0
µ(x, 0)um

xx(0)um
tt (0)dx+

∫ 1

0
µx(x, 0)um

x (0)um
tt (0)dx −

∫ 1

0
h(u0)u

m
tt (0)dx.

Since u0 ∈ H2(0, 1), the hypothesis (1.6) for the function h together with the Sobolev’s imbed-

ding imply that h(u0) ∈ L2(0, 1). Hence

||um
tt (0)||

2
2 ≤ c1, ∀m ∈ N.

Differentiating the equation (2.5) with respect to the time, multiplying by h ′′

j,m(t) and summing

up the product results in j, we arrive at

1

2

d

dt

∫ 1

0
{|um

tt |
2 + µ(x, t)|um

xt|
2}dx =

1

2

∫ 1

0
µt(x, t)|u

m
xt|

2dx−

∫ 1

0
µt(x, t)u

m
x u

m
xttdx

−

∫ 1

0
h′(um)um

t u
m
tt dx− τ |um

tt (1, t)|
2

−τk(0)um
t (1, t)um

tt (1, t) + τk′(t)u0(1)u
m
tt (1, t)

−τ(k′ ∗ u(1, t))tu
m
tt (1, t). (2.8)
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Note that
∫ 1

0
µtu

m
x u

m
xttdx = µt(1, t)u

m
x (1, t)um

tt (1, t) −

∫ 1

0
µxtu

m
x u

m
tt dx

−

∫ 1

0
µtu

m
xxu

m
tt dx.

Using the elementary inequality 2ab ≤ a2 + b2, the hypothesis on µ and the inequality

|um
x (1, t)|2 ≤ c{|um

t (1, t)|2 + k2(t)|um(1, t)|2

k(0)|k′|2um(1, t) + k(0)k(t)|um(1, t)|2}

we obtain
∫ 1

0
µtu

m
x u

m
xttdx ≤ c{|um

t (1, t)|2 + k2(t)|u0(1)|
2 + k(0)|k′|2um(1, t)

+k(0)k(t)|um(1, t)|2} +
τ

2
|um

tt (1, t)|
2 + c

∫ 1

0
|um

x |2dx

+c

∫ 1

0
|um

tt |
2dx+

1

2

∫ 1

0
|um

xx|
2dx. (2.9)

Note that

(k′ ∗ um(1, t))t = k′(0)um(1, t) +

∫ t

0
k′′(t− s)um(1, s)ds

= k′(t)u0(1) +

∫ t

0
k′(t− s)um

t (1, s)ds. (2.10)

Substituting the inequality (2.9) and identity (2.10) into (2.8) and using Lemma 2.2 we arrive

at

1

2

d

dt

∫ 1

0
{|um

tt |
2 + µ(x, t)|um

xt|
2}dx ≤

1

2

∫ 1

0
µt(x, t)|u

m
xt|

2dx+ c{|um
t (1, t)|2

+k2(t)|u0(1)|
2 + k(0)|k′|2um(1, t)

+k(0)k(t)|um(1, t)|2} + c

∫ 1

0
|um

tt |
2dx

−

∫ 1

0
h′(um)um

t u
m
tt dx−

τ

2
|um

tt (1, t)|
2

+
τ

2
k′(t)|um

t (1, t)|2 −
τ

2
k′′2um

t (1, t)

+
τ

2

d

dt

[
k′2um

t (1, t) − k(t)|um
t (1, t)|2

]

+
1

2

∫ 1

0
|um

xx|
2dx. (2.11)

From the condition (1.6) and from the Sobolev imbedding we have

∫ 1

0
h′(um)um

t u
m
tt dx ≤ c

[∫ 1

0
(1 + |um

x |2)dx

] ρ−1
2

[∫ 1

0
|um

xt|
2dx

] 1
2
[∫ 1

0
|um

tt |
2dx

] 1
2

.
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Taking into account the first estimate (2.7) we conclude that

∫ 1

0
h′(um)um

t u
m
tt dx ≤ c

{∫ 1

0
|um

xt|
2dx+

∫ 1

0
|um

tt |
2dx

}
. (2.12)

From the approximate system (2.5) we get

∫ 1

0
µ|um

xx|
2dx =

∫ 1

0
um

tt u
m
xxdx−

∫ 1

0
µxu

m
x u

m
xxdx+

∫ 1

0
h(um)um

xxdx.

Using the elementary inequality, the Sobolev’s imbedding and the hypothesis (1.6) we obtain

1

2

∫ 1

0
|um

xx|
2dx ≤ c

{∫ 1

0
|um

tt |
2dx+

∫ 1

0
|um

x |2dx

}
. (2.13)

Denoting by

E0(t, u
m) =

1

2

∫ 1

0
{|um

t |2 + µ(x, t)|
∂um

∂x
|2}dx+

τ

2
k(t)|um(1, t)|2 −

τ

2
k′2um(1, t)

we find by (2.11)

d

dt
E0(t, u

m
t ) ≤

1

2

∫ 1

0
µt(x, t)|u

m
xt|

2dx+ c{|um
t (1, t)|2

+k2(t)|u0(1)|
2 + k(0)|k′|2um(1, t)

+k(0)k(t)|um(1, t)|2} + c

∫ 1

0
|um

tt |
2dx

−

∫ 1

0
h′(um)um

t u
m
tt dx−

τ

2
|um

tt (1, t)|
2

+
τ

2
k′(t)|um

t (1, t)|2 −
τ

2
k′′2um

t (1, t)

+
1

2

∫ 1

0
|um

xx|
2dx. (2.14)

Substituting the inequalities (2.12) and (2.13) into (2.14) and using Poincaré’s inequality , the

hypothesis (2.3), the first estimate (2.7) and applying Gronwall’s inequality we conclude that

E0(t, u
m
t ) ≤ c, ∀t ∈ [0, T ], ∀m ∈ N. (2.15)

The rest of the proof is a matter of routine. �

3 . Exponential Decay

In this section we shall study the asymptotic behavior of the solutions of system (1.1)-(1.3) when

the resolvent kernel k is exponentially decreasing, that is, there exist positive constants b1, b2

such that:

k(0) > 0, k′(t) ≤ −b1k(t), k′′(t) ≥ −b2k
′(t). (3.1)

EJQTDE, 2002 No. 7, p. 8



Note that this conditions implies that

k(t) ≤ k(0)e−b1t.

The point of departure of this study is to establish some inequalities given in the next lemmas.

Lemma 3.1 Any strong solution of system (1.1)-(1.3) satisfies

d

dt
E(t) ≤ −

τ

2
|ut(1, t)|

2 +
τ

2
k2(t)|u0(1)|

2 +
τ

2
k′(t)|u(1, t)|2

−
τ

2
k′′(t)2u(1, t) +

1

2

∫ 1

0
µt(x, t)|ux|

2dx.

Proof. Multiplying (1.1) by ut and integrating over [0, 1] we get

1

2

d

dt

∫ 1

0
[|ut|

2 + µ(x, t)|ux|
2 + 2H(u)]dx = µ(1, t)ux(1, t)ut(1, t) +

1

2

∫ 1

0
µt(x, t)|ux|

2dx. (3.2)

From equality (2.1) we have

µ(1, t)ux(1, t)ut(1, t) = −τ |ut(1, t)|
2 − τk(0)u(1, t)ut(1, t)+ τk(t)u0(1)ut(1, t)−k

′ ∗u(1, t)ut(1, t).

Using Lemma 2.2 we get

k′ ∗ u(1, t)ut(1, t) = −
1

2
k′(t)|u(1, t)|2 +

1

2
k′′2u(1, t) −

1

2

d

dt

[
k′2u(1, t) − (k(t) − k(0))|u(1, t)|2

]

Substituting the two above equalities into (3.2), our conclusion follows. �

Let us define the functional

ψ(t) =

∫ 1

0
(xux + (

1

2
− θ)u)utdx+

τ

2
|u(1, t)|2,

where θ is a positive number. The following Lemma plays an important role for the construction

of the Lyapunov functional.

Lemma 3.2 Any strong solution of system (1.1)-(1.3) satisfies

d

dt
ψ(t) ≤ −θ

∫ 1

0
|ut|

2dx− (
1

2
− θ)

∫ 1

0
µ|ux|

2dx− (
δ

2
− θ(2 + δ))

∫ 1

0
H(u)dx

+c|ut(1, t)|
2 + (c+

τ

2ε
)k(t)2|u0(1)|

2 + ck(0)k(t)|u(1, t)|2

+(c+
τ

2ε
)k(0)|k′|2u(1, t) +

1

2

∫ 1

0
xµx(x, t)|ux|

2dx

where ε = µ0

ecτ , c̃ is a positive constant and 0 < θ < min( 1
2 ,

δ
2(2+δ) ).

Proof. Using the equation (1.1) we get

d

dt

∫ 1

0
ut(xux + (

1

2
− θ)u)dx ≤

1

2
|ut(1, t)|

2 − θ

∫ 1

0
|ut|

2dx+
1

2
µ(1, t)|ux(1, t)|2

−(1 − θ)

∫ 1

0
µ|ux|

2dx+ (
1

2
− θ)µ(1, t)ux(1, t)u(1, t)

+

∫ 1

0
H(u)dx− (

1

2
− θ)

∫ 1

0
uh(u)dx. (3.3)
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Using the hypotheses (1.5) we have

−(
1

2
− θ)

∫ 1

0
uh(u)dx ≤ −(2 + δ)(

1

2
− θ)

∫ 1

0
H(u)dx. (3.4)

Note that

−k(0)u(1, t) − k′ ∗ u(1, t) = −

∫ t

0
k′(t− s)[u(1, s) − u(1, t)]ds − k(t)u(1, t)

≤ (

∫ t

0
|k′(s)|ds)

1
2 [|k′|2u(1, t)]

1
2 + k(t)|u(1, t)|

≤ |k(t) − k(0)|
1
2 [|k′|2u(1, t)]

1
2 + k(t)|u(1, t)|. (3.5)

From equality (2.1), from the hypothesis for the function µ and from the inequality (3.5) we

have

µ(1, t)|ux(1, t)|2 ≤ c{|ut(1, t)|
2 + k2(t)|u0(1)|

2

+k(0)|k′(t)|2u(1, t) + k(0)k(t)|u(1, t)|2}. (3.6)

From equality (2.1) we have

µ(1, t)ux(1, t)u(1, t) = −
τ

2

d

dt
|u(1, t)|2 − k(0)|u(1, t)|2

+k(t)u0(1)u(1, t) − k′ ∗ u(1, t)u(1, t).

Using (3.5), Poincare’s inequality and the elementary inequality 2ab ≤ a2 + b2 we conclude that

µ(1, t)ux(1, t)u(1, t) ≤ −
τ

2

d

dt
|u(1, t)|2 +

τ

2ε
k2(t)|u0(1)|

2

+
τk(0)

2ε
|k′|2u(1, t) + ck(0)k(t)|u(1, t)|2

+
c̃ετ

2

∫ 1

0
|ux|

2dx (3.7)

where c̃ is a fixed positive constant. Substituting (3.6)-(3.7) into (3.3) and fixing ε = µ0

ecτ follows

the conclusion of Lemma. �

Let us introduce the functional

L(t) = NE(t) + ψ(t), (3.8)

with N > 0. It is not difficult to see that L(t) verifies

q0E(t) ≤ L(t) ≤ q1E(t), (3.9)

where q0 and q1 are positive constants. We will show later that the functional L satisfies the

inequality of the following Lemma.
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Lemma 3.3 Let f be a real positive function of class C 1. If there exist positive constants γ0, γ1

and c0 such that

f ′(t) ≤ −γ0f(t) + c0e
−γ1t,

then there exist positive constants γ and c such that

f(t) ≤ (f(0) + c)e−γt.

Proof. First, let us suppose that γ0 < γ1. Define F (t) by

F (t) := f(t) +
c0

γ1 − γ0
e−γ1t.

Then

F ′(t) = f ′(t) −
γ1c0

γ1 − γ0
e−γ1t ≤ −γ0F (t).

Integrating from 0 to t we arrive at

F (t) ≤ F (0)e−γ0t ⇒ f(t) ≤ (f(0) +
c0

γ1 − γ0
)e−γ0t.

Now, we shall assume that γ0 ≥ γ1. Under these conditions we get

f ′(t) ≤ −γ1f(t) + c0e
−γ1t ⇒ (eγ1tf(t))′ ≤ c0.

Integrating from 0 to t we obtain

f(t) ≤ (f(0) + c0t)e
−γ1t.

Since t ≤ (γ1 − ε)e(γ1−ε)t for any 0 < ε < γ1 we conclude that

f(t) ≤ (f(0) + c0(γ1 − ε))e−εt.

This completes the present proof. �

Finally, we shall show the main result of this section.

Theorem 3.1 Let us suppose that the initial data (u0, u1) ∈ V ×L2(0, 1) and that the resolvent

k satisfies the conditions (3.1). Then there exist positive constants α1 and γ1 such that

E(t) ≤ α1e
−γ1tE(0), ∀t ≥ 0.

Proof. We will suppose that the initial data (u0, u1) ∈ H
2(0, 1)∩V ×V and satisfies (2.3); our

conclusion will follow by standard density arguments. Using the Lemmas 3.1 and 3.2 we get

d

dt
L(t) ≤ −

τ

2
N |ut(1, t)|

2 +
τ

2
Nk2(t)|u0(1)|

2 +
τ

2
Nk′(t)|u(1, t)|2

−
τ

2
Nk′′2u(1, t) − θ

∫ 1

0
|ut|

2dx− (
1

2
− θ)

∫ 1

0
µ(x, t)|ux|

2dx

−(
δ

2
− θ(2 + δ))

∫ 1

0
H(u))dx + c|ut(1, t)|

2 + ck2(t)|u0(1)|
2

+ck(0)k(t)|u(1, t)|2 + ck(0)|k′|2u(1, t). (3.10)
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Then, choosing N large enough we obtain

d

dt
L(t) ≤ −q2E(t) + ck2(t)E(0),

where q2 > 0 is a small constant. Here we used the assumptions (3.1) in order to conclude the

following estimates

−
τ

2
k′′2u(1, t) ≤ c1k

′
2u(1, t),

τ

2
k′|u(1, t)|2 ≤ −c1k|u(1, t)|

2

for the corresponding two terms appearing in the inequality (3.8). Using (3.9) we obtain

d

dt
L(t) ≤ −

q2

q1
L(t) + ck2(t)E(0).

Using the exponential decay of k and Lemma 3.3 we conclude

L(t) ≤ {L(0) + c}e−γ1t

for all t ≥ 0, where γ1 = min(γ0,
q2

q1
). Use of (3.9) now completes the proof. �

4 . Polynomial rate of decay

Here, our attention will be focused on the uniform rate of decay when the resolvent k decays

polynomially as (1 + t)−p. In this case we will show that the solution also decays polynomially

with the same rate. Therefore, we will assume that the resolvent kernel k satisfies

k(0) > 0, k′(t) ≤ −b1[k]
1+ 1

p , k′′(t) ≥ b2[−k
′(t)]

1+ 1
p+1 , (4.1)

for some p > 1 and some positive constants b1 and b2. The following lemmas will play an

important role in the sequel.

Lemma 4.1 Let m and h be integrable functions, and let 0 ≤ r < 1 and q > 0. Then, for t ≥ 0:

∫ t

0
|m(t− s)h(s)|ds ≤ (

∫ t

0
|m(t− s)|

1+ 1−r

q |h(s)|ds)
q

q+1 (

∫ t

0
|m(t− s)|r|h(s)|ds)

1
q+1 .

Proof. Let

v(s) := |m(t− s)|1−
r

q+1 |h(s)|
q

q+1 , w(s) := |m(t− s)|
r

q+1 |h(s)|
1

q+1 .

Then using Hölder’s inequality with δ = q+1
q

for v and δ∗ = q+ 1 for w we arrive at the conclu-

sion. �
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Lemma 4.2 Let p > 1, 0 ≤ r < 1 and t ≥ 0. Then for r > 0,

(|k′|2u(1, t))
1+(1−r)(p+1)
(1−r)(p+1)

≤ 2
1

(1−r)(p+1) (

∫ t

0
|k′(s)|rds||u||2L∞((0,T ),H1(0,1)))

1
(1−r)(p+1) (|k′|

1+ 1
p+1 2u(1, t)),

and for r = 0

(|k′|2u(1, t))
p+2
p+1

≤ 2(

∫ t

0
||u(., s)||2H1(0,1)ds+ t||u(., s)||2H1(0,1))

1
p+1 (|k′|

1+ 1
p+1 2u(1, t)).

Proof. The above inequalitiy is a immediate consequence of Lemma 4.1 with

m(s) := |k′(s)|, h(s) := |u(x, t) − u(x, s)|2, q := (1 − r)(p+ 1)

and t fixed. �

Lemma 4.3 Let f ≥ 0 be a differentiable function satisfying

f ′(t) ≤
−c̄1

f(0)
1
α

f(t)1+
1
α +

c̄2

(1 + t)β
f(0), for t ≥ 0,

for some positive constants c̄1, c̄2, α and β such that

β ≥ α+ 1.

Then there exists a constant c̄3 > 0 such that

f(t) ≤
c̄3

(1 + t)α
f(0), for t ≥ 0.

Proof. Let us denote by

F (t) = f(t) +
2c̄2
α

(1 + t)−αf(0).

Differentiating this function we have

F ′(t) = f ′(t) − 2c̄2(1 + t)(−α+1)f(0).

From hypothesis on f ′ and observing that β ≥ α+ 1 we get

F ′(t) ≤
−c̄1

f(0)
1
α

f(t)1+
1
α − c̄2(1 + t)−(α+1)f(0)

≤
−c

f(0)
1
α

[
f(t)1+

1
α +

(
f(0)

(1 + t)α

)1+ 1
α

]
.
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Noting that

F (t)1+
1
α ≤ f(t)1+

1
α +

(
f(0)

(1 + t)α

)1+ 1
α

we obtain

F ′(t) ≤ −
c

f(0)
1
α

F (t)1+
1
α .

Integrating the last inequality from 0 to t, it follows

F (t) ≤
cF (0)

(1 + ct)α
≤

c

(1 + t)α
f(0).

Therefore

f(t) ≤
c̄3

(1 + t)α
f(0).

This complete the present proof. �

Theorem 4.1 Let us suppose that the initial data (u0, u1) ∈ V ×L2(0, 1) and that the resolvent

k satisfies the conditions (4.1). Then there is a positive constant c for which we have

E(t) ≤
c

(1 + t)p+1
E(0).

Proof. We will suppose that the initial data (u0, u1) ∈ H2(0, 1) ∩ V × V and satisfies (2.4);

our conclusion will follow by standard density arguments. We define the functional L as in (3.8)

and we have the equivalence to the energy term E as give in (3.9) again. The negative term

−ck(t)|u(1, t)|2

can be obtained from Lemma 3.1 and from the estimate

k(t)|u(1, t)|2 ≤ c

∫ 1

0
µ(x, t)|ux|

2dx.

From the Lemmas 3.1 and 3.2, using the properties of k ′′ from the assumptions (4.1) for the

term

−
τ

2
k′′2u(1, t)

we obtain

d

dt
L(t) ≤ −c1(

∫ 1

0
|ut|

2 + µ(x, t)|ux|
2 +H(u)dx

+k(t)|u(1, t)|2 +N(−k′)
1+ 1

p+1 2u(1, t)) + c2k
2(t)E(0). (4.2)

Let us fix 0 < r < 1 such that

1

p+ 1
< r <

p

p+ 1
.

EJQTDE, 2002 No. 7, p. 14



Under this condition
∫

∞

0
|k′|r ≤ c

∫
∞

0

1

(1 + t)r(p+1)
<∞.

From the Lemma 4.2 we get

(−k′)1+
1

p+1 2u(1, t)

≥
c

E(0)
1

(1−r)(p+1)

((−k′)2u(1, t))
1+ 1

(1−r)(p+1)

(with c = c(r)). On the other hand since the energy is bounded we have

(k(t)|u(1, t)|2 +

∫ 1

0
|ut|

2 + µ(x, t)|ux|
2 +H(u)dx)

1+ 1
(1−r)(p+1)

≤ cE(0)
1

(1−r)(p+1) (k(t)|u(1, t)|2 +

∫ 1

0
|ut|

2 + µ(x, t)|ux|
2 +H(u)dx).

From inequality (4.2) using the last two inequalities we conclude:

d

dt
L(t) ≤ −

c

E(0)
1

(1−r)(p+1)

[(k(t)|u(1, t)|2 +

∫ 1

0
|ut|

2 + µ(x, t)|ux|
2

+H(u)dx)
1+ 1

(1−r)(p+1) + ((−k′)2u(1, t))
1+ 1

(1−r)(p+1) ] + ck2(t)E(0).

This implies, observing (3.9)

d

dt
L(t) ≤ −

c

L(0)
1

(1−r)(p+1)

L(t)
1+ 1

(1−r)(p+1) + ck2(t)E(0). (4.3)

Applying the Lemma 4.3 with f = L and β = 2p we have:

L(t) ≤
c

(1 + t)(1−r)(p+1)
L(0). (4.4)

Since (1 − r)(p+ 1) > 1 we obtain from the inequality (4.4)

∫
∞

0
E(s)ds ≤ c

∫
∞

0
L(s)ds ≤ cL(0), (4.5)

t||u(., t)||2H1(0,1) ≤ ctL(t) ≤ cL(0), (4.6)
∫ t

0
||u(., s)||2H1(0,1) ≤ c

∫
∞

0
L(t)dt ≤ cL(0). (4.7)

With the estimates (4.5)-(4.7) and using Lemma 4.2 (case r = 0) we obtain

(−k′)
1+ 1

p+1 2u(1, t) ≥
c

E(0)
1

p+1

((−k′)2u(1, t))
1+ 1

p+1 .

Hence, with the same arguments as in the derivation of (4.3), we have

d

dt
L(t) ≤ −

c

L(0)
1

p+1

L(t)
1+ 1

p+1 + ck2(t)E(0).
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Applying the Lemma 4.3, we obtain

L(t) ≤
c

(1 + t)p+1
L(0),

and hence by (3.9) we conclude

E(t) ≤
c

(1 + t)p+1
E(0),

which completes the present proof. �
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