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Abstract

Conditions that solutions of the first order neutral functional differen-
tial equation

(Mx)(t) ≡ x
′(t) − (Sx

′)(t) − (Ax)(t) + (Bx)(t) = f(t), t ∈ [0, ω],

are nondecreasing are obtained. Here A : C[0,ω] → L∞
[0,ω] , B : C[0,ω] →

L∞
[0,ω] and S : L∞

[0,ω] → L∞
[0,ω] are linear continuous operators, A and

B are positive operators, C[0,ω] is the space of continuous functions and
L∞

[0,ω] is the space of essentially bounded functions defined on [0, ω]. New
tests on positivity of the Cauchy function and its derivative are proposed.
Results on existence and uniqueness of solutions for various boundary
value problems are obtained on the basis of the maximum principles.

1 Preliminary

Our paper is devoted to the maximum principles for first order neutral functional
differential equation.

(Mx)(t) ≡ x′(t) − (Sx′)(t) − (Ax)(t) + (Bx)(t) = f(t), t ∈ [0, ω], (1.1)

where A : C[0,ω] → L∞
[0,ω] , B : C[0,ω] → L∞

[0,ω], S : L∞
[0,ω] → L∞

[0,ω] are lin-
ear continuous Volterra operators, A and B are positive operators, the spectral
radius ρ(S) of the operator S is less than one, here C[0,ω] is the space of con-
tinuous functions, L∞

[0,ω] is the space of essentially bounded functions defined
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on [0, ω]. We consider this equation in the space of absolutely continuous func-
tions D[0,ω]. By solutions of equation (1.1) we mean functions x : [0, ω] → R1

from the space D[0,ω] which satisfy it almost everywhere in [0, ω] and such that
x′ ∈ L∞

[0,ω].
We mean the Volterra operators according to the classical Tikhonov’s defi-

nition.
Definition 1.1. An operator T is called Volterra if any two functions x1

and x2 coinciding on an interval [0, a] have the equal images on [0, a], i.e.
(Tx1)(t) = (Tx2)(t) for t ∈ [0, a] and for every 0 < a ≤ ω.

Neutral functional differential equations have their own history (see, for ex-
ample, [11, 13, 14, 17] and also the bibliography therein). Various results on
existence and uniqueness of boundary value problems for neutral equations and
their stability were obtained in [1], where also the basic results about the rep-
resentation of solutions were presented. Note also in this connection the papers
[3, 4, 8, 12], where results on nonoscillation and positivity of the Cauchy and
Green’s functions for neutral functional differential equations were obtained. All
results about positivity of solutions of neutral equations were obtained under
assumption that the operator S : L∞

[0,ω] → L∞
[0,ω] is positive. The first results

about maximum principles and nondecreasing solutions in the case of negative
operator S were obtained in [7]. In this paper we study a general case of the op-
erator S and do not assume nor positivity and nor negativity of this operator.
Results about nondecreasing solutions of homogeneous and nonhomogeneous
equations are obtained.

Let us note here that the operator S : L∞
[0,ω] → L∞

[0,ω] in equation (1.1) can
be, for example, of the following forms

(Sy)(t) =

m
∑

j=1

qj(t)y(τj(t)), where τj(t) ≤ t, t ∈ [0, ω], (1.2)

y(τj(t)) = 0 if τj(t) < 0,

or

(Sy)(t) =

n
∑

i=1

∫ t

0

ki(t, s)y(s)ds, t ∈ [0, ω], (1.3)

where qj(t) are essentially bounded measurable functions, τj(t) are measurable
functions for j = 1, ...,m, and ki(t, s) are summable with respect to s and
measurable essentially bounded with respect to t for i = 1, ..., n. All linear com-
binations of operators (1.2) and (1.3) and their superpositions are also allowed.

Properties of operator (1.2) were studied, for example, in [9, 10]. To achieve
the action of operator (1.2) in the space of essentially bounded functions L∞

[0,ω],

we have for each j to assume that mes {t : τj(t) = c} = 0 for every constant c.
We suppose everywhere below that this condition is fulfilled. It is known that the
spectral radius of the integral operator (1.3), considered on every finite interval
t ∈ [0, ω], is equal to zero (see, for example, [1]). Let us note the sufficient
conditions of the fact that the spectral radius ρ(S) of the operator S, defined
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by formula (1.2), is less than one. Define the set κj
ε = {t ∈ [0, ω] : t− τj(t) ≤ ε}

and κε =
⋃m

j=1 κ
j
ε. If there exists such ε that mes (κε) = 0, then on every

finite interval t ∈ [0, ω] the spectral radius of the operator S, defined by formula
(1.2) for t ∈ [0, ω], is zero. In the case mes (κε) > 0, the spectral radius of
the operator S defined by (1.2) on the finite interval t ∈ [0, ω] is less than one
if ess supt∈κε

∑m

j=1 |qj(t)| < 1. The inequality ess supt∈[0,∞)

∑m

j=1 |qj(t)| < 1
implies that the spectral radius ρ(S) of the operator S considered on the semiaxis
t ∈ [0,+∞) (i.e. in the case ω = ∞) and defined by (1.2), satisfies the inequality
ρ(S) < 1. We also assume that τj are nondecreasing functions for j = 1, ...,m.

In the case, when ρ(S) < 1, it is known [1] that the general solution of
equation (1.1) has the representation

x(t) =

∫ t

0

C(t, s)f(s)ds+X(t)x(0), (1.4)

where the kernel C(t, s) is called the Cauchy function, and X(t) is the solution
of the homogeneous equation (Mx)(t) = 0, t ∈ [0, ω], satisfying the condition
X(0) = 1. On the basis of representation (1.4), the results about differential
inequalities (under corresponding conditions, solutions of inequalities are greater
or less than solution of the equation) can be formulated in the form of positivity
of the Cauchy function C(t, s) and the solution X(t). Results about comparison
of solutions for delay differential equations solved with respect to the derivative
(i.e. in the case when S is the zero operator) were obtained in [6, 12, 15], where
assertions on existence and uniqueness of solutions of various boundary value
problems for first order functional differential equations were obtained.

Our assertions are based on the assumption that the operator A is a domi-
nant among two operators A and B.

In the case, when the spectral radius of the operator S : L∞
[0,ω] → L∞

[0,ω] is

less than one, we can rewrite equation (1.1) in the equivalent form

(Nx)(t) ≡ x′(t) − (I − S)−1(A− B)x(t) = (I − S)−1f(t), t ∈ [0, ω], (1.5)

and its general solution can be written in the form

x(t) =

∫ t

0

C0(t, s)(I − S)−1f(s)ds+X(t)x(0), (1.6)

where C0(t, s) is the Cauchy function of equation (1.5) [1]. Note that this
approach in the study of neutral equations was first used in the paper [8]. Below
in the paper we use the fact that the Cauchy function C0(t, s) coincides with
the fundamental function of equation (1.5). It is also clear that

∫ t

0

C(t, s)f(s)ds =

∫ t

0

C0(t, s)(I − S)−1f(s)ds. (1.7)

Positivity of C0(t, s) can be obtained for equation (1.5) using results of [6, 12, 15].
In the case of positive operator S, we get that the operator (I −S)−1 = I +S+
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S2+ ... is positive, and positivity of C(t, s) follows from equality (1.7). Without
assumption about positivity of the operator S we cannot make conclusion about
positivity of solutions. In this paper we demonstrate that for corresponding
classes of the right hand sides f , solutions are nondecreasing.

2 Several Denotations and Remarks

In this paragraph we consider the equation

(Mx)(t) ≡ x′(t) − (Sx′)(t) − (Ax)(t) + (Bx)(t) = f(t), t ∈ [0, ω], (2.1)

where A : C[0,ω] → L∞
[0,ω] and B : C[0,ω] → L∞

[0,ω] are positive linear continuous

Volterra operators, S : L∞
[0,ω] → L∞

[0,ω] and the spectral radius ρ(S) of the
operator S is less than one.

These operators A and B are u−bounded operators and according to [16],
they can be written in the form of the Stieltjes integrals

(Ax)(t) =

∫ t

0

x(ξ)dξa(t, ξ) and (Bx)(t) =

∫ t

0

x(ξ)dξb(t, ξ), t ∈ [0, ω], (2.2)

respectively, where the functions a(·, ξ) and b(·, ξ) : [0, ω] → R1 are measurable
for ξ ∈ [0, ω], a(t, ·) and b(t, ·) : [0, ω] → R1 has the bounded variation for
almost all t ∈ [0, ω] and

∨t

ξ=0 a(t, ξ),
∨t

ξ=0 b(t, ξ) are essentially bounded.

Consider for convenience equation (2.1) in the following form

(Mx)(t) ≡ x′(t)−(Sx′)(t)−

∫ t

0

x(ξ)dξa(t, ξ)+

∫ t

0

x(ξ)dξb(t, ξ) = f(t), t ∈ [0, ω].

(2.3)
Consider also the homogeneous equation

(Mx)(t) ≡ x′(t) − (Sx′)(t) − (Ax)(t) + (Bx)(t) = 0, t ∈ [0, ω], (2.5)

and the following auxiliary equations (which are analogs of the so called s-
trancated equations defined first in [2])

(Msx)(t) ≡ x′(t)−(Ssx
′)(t)−(Asx)(t)+(Bsx)(t) = 0, t ∈ [s, ω], s ≥ 0, (2.6)

where the operators As : C[s,ω] → L∞
[s,ω] and Bs : C[s,ω] → L∞

[s,ω] are defined by
the formulas

(Asx)(t) =

∫ t

s

x(ξ)dξa(t, ξ) and (Bsx)(t) =

∫ t

s

x(ξ)dξb(t, ξ), t ∈ [s, ω], (2.7)

and the operator Ss : L∞
[s,ω] → L∞

[s,ω] is defined by the equality

(Ssys)(t) = (Sy)(t), where ys(t) = y(t) for t ≥ s and y(t) = 0 for t < s. (2.8)
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For operators defined by equalities (1.2) and (1.3) we have

(Ssy)(t) =

m
∑

j=1

qj(t)y(τj(t)), where τj(t) ≤ t, y(τj(t)) = 0 if τj(t) < s, (2.9)

t ∈ [s, ω],

and

(Ssy)(t) =

n
∑

i=1

∫ t

s

ki(t, s)y(s)ds, t ∈ [s, ω], (2.10)

respectively. It is clear that ρ(Ss) < 1 for every s ∈ [0,+∞) if ρ(S) < 1.

Functions from the spaceD[s,ω] of absolutely continuous functions x : [s, ω] →
R1, x′ ∈ L∞

[s,ω], satisfying equation (2.6) almost everywhere in [s, ω], we call so-
lutions of this equation.

3 About Nondecreasing Solutions of Neutral Equa-

tions

Let us consider the equation

(Mx)(t) ≡ x′(t) − (Sx′)(t) − (Ax)(t) + (Bx)(t) = f(t), t ∈ [0, ω]. (3.1)

where A : C[0,ω] → L∞
[0,ω] and B : C[0,ω] → L∞

[0,ω] are positive linear continuous
Volterra operators, the operator S : L∞

[0,ω] → L∞
[0,ω] admits the representation

S = S+ − S−, where S+, S− : L∞
[0,ω] → L∞

[0,ω] are positive operators, and its

spectral radius ρ(S) is less than one. If the operator S is not positive, then the

operator (I − S)
−1

= I +S+S2 +S3 + ... is not, generally speaking, a positive
operator. This is the main difficulty in the study of positivity of the solution x
and its derivative x′. All previous results about the positivity of solutions for
this equation assumed positivity of the operator S (see, for example, [3, 4, 12])
or its negativity [7].

Let us define the operator |S| : L∞
[0,ω] → L∞

[0,ω] by the formula (|S| y)(t) =

((S+ + S−)y)(t), t ∈ [0, ω].
Theorem 3.1. Assume that the spectral radius ρ(|S|) of the operator |S| :

L∞
[0,ω] → L∞

[0,ω] is less than one, A,B are positive operators,

ϕs(t) ≡ ((As −Bs)1)(t) ≥ 0 for t ∈ [s, ω], (3.2)

for every s ∈ [0, ω), and there exists an essentially bounded function ψs satis-
fying the inequalities

ψs(t) − (|Ss|ψs)(t) ≥ ϕs(t), 2ϕs(t) ≥ ψs(t), t ∈ [s, ω]. (3.3)
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Then the solution x of the homogeneous equation

(Mx)(t) ≡ x′(t) − (Sx′)(t) − (Ax)(t) + (Bx)(t) = 0, t ∈ [0, ω], (3.4)

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈
[0,+∞), and for every nonnegative nondecreasing function f ∈ L∞

[0,ω] satisfy-

ing inequality 2f(t) ≥ φ(t), where essentially bounded φ satisfies the inequality
φ(t) − (|S|φ)(t) ≥ f(t), the solution x of equation (3.1) is nonnegative and
nondecreasing for t ∈ [0, ω].

Remark 3.1. If essinf 0≤s≤t≤ωϕs(t) > 0, and the first of inequalities (3.3)
is fulfilled, then the spectral radius of the operator |S| : L∞

[0,ω] → L∞
[0,ω] is less

than one[18].
Remark 3.2. The condition

(A1)(t) ≥ (B1)(t) for t ∈ [0, ω],

cannot be set instead of condition (3.2) as Example 2.1 in the paper [7], obtained
in the case of zero operator S , demonstrates.

In Theorem 3.1 we have to verify conditions (3.2) and (3.3) for all positive
s. In the case of corresponding inequalities between deviating arguments we can
do with these inequalities for s = 0 only.

Below we consider the case of the operator S defined by the equality

(Sy)(t) = q(t)y(r(t)), where r(t) ≤ t, y(r(t)) = 0 if r(t) < 0, t ∈ [0, ω],
(3.5)

for this operator the operator |S| is of the form

(|S| y)(t) = |q(t)| y(r(t)), where r(t) ≤ t, y(r(t)) = 0 if r(t) < 0, t ∈ [0, ω].
(3.6)

Note that we do not assume for operator S nor q(t) ≥ 0 for t ∈ [0,+∞) nor
q(t) ≤ 0 for t ∈ [0, ω]. Define the function

χ(t, s) =







0, t < s,

1, t ≥ s.

Let us start with the equation

x′(t) − q(t)x′(r(t)) − a(t)x(g(t)) + b(t)x(h(t)) = f(t), t ∈ [0, ω], (3.7)

x(ξ) = x′(ξ) = 0 for ξ < 0. (3.8)

Theorem 3.2. Assume that the spectral radius ρ(|S|) of the operator |S| :
L∞

[0,ω] → L∞
[0,ω] defined by equality (3.6) is less than one, r(t), h(t) and g(t) are
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nondecreasing functions, the coefficients satisfy the inequalities a(t) ≥ 0, b(t) ≥
0, g(t) ≥ h(t) and

ϕ(t) ≡ a(t)χ(g(t), 0) − b(t)χ(h(t), 0) ≥ 0 for t ∈ [0, ω], (3.9)

and there exists an essentially bounded function ψ satisfying the inequalities

ψ(t) − |q(t)|ψ(r(t))χ(r(t), 0) ≥ ϕ(t), 2ϕ(t) ≥ ψ(t), t ∈ [0, ω]. (3.10)

Then the solution x of the equation

x′(t) − q(t)x′(r(t)) − a(t)x(g(t)) + b(t)x(h(t)) = 0, t ∈ [0, ω], (3.11)

x(ξ) = x′(ξ) = 0 for ξ < 0, (3.12)

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0, ω]
and in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], satisfying

the inequality 2f(t) ≥ φ(t), with essentially bounded function φ satisfying the
inequality φ(t)−(|S|φ)(t) ≥ f(t), the solution x of equation (3.7) is nonnegative
and nondecreasing for t ∈ [0, ω].

Consider the equation

x′(t) − q(t)x′(r(t))+

+

m
∑

i=1

{

−

∫ g2i(t)

g1i(t)

x(ξ)dξai(t, ξ) +

∫ h2i(t)

h1i(t)

x(ξ)dξbi(t, ξ)

}

= f(t), (3.13)

t ∈ [0, ω],

x(ξ) = x′(ξ) = 0 for ξ < 0.

Theorem 3.3. Let the spectral radius ρ(|S|) of the operator |S| : L∞
[0,ω] →

L∞
[0,ω] defined by equality (3.6) be less than one, r(t) be a nondecreasing function

and the functions ai(t, ξ) and bi(t, ξ) be nondecreasing functions with respect to
ξ, 0 ≤ h1i(t) ≤ h2i(t) ≤ g1i(t) ≤ g2i(t) ≤ t, and the following inequalities be
fulfilled

ϕ(t) ≡

g
2i

(t)
∨

ξ=g
1i

(t)

ai(t, ξ) −

h
2i

(t)
∨

ξ=h
1i

(t)

bi(t, ξ) ≥ 0, (3.14)

for t ∈ [0, ω], i = 1, ...,m, and there exists an essentially bounded function
ψ satisfying condition (3.10), then the solution x of the equation

x′(t)− q(t)x′(r(t)) +

m
∑

i=1

{

−

∫ g2i(t)

g1i(t)

x(ξ)dξai(t, ξ) +

∫ h2i(t)

h1i(t)

x(ξ)dξbi(t, ξ)

}

= 0,

(3.15)
t ∈ [0, ω],
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such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0, ω] and
in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], satisfying the in-

equality 2f(t) ≥ φ(t), with essentially bounded function φ satisfying the inequal-
ity φ(t)− (|S|φ)(t) ≥ f(t), the solution x of equation (3.13) is nonnegative and
nondecreasing for t ∈ [0, ω].

Consider the integro-differential equation

x′(t) − q(t)x′(r(t)) −

m
∑

i=1

∫ g2i(t)

g1i(t)

mi(t, ξ)x(ξ)dξ+

+

m
∑

i=1

∫ h2i(t)

h1i(t)

ki(t, ξ)x(ξ)dξ = f(t), t ∈ [0, ω], (3.16)

x(ξ) = x′(ξ) = 0 for ξ < 0,

Denote h0(t) = max {h(t), 0} .
Theorem 3.4. Let the spectral radius ρ(|S|) of the operator |S| : L∞

[0,ω] →

L∞
[0,ω] defined by equality (3.6) be less than one, r(t) be a nondecreasing function

and h1i(t) ≤ h2i(t) ≤ g1i(t) ≤ g2i(t) ≤ t, ki(t, ξ) ≥ 0, mi(t, ξ) ≥ 0 for
t, ξ ∈ [0, ω], the following inequalities be fulfilled

ϕ(t) ≡

g0

2i
(t)

∫

g0

1i
(t)

mi(t, ξ)dξ −

h0

2i
(t)

∫

h0

1i
(t)

ki(t, ξ)dξ, (3.17)

t ∈ [0,+∞), i = 1, ...,m, and there exists an essentially bounded function ψ

satisfying condition (3.10), then the solution x of the equation

x′(t) − q(t)x′(r(t)) −
m

∑

i=1

∫ g2i(t)

g1i(t)

mi(t, ξ)x(ξ)dξ +
m

∑

i=1

∫ h2i(t)

h1i(t)

ki(t, ξ)x(ξ)dξ = 0,

(3.18)
t ∈ [0, ω],

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0,+∞)
and in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], satisfying the

inequality 2f(t) ≥ φ(t), with essentially bounded function φ satisfying the in-
equality φ(t)− (|S|φ)(t) ≥ f(t), the solution x of equation (3.16) is nonnegative
and nondecreasing for t ∈ [0, ω].

Consider the equation

x′(t)−q(t)x′(r(t))−

∫ g2(t)

g1(t)

m(t, ξ)x(ξ)dξ+b(t)x(h(t)) = f(t), t ∈ [0, ω], (3.19)

x(ξ) = x′(ξ) = 0 for ξ < 0.
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In the following assertion the integral term is dominant.
Theorem 3.5. Let the spectral radius ρ(|S|) of the operator |S| : L∞

[0,ω] →

L∞
[0,ω] defined by equality (3.6) be less than one, r(t) be a nondecreasing function,

q(t) ≥ 0, b(t) ≥ 0, m(t, ξ) ≥ 0, h(t) ≤ g1(t) ≤ g2(t) ≤ t for t, ξ ∈ [0, ω], and
the following inequality be fulfilled

ϕ(t) ≡

∫ g0

2
(t)

g0

1
(t)

m(t, ξ)dξ − b(t)χ(h(t), 0), t ∈ [0, ω], (3.20)

and there exists an essentially bounded function ψ satisfying condition (3.10).
Then the solution x of the equation

x′(t)− q(t)x′(r(t))−

∫ g2(t)

g1(t)

m(t, ξ)x(ξ)dξ + b(t)x(h(t)) = 0, t ∈ [0, ω], (3.21)

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0, ω]
and in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], satisfying the

inequality 2f(t) ≥ φ(t), with essentially bounded function φ satisfying the in-
equality φ(t)− (|S|φ)(t) ≥ f(t), the solution x of equation (3.19) is nonnegative
and nondecreasing for t ∈ [0, ω].

Consider the equation

x′(t)−q(t)x′(r(t))−a(t)x(g(t))+

∫ h2(t)

h1(t)

k(t, ξ)x(ξ)dξ = f(t), t ∈ [0, ω], (3.22)

x(ξ) = x′(ξ) = 0 for ξ < 0.

In the following assertion the term a(t)x(g(t)) is dominant.
Theorem 3.6. Let the spectral radius ρ(|S|) of the operator |S| : L∞

[0,∞) →

L∞
[0,∞) defined by equality (3.6) be less than one, r(t) be a nondecreasing func-

tion, h1(t) ≤ h2(t) ≤ g(t) ≤ t, q(t) ≥ 0, k(t, ξ) ≥ 0, a(t) ≥ 0 for t, ξ ∈ [0, ω],
and the following inequality

ϕ(t) ≡ a(t) −

h0

2
(t)

∫

h0

1
(t)

k(t, ξ)dξ ≥ 0, t ∈ [0, ω], (3.23)

be fulfilled, and there exists an essentially bounded function ψ satisfying condi-
tion (3.10). Then the solution x of the equation

x′(t) − q(t)x′(r(t)) − a(t)x(g(t)) +

∫ h2(t)

h1(t)

k(t, ξ)x(ξ)dξ = 0, t ∈ [0, ω], (3.24)

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0,∞)
and in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], satisfying the
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inequality 2f(t) ≥ φ(t), with essentially bounded function φ satisfying the in-
equality φ(t)− (|S|φ)(t) ≥ f(t), the solution x of equation (3.22) is nonnegative
and nondecreasing for t ∈ [0, ω].

Consider now the equation

x′(t) − q(t)x′(r(t)) − a(t)x(g(t)) + b(t)x(h(t))−

−

∫ g2(t)

g1(t)

m(t, ξ)x(ξ)dξ +

∫ h2(t)

h1(t)

k(t, ξ)x(ξ)dξ = f(t), t ∈ [0, ω], (3.25)

x(ξ) = x′(ξ) = 0 for ξ < 0.

In the following assertion we do not assume inequalities k(t, ξ) ≤ m(t, ξ) or

b(t) ≤ a(t). Here the sum a(t)x(g(t))+
∫ g2(t)

g1(t)
m(t, ξ)x(ξ)dξ is a dominant term.

Theorem 3.7. Let the spectral radius ρ(|S|) of the operator |S| : L∞
[0,ω] →

L∞
[0,ω] defined by equality (3.6) be less than one, r(t) be a nondecreasing function,

k(t, ξ) ≥ 0, m(t, ξ) ≥ 0, a(t) ≥ 0, b(t) ≥ 0, q(t) ≥ 0, h(t) ≤ g1(t) ≤ g2(t) ≤
t, h1(t) ≤ h2(t) ≤ g(t) ≤ t for t, ξ ∈ [0, ω], the following inequalities be fulfilled

∫ g0

2
(t)

g0

1
(t)

m(t, ξ)dξ − b(t)χ(h(t), 0) ≥ 0, t ∈ [0, ω], (3.26)

a(t)χ(g(t), 0) −

∫ h0

2
(t)

h0

1
(t)

k(t, ξ)dξ ≥ 0, t ∈ [0, ω], (3.27)

and there exists an essentially bounded function ψ satisfying condition (3.10)
with

ϕ(t) ≡

∫ g0

2
(t)

g0

1
(t)

m(t, ξ)dξ + a(t)χ(g(t), 0) − b(t)χ(h(t), 0) −

∫ h0

2
(t)

h0

1
(t)

k(t, ξ)dξ ≥ 0,

t ∈ [0, ω],

. Then the solution x of the equation

x′(t) − q(t)x′(r(t)) − a(t)x(g(t)) + b(t)x(h(t))−

−

∫ g2(t)

g1(t)

m(t, ξ)x(ξ)dξ +

∫ h2(t)

h1(t)

k(t, ξ)x(ξ)dξ = 0, (3.28)

t ∈ [0, ω],

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0, ω]
and in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], satisfying the

inequality 2f(t) ≥ φ(t), with essentially bounded function φ satisfying the in-
equality φ(t)− (|S|φ)(t) ≥ f(t), the solution x of equation (3.25) is nonnegative
and nondecreasing for t ∈ [0, ω].
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Remark 3.3. The inequalities φ − |S|φ ≥ f, 2f ≥ φ for the operator |S| ,
defined by (3.6), nondecreasing function f and φ(t) = (I−|S|)−1f are fulfilled if

|q| ≤ 1
2 . Actually in this case we get (I−|S|)−1f(t) = (I+ |S|+ |S|

2
+ ...)f(t) ≤

(I+|S|+|S|
2
+...) esssupt∈[0,t]f(s) = 1

1−|S| esssupt∈[0,t]f(s) = 1
1−|S|f(t) ≤ 2f(t).

Consider the equation

x′(t) − q(t)x′(r(t)) − ax(g(t)) + bx(h(t)) = f(t), t ∈ [0, ω], (3.29)

x(ξ) = x′(ξ) = 0 for ξ < 0.

with constant coefficients a and b.
Corollary 3.1. Assume that r(t) is increasing and h(t) and g(t) are non-

decreasing functions, the coefficients satisfy the inequalities a > b ≥ 0, |q(t)| ≤
1
2 , t − ε ≥ g(t) ≥ h(t) ≥ 0, where ε is a positive constant, and there exists an
essentially bounded function ψ satisfying the inequalities

ψ(t) − |q(t)|ψ(r(t))χ(r(t), 0) ≥ a− b ≥
1

2
ψ(t), t ∈ [0, ω]. (3.30)

Then the solution x of the homogeneous equation

x′(t) − q(t)x′(r(t)) − a(t)x(g(t)) + b(t)x(h(t)) = 0, t ∈ [0, ω], (3.31)

x(ξ) = x′(ξ) = 0 for ξ < 0,

such that x(0) > 0, satisfies the inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0, ω]
and in the case of nondecreasing nonnegative function f ∈ L∞

[0,ω], the solution

x of equation (3.29) is nonnegative and nondecreasing for t ∈ [0, ω].

4. Proofs.
Let us write equation (3.1) in the form

(I − S)x′(t) = Ax(t) −Bx(t) + f(t). (4.1)

The spectral radius ρ(|S|) of the operator |S| : L∞
[0,ω] → L∞

[0,ω] is less than one,

then the spectral radius ρ(S) of the operator S : L∞
[0,ω] → L∞

[0,ω] is also less than

one. In this case there exists a bounded operator (I − S)−1 : L∞
[0,ω] → L∞

[0,ω].

We can write equation (4.1) in the form

(Nx)(t) ≡ x′(t) −

∞
∑

n=0

(Sn(A−B)x)(t) =

∞
∑

n=0

(Snf)(t). (4.2)

Denote by C0(t, s) the Cauchy function of the equation Nx = 0, which is
also the fundamental function of equation (3.1).

Proofs of Theorems 3.1 - 3.7 are based on the following auxiliary assertions.
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Lemma 4.1 [6]. Let S be the zero operator. Then the following two asser-
tions are equivalent:

1) for every positive s there exists a positive function vs ∈ D[s,∞) such that
(Msvs)(t) ≤ 0 for t ∈ [s, ω],

2) the Cauchy function C(t, s) of equation (3.1) is positive for 0 ≤ s ≤ t ≤ ω.

Lemma 4.2. Let A : C[0,∞) → L∞
[0,∞), B : C[0,∞) → L∞

[0,∞) be positive

Volterra operators, the spectral radius ρ(|S|) of the operator |S| : L∞
[0,∞) →

L∞
[0,∞) be less than one and

(As1)(t) ≥ (Bs1)(t), ((As −Bs)1)(t) ≥
∞
∑

j=1

(|Ss|
j (As −Bs)1)(t), t ∈ [s, ω],

(4.3)
for every nonnegative s. Then C0(t, s) > 0 and ∂

∂t
C0(t, s) ≥ 0 for 0 ≤ s ≤ t <

ω.

Proof. Lemma 4.1 is true for equation (4.2). Let us set vs(t) ≡ 1, t ∈ [s, ω]
in the assertion 1 of Lemma 4.1. Condition (3.24) implies, according to Lemma
4.1, that C0(t, s) > 0 for 0 ≤ s ≤ t ≤ ω. It is clear that C0(t, s) ≥ 0 for
0 ≤ s ≤ t ≤ ω. Let us prove that ∂

∂t
C0(t, s) ≥ 0 for 0 ≤ s ≤ t ≤ ω. We use

the fact that the function C0(t, s), as a function of argument t for each fixed
positive s, satisfies the equation

(Nsx)(t) ≡ x′(t) −

∞
∑

n=0

(Sn
s (As −Bs)x)(t) = 0, t ∈ [s, ω], (4.4)

and the condition x(s) = 1.
The following integral equation

x(t) =

∫ t

s

∞
∑

n=0

(Sn
s (As −Bs)x)(ξ)dξ + 1 (4.5)

is equivalent to equation (4.4) with the condition x(s) = 1.
The spectral radius of the operator T : C[s,ω] → C[s,ω], defined by the

equality

(Tx)(t) =

∫ t

s

∞
∑

n=0

(Sn
s (As −Bs)x)(ξ)dξ, t ∈ [s, ω], (4.6)

is zero for every positive number ω [1]. Let us build the sequence

xm+1(t) =

∫ t

s

∞
∑

n=0

(Sn
s (As −Bs)xm) (ξ) dξ + 1, (4.7)

where the iterations start with the constant x0(t) ≡ 1 for t ∈ [s, ω].
The sequence of functions xm(t) converges in the space C[s,ω] to the unique

solution x(t) of equation (4.5) on the interval [s, ω]. It is clear that this solution
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is absolutely continuous. It follows from the fact that all operators are Volterra
ones, that the solution y(t) of equation (4.4) with the initial condition y(s) = 1
and the solution x(t) of equation (4.5) coincide for t ∈ [s, ω].

Condition (4.3) and the inequality ρ(|S|) < 1 imply nonnegativity of the
derivatives

x′m+1(t) =

∞
∑

n=0

(Sn
s (As −Bs)xm)(t), t ∈ [s, ω]. (4.8)

Repeating the argumentation used in the proof of Lemma 2.4[7], we obtain
that this sequence of nondecreasing functions xm converges to the nondecreasing
solution x, i.e ∂

∂t
C0(t, s) ≥ 0 for 0 ≤ s ≤ t ≤ ω.

Concerning nonhomogeneous equation (3.1) we propose the following asser-
tion.

Lemma 4.3. Let A : C[0,ω] → L∞
[0,ω] and B : C[0,∞) → L∞

[0,ω] be positive

Volterra operators, the spectral radius ρ(|S|) of the operator |S| be less than one
and condition (4.3) be fulfilled for every nonnegative s. Then the solution x of
the homogeneous equation

(Mx)(t) ≡ x′(t) + (Sx′)(t) − (Ax)(t) + (Bx)(t) = 0, t ∈ [0, ω], (4.9)

such that x(0) ≥ 0, satisfies inequalities x(t) ≥ 0, x′(t) ≥ 0 for t ∈ [0, ω].
If in addition the nonnegative nondecreasing function f ∈ L∞

[0,∞) satisfies the
inequality

f(t) ≥

∞
∑

j=1

(|S|
j
f)(t), t ∈ [0, ω], (4.10)

then the solution x of equation (3.1) is nonnegative and nondecreasing for
every positive nondecreasing f.

Proof of Lemma 4.3. Assertions about nonnegativity of solution x of the
homogeneous equation Mx = 0 and its derivative follows from the equalities
x(t) = C0(t, 0) and x′(t) = ∂

∂t
C0(t, 0) and Lemma 4.2. From the representation

of solutions of equation (4.2) we can write

x(t) =

∫ t

0

C0(t, s)

+∞
∑

n=0

(Snf)(s)ds+ x(0)C0(t, 0), (4.11)

and

x′(t) =
+∞
∑

n=0

(Snf)(t) +

∫ t

0

∂

∂t
C0(t, s)

+∞
∑

n=0

(Snf)(s)ds+ x(0)
∂

∂t
C0(t, 0). (4.12)

It is clear now that the inequality (4.10) and nonnegativity of ∂
∂t
C0(t, s) for

0 ≤ s ≤ t < ω imply the inequalities x(t) ≥ 0, x′(t) ≥ 0for t ∈ [0, ω].
To prove Theorem 3.1 let us note the following. Conditions (3.2) and (3.3)

imply condition (4.3). Nonnegative nondecreasing function f ∈ L∞
[0,ω] satisfying
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inequality 2f(t) ≥ φ(t), where essentially bounded φ satisfies the inequality
φ(t) − (|S|φ)(t) ≥ f(t), satisfies also condition (4.10).

Concerning proofs of Theorems 3.2-3.7 let us note the following. The fact
that the spectral radius ρ(|S|) < 1 allows us to write equation (4.1) in form
(4.2). Conditions of each of Theorems 3.2-3.7 imply that for x(0) > 0 we get

x′(t) =

∞
∑

n=0

(Sn(A−B)x)(t) +

∞
∑

n=0

(Snf)(t) ≥ 0. (4.13)
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