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RAYLEIGH PRINCIPLE FOR TIME SCALE SYMPLECTIC SYSTEMS

AND APPLICATIONS

ROMAN ŠIMON HILSCHER AND VERA ZEIDAN

Abstract. In this paper we establish the Rayleigh principle, i.e., the variational char-
acterization of the eigenvalues, for a general eigenvalue problem consisting of a time
scale symplectic system and the Dirichlet boundary conditions. No normality or con-
trollability assumption is imposed on the system. Applications of this result include the
Sturmian comparison and separation theorems for time scale symplectic systems. This
paper generalizes and unifies the corresponding results obtained recently for the discrete
symplectic systems and continuous time linear Hamiltonian systems. The results are
also new and particularly interesting for the case when the considered time scale is “spe-
cial”, that is, consisting of a union of finitely many disjoint compact real intervals and/or
finitely many isolated points.

1. Introduction

In this paper we consider the eigenvalue problem

(Sλ), x(a) = 0 = x(b), (E)

where (Sλ) is the time scale symplectic system

x∆ = A(t) x + B(t) u, u∆ = C(t) x + D(t) u − λ W (t) xσ, t ∈ [a, ρ(b)]T, (Sλ)

and λ ∈ R is a spectral parameter. Here we consider a bounded time scale T and with
a := min T and b := max T we represent T as the time scale interval [a, b]T. For the
theory of dynamic equations on time scales and its basic notation we refer to [7, 8, 13].
The coefficients of system (Sλ) are piecewise rd-continuous (Cprd) n× n matrix functions
on [a, ρ(b)]T satisfying

ST (t)J + JS(t) + µ(t)ST (t)JS(t) = 0, W (t) symmetric, t ∈ [a, ρ(b)]T, (1.1)

W (t) ≥ 0 for all t ∈ [a, ρ(b)]T, (1.2)

S(t) :=

(

A(t) B(t)
C(t) D(t)

)

, J :=

(

0 I
−I 0

)

, (1.3)

where 0 and I are the zero and identity matrices of appropriate dimensions. The word
“symplectic” refers to the fact that under (1.1) the fundamental matrix of system (Sλ)
is a symplectic 2n × 2n matrix. In the present paper we require no controllability or
normality of system (Sλ). This implies that solutions of (Sλ) may be singular on nontrivial
subintervals of [a, b]T or even on the whole interval [a, b]T, see Section 2 for more details.
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In the continuous time case, i.e., when T = [a, b] is a real connected interval, system
(Sλ) is the linear Hamiltonian system

x′ = A(t) x + B(t) u, u′ = C(t) x − AT (t) u − λ W (t) x, t ∈ [a, b], (Hλ)

where the coefficients are piecewise continuous (Cp) on [a, b] with B(·) and C(·) symmetric.
In the classical results (under normality), the eigenvalue problem for the system (Hλ) is
considered in [17]. When the normality assumption is absent, the corresponding oscillation
and eigenvalue theory was developed in [25] and more recently in [20, 23]. In particular,
the latter two papers contain respectively the Rayleigh principle and the Sturmian theory
for such possibly “abnormal” systems (Hλ).

The above results were motivated by the corresponding discrete time theory in [6].
Specifically, in the discrete time setting the system (Sλ) reduces to the discrete symplectic
system

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk − λ Wkxk+1, k ∈ [0, N ]Z, (1.4)

where [0, N ]Z := {0, 1, . . . , N}, see also [1, 4, 11]. Since the interval [0, N ]Z contains only
finitely many points, the normality assumption is naturally absent in the oscillation and
eigenvalue theory for system (1.4).

The time scale eigenvalue problem (E) was introduced in [21]. In this reference, the
oscillation theorem was proven, which relates the number of eigenvalues (called the finite
eigenvalues, see Section 2) of (E) which are less or equal to a given number λ and the
number of proper focal points of a special solution of the system (Sλ). In the present
paper we first derive the corresponding Rayleigh principle for the eigenvalue problem (E),
i.e., we prove the variational characterization of the finite eigenvalues (see Theorem 4.1).
This result generalizes the continuous and discrete time statements in [20, Theorem 1.1]
and [6, Theorem 4.6] to arbitrary time scales. In the second part of this paper we then
apply the oscillation theorem from [21, Corollary 6.4] and the new Rayleigh principle
to obtain the Sturmian comparison and separation theorems for time scale symplectic
systems, thus generalizing the corresponding results in [6] and [23] to arbitrary time
scales. The new results in this paper are important not only on their own. For example,
the Rayleigh principle (Theorem 4.1) can be used as a tool for deriving further new
results for problems with more general boundary conditions, see e.g. [16, pg. 453] for the
description of such a method. We shall proceed in this way in our subsequent work.

Our results in this paper are new and interesting even in the case when the underlying
time scale [a, b]T is “special” in the sense that it is the union of finitely many disjoint real
intervals and/or finitely many isolated points. In such a case, a certain assumption made
for the general time scales reduces to a simple condition (the Legendre condition) on the
coefficient B(·) over the continuous parts of [a, b]T.

The paper is organized as follows. In Section 2 we recall the basic properties of the
eigenvalue problem (E). In Section 3 we collect some technical calculations related to
admissible pairs of functions. In Section 4 we state and prove the Rayleigh principle for
problem (E), while in Section 5 we establish the Sturmian comparison and separation
theorems for time scale symplectic systems. The final section contains the discussion
related to the above mentioned “special” time scales.
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2. Time scale symplectic systems

By using the expansion xσ = x + µx∆, the system (S) can be written in the form

z∆ = [S(t) − λQ(t)] z, t ∈ [a, ρ(b)]T, (2.1)

where we put

z :=

(

x
u

)

, Q(t) :=

(

0 0
W (I + µA) µ WB

)

(t).

By a direct calculation it follows that the matrix S(t) − λQ(t) also satisfies condition
(1.1)(i) for all t ∈ [a, ρ(b)]T and λ ∈ R. As a consequence we have the coefficient matrix
S(·) − λQ(·) regressive on [a, ρ(b)]T and hence, the system (Sλ) possesses unique (vector
or matrix) solutions on [a, b]T once the initial conditions are prescribed at any point
t0 ∈ [a, b]T. The solutions of (Sλ) belong to the set C1

prd of piecewise rd-continuously delta-
differentiable functions on [a, b]T, i.e., they are continuous on [a, b]T and their ∆-derivative
is in Cprd. We adopt a usual convention that the vector and matrix solutions of (Sλ)
or equivalently of system (2.1) will be denoted by small and capital letters, respectively,
typically by z(·, λ) = (x(·, λ), u(·, λ)) and Z(·, λ) = (X(·, λ), U(·, λ)).

Since the dependence on λ in system (Sλ) is linear, it follows by [14, Corollary 4.5] that
the solutions of (Sλ) are entire functions in λ when their initial conditions at some fixed
t0 ∈ [a, b]T are independent of λ. We shall utilize special matrix solutions of (Sλ) which are
called the conjoined bases or prepared or isotropic solutions of (Sλ), see [9, 12, 22]. Such
a matrix solution Z(·, λ) = (X(·, λ), U(·, λ)) is defined by the symmetry of (XTU)(·, λ)

and by rank(XT (·, λ), UT (·, λ)) = n. The principal solution Ẑ(·, λ) = (X̂(·, λ), Û(·, λ)) of
(Sλ) given by the initial conditions

X̂(a, λ) ≡ 0, Û(a, λ) ≡ I (2.2)

will play a prominent role in our investigations. Since the initial conditions in (2.2)

do not depend on λ, the functions X̂(t, ·) and Û(t, ·) are entire in the argument λ for

every t ∈ [a, b]T. This and assumption (1.2) imply that the kernel of X̂(t, ·) is piecewise

constant on R with the same values of the subspaces Ker X̂(t, λ+) and Ker X̂(t, λ−) for
every λ ∈ R, see [21, Proposition 4.5] and its proof. Based on the above, the following
algebraic definition of (finite) eigenvalues of (E) was given in [21, Definition 2.4]. A
number λ0 ∈ R is a finite eigenvalue of the eigenvalue problem (E) if

θ(λ0) := r(b) − rank X̂(b, λ0) ≥ 1, where r(b) := max
λ∈R

rank X̂(b, λ).

In this case we call θ(λ0) the algebraic multiplicity of the finite eigenvalue λ0. By [21, The-
orem 5.2], for every finite eigenvalue λ0 of (E) there is a corresponding finite eigenfunction
z(·, λ0) = (x(·, λ0), u(·, λ0)) which solves (E) with λ = λ0 and satisfies

W (·) xσ(·, λ0) 6≡ 0 on [a, ρ(b)]T. (2.3)

Moreover, the geometric multiplicity of the finite eigenvalue λ0, i.e., the dimension of the
corresponding eigenspace

{

W (·) xσ(·, λ0) on [a, ρ(b)]T, such that (x, u) solves (E) with λ = λ0

}

,
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is equal to θ(λ0). Under (1.2) the finite eigenvalues of (E) are real and the finite eigen-
functions corresponding to different finite eigenvalues are orthogonal with respect to the
bilinear form

〈z, z̃〉W :=

∫ b

a

[xσ(t)]T W (t) x̃σ(t) ∆t,

where z = (x, u) and z̃ = (x̃, ũ), see [21, Propositions 5.7 and 5.8]. By (2.3) it follows that

the number ‖z‖W :=
√

〈z, z〉W is positive for every finite eigenfunction z of (E). Hence,
the finite eigenfunctions of (E) can be orthonormalized by the standard Gram–Schmidt
procedure.

Next we discuss the concept of proper focal points for the conjoined bases of system
(Sλ) as it is given in [21, Definition 3.1 and Remark 3.3]. Let us define on [a, ρ(b)]T the
n × n matrices M = M(t, λ), T = T (t, λ), and P = P (t, λ) by

M := [I − Xσ(Xσ)†]B, T := I − M †M, P := TX(Xσ)†BT, (2.4)

where we suppress the arguments t and λ in the conjoined basis Z(·, λ) = (X(·, λ), U(·, λ))
and the argument t in the coefficient B, and where X† denotes the Moore–Penrose gen-
eralized inverse of X, see [2, 3]. Let t0 ∈ (a, b]T and λ ∈ R be given. A conjoined basis
Z(·, λ) = (X(·, λ), U(·, λ)) of (Sλ) has a proper focal point of multiplicity m(t0) ≥ 1 at
the point t0 if t0 is left-dense and

m(t0) := def X(t0, λ) − def X(t−0 , λ) = dim
(

[Ker X(t−0 , λ)]⊥ ∩ Ker X(t0, λ)
)

, (2.5)

while it has a proper focal point of multiplicity m(t0) ≥ 1 in the interval (ρ(t0), t0]T if t0
is left-scattered and

m(t0) := rankM(ρ(t0), λ) + ind P (ρ(t0), λ). (2.6)

Here def A and ind A denote the defect and index of a matrix A, i.e., the dimension of
its kernel and the number of its negative eigenvalues, respectively. This means that the
conjoined basis Z(·, λ) does not have any proper focal points in (a, b]T if

Ker X(t, λ) ⊆ Ker X(τ, λ) for all t, τ ∈ [a, b]T, τ ≤ t, (2.7)

P (t, λ) ≥ 0 for all t ∈ [a, ρ(b)]T, (2.8)

see also [15, Definition 4.1]. In order to avoid infinitely many proper focal points in the
interval (a, b]T, the following assumption was introduced in [21, pg. 95].

For every λ ∈ R,

(i) Ker X(·, λ) is piecewise constant on [a, b]T,
(ii) the function P (·, λ) is nonnegative definite in some right neigh-

borhood of every right-dense point t0 ∈ [a, b)T and in some left
neighborhood of every left-dense point t0 ∈ (a, b]T.



















(2.9)

Assumption (2.9) implies that the number of proper focal points of Z(·, λ) in (a, b]T is
finite, because the numbers m(t0) defined in (2.5) and (2.6) can now be positive only at
finitely many points. In addition, by [21, Remark 3.4(viii)] we have m(t0) ≤ n.

With the system (Sλ) we associate the quadratic functional

Fλ(z) :=

∫ b

a

Ω(z, z)(t) ∆t − λ 〈z, z〉W ,
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where for z = (x, u) and z̃ = (x̃, ũ) we define (suppressing the argument t)

Ω(z, z̃) := xTCT (I + µA) x̃ + µ xTCTBũ + µ uTBTCx̃ + uT (I + µDT )Bũ. (2.10)

The pair z = (x, u) is admissible if x ∈ C1
prd on [a, b]T, Bu ∈ Cprd on [a, ρ(b)]T, and it

satisfies the first equation in (Sλ) on [a, ρ(b)]T. The functional Fλ is positive definite (or
shortly positive) if Fλ(z) > 0 for every z = (x, u) ∈ A with x(·) 6≡ 0, where

A := {z = (x, u), z is admissible and x(a) = 0 = x(b)}.

Since the first equation in the system (Sλ) does not contain λ, the admissible set A is the
same for all λ ∈ R. Denote by

n1(λ) := the number of proper focal points of Ẑ(·, λ) in (a, b]T,

n2(λ) := the number of finite eigenvalues of (E) which are less or equal to λ,

where we recall Ẑ(·, λ) = (X̂(·, λ), Û(·, λ)) to be the principal solution of (Sλ). The
quantities n1(λ) and n2(λ) include the multiplicities of proper focal points and finite
eigenvalues. The following characterization of the positivity of Fλ was proven in [15,
Theorem 4.1].

Proposition 2.1 (Positivity). Let λ ∈ R be fixed. The functional Fλ is positive definite
if and only if the principal solution of (Sλ) has no proper focal points in (a, b]T, i.e., if
and only if n1(λ) = 0.

The relationship between the numbers n1(λ) and n2(λ) is described in the following
result from [21, Corollary 6.4] combined with Corollary 5.2 below.

Proposition 2.2 (Oscillation theorem). Assume that the principal solution Ẑ(·, λ) =

(X̂(·, λ), Û(·, λ)) of (Sλ) satisfies condition (2.9). Then

n1(λ) = n2(λ) for all λ ∈ R (2.11)

if and only if there exists λ0 < 0 such that the functional Fλ0
is positive definite.

3. Technical calculations

In this section we collect some technical results regarding admissible pairs, which are
needed in the proofs of the Rayleigh principle in Section 4 and the Sturmian separation
and comparison theorems in Section 5. Throughout this section we let Z = (X, U) be
a conjoined basis of (S) with finitely many proper focal points in (a, b]T, and recall the
definition of Ω(z, ẑ) from (2.10).

Lemma 3.1. Let z = (x, u) be admissible and ẑ = (x̂, û) be such that x̂ ∈ Cprd on [a, b]T

and û ∈ C1
prd on [a, b)T. Then

∫ b

a

Ω(z, ẑ)(t) ∆t = (xT û)(t)
∣

∣

b

a
−

∫ b

a

{(xσ)T (û∆ − Cx̂ −Dû)}(t) ∆t. (3.1)

On the other hand, if ẑ ∈ Cprd only, then for every t0 ∈ [a, ρ(b)]T

µ(t0) Ω(z, ẑ)(t0) = (xT û)(t)
∣

∣

σ(t0)

t0
−

{

(xσ)T [ ûσ− µCx̂ − (I + µD) û ]
}

(t0). (3.2)
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Proof. Identity (3.1) follows by the integration by parts formula using the equality µCTB =
AT + D + µATD, obtained from (1.1). Formula (3.2) is proven in a similar way. �

Lemma 3.2. If there exist points t1, t2 ∈ [a, b]T, t1 < t2, such that KerX(t2) 6⊆ KerX(t1),
then for each vector d ∈ KerX(t2) \ Ker X(t1) the pair z = (x, u) defined by

(

x(t), u(t)
)

:=

{

(

X(t) d, U(t) d
)

, t ∈ [a, t2)T,

(0, 0), t ∈ [t2, b]T,
(3.3)

is admissible, x(·) 6≡ 0 on [a, b]T, and

F0(z) = −dT XT (a) U(a) d.

In particular, if Z = Ẑ is the principal solution of (S), then z ∈ A and F0(z) = 0.

Proof. See [15, Proposition 6.3] and its proof. �

Lemma 3.3. If there exists a left-scattered point t0 ∈ (a, b]T such that P (ρ(t0)) 6≥ 0, then
for each vector c ∈ Rn with cT P (ρ(t0)) c < 0 the pair z = (x, u) defined by

(

x(t), u(t)
)

:=











(

X(t) d, U(t) d
)

, t ∈ [a, ρ(t0))T,
(

X(t) d, U(t) d − T (t) c
)

, t = ρ(t0),

(0, 0), t ∈ [t0, b]T,

(3.4)

where d := {µ(Xσ)†BTc}(ρ(t0)), is admissible, x(·) 6≡ 0 on [a, b]T, and

F0(z) = −dT XT (a) U(a) d + µ(ρ(t0)) cT P (ρ(t0)) c.

In particular, if Z = Ẑ is the principal solution of (S), then z ∈ A and F0(z) < 0.

Proof. See [15, Proposition 6.2] and Subcases IIa–IIb in its proof. Note that in the latter
reference the definitions of the admissible pairs z = (x, u) can be unified to have the form
as in (3.4). �

Remark 3.4. If z1 = (x1, u1) and z2 = (x2, u2) are two admissible pairs defined by
formulas (3.3) and/or (3.4) through vectors d1 and d2, respectively, then the symmetry of
XT (a) U(a) implies the identity

xT
1 (a) u2(a) = dT

1 XT (a) U(a) d2 = dT
1 UT (a) X(a) d2 = uT

1 (a) x2(a).

Next we calculate the value of the integral
∫ b

a
Ω(z1, z2)(t) ∆t when the functions z1 and

z2 in (3.3) and (3.4) correspond to proper focal points of the conjoined basis Z. Following
the definition of proper focal points in (2.5)–(2.6), we distinguish the cases when Z has
a proper focal point at some point t0, meaning that either def X(t0) − def X(t−0 ) ≥ 1
if t0 is left-dense or rank M(ρ(t0)) ≥ 1 if t0 is left-scattered, and when Z has a proper
focal point in (ρ(t0), t0)T, meaning that ind P (ρ(t0)) ≥ 1 if t0 is left-scattered. Note that
as in [18, Lemma 1(ii)] we have at all left-scattered points t0 ∈ (a, b]T the equivalence
M(ρ(t0)) = 0 if and only if KerX(t0) ⊆ Ker X(ρ(t0)).

Lemma 3.5. Suppose that Z has proper focal points at some (not necessarily distinct)
points τ1 and τ2 in (a, b]T. Then there are vectors d1, d2 such that dj ∈ Ker X(τj) and
either dj 6∈ Ker X(τ−

j ) ≡ Ker X(τj − ε) for some ε > 0 small enough if τj is left-dense,
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or dj 6∈ Ker X(ρ(τj)) if τj is left-scattered, j ∈ {1, 2}. In both cases the vectors d1, d2

satisfy the assumption of Lemma 3.2, so that for the admissible pairs z1 = (x1, u1) and
z2 = (x2, u2) constructed through formula (3.3) with t2 := τj and t1 := τj − ε if τj is
left-dense and t1 := ρ(τj) if τj is left-scattered we have

∫ b

a

Ω(z1, z2)(t) ∆t = −uT
1 (a) x2(a). (3.5)

Proof. The result follows from identity (3.1) of Lemma 3.1 on the interval [a, min{τ1, τ2}]T.
The details of this calculation, as well as of similar calculations below, are here omitted.

�

Lemma 3.6. Suppose that Z has proper focal points at some point τ1 (which can be either
left-dense or left-scattered) and in (ρ(τ2), τ2)T where τ2 is left-scattered. Then there is a
vector d1 ∈ Rn and an admissible z1 = (x1, u1) defined by (3.3) which satisfies Lemma 3.2
with t2 := τ1 and t1 := τ1 − ε if τ1 is left-dense and t1 := ρ(τ1) if τ1 is left-scattered.
Also, there are vectors c2, d2 ∈ Rn and an admissible z2 = (x2, u2) defined by (3.4) which
satisfies Lemma 3.3 with t0 := τ2. And in this case formula (3.5) holds.

Proof. The result is proven by applying identity (3.1) of Lemma 3.1 on [a, τ1]T if τ1 < τ2

or on [a, τ2]T if τ2 < τ1, and when τ1 = τ2 by applying identity (3.1) on [a, ρ(τ1)]T and
identity (3.2) at ρ(τ1). �

Lemma 3.7. Assume that Z has proper focal points in (ρ(τ1), τ1)T and (ρ(τ2), τ2)T where
τ1 and τ2 are left-scattered. Then there are vectors c1, d1, c2, d2 ∈ Rn and admissible pairs
z1 = (x1, u1) and z2 = (x2, u2) defined by (3.4) which satisfy Lemma 3.3 with t0 := τ1 and
t0 := τ2, respectively. In addition, if τ1 6= τ2, then formula (3.5) holds, while if τ1 = τ2,
then we have

∫ b

a

Ω(z1, z2)(t) ∆t = −uT
1 (a) x2(a) + µ(ρ(τ1)) cT

1 P (ρ(τ1)) c2. (3.6)

Proof. The first part is proven by identity (3.1) of Lemma 3.1 on [a, τ1]T if τ1 < τ2 or on
[a, τ2]T if τ2 < τ1. The second part, i.e, formula (3.6), follows by identity (3.1) on [a, τ1]T

and by identity (3.2) at ρ(τ1). �

The next result corresponds to the discrete time case in [10, Lemma 4].

Lemma 3.8. Let t0 ∈ (a, b]T be left-scattered such that the conjoined basis Z = (X, U)
has a proper focal point of multiplicity m = p + q in (ρ(t0), t0]T, where p := rankM(ρ(t0))
and q := ind P (ρ(t0)). Let d1, . . . , dp ∈ Ker X(t0) \ KerX(ρ(t0)) be linearly independent
vectors associated with the proper focal point at t0 and let c1, . . . , cq be the orthonormal
eigenvectors corresponding to the negative eigenvalues of P (ρ(t0)). Then with

dp+j := µ(ρ(t0)) X†(t0)B(ρ(t0)) T (ρ(t0)) cj for j ∈ {1, . . . , q} (3.7)

the vectors d1, . . . , dp, dp+1, . . . , dp+q are (all together) linearly independent.

Proof. If q = 0, then the result is trivial by the assumed linear independence of d1, . . . , dp.
Thus, we assume that q ≥ 1. Denote by λ1, . . . , λq the negative eigenvalues of P (ρ(t0))
associated with the orthonormal eigenvectors c1, . . . , cq. First we prove that the vectors
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dp+1, . . . , dp+q are linearly independent. Let g :=
∑q

j=1 αj dp+j and suppose that g = 0 for

some α1, . . . , αq ∈ R. If we define c :=
∑q

j=1 αj cj and abbreviate by T0, X0, B0, P0, and

µ0 the values of T (t), X(t), B(t), P (t), and µ(t) at t = ρ(t0), respectively, then

0 = cT T0X0 g = cT T0X0

q
∑

j=1

αj µ0X
†(t0)B0T0 cj = µ0 cT T0X0X

†(t0)B0T0 c = µ0 cT P0 c

= µ0

q
∑

i=1

q
∑

j=1

αi αj cT
i P0 cj = µ0

q
∑

i=1

q
∑

j=1

αi αj λj cT
i cj = µ0

q
∑

j=1

α2
j λj ≤ 0.

This is possible only if α1 = · · · = αq = 0, which shows the linear independence of
dp+1, . . . , dp+q. Next, if p = 0, then the proof is finished, so we assume further on that
p ≥ 1. Let e := f + g, where for some α1, . . . , αp+q ∈ R we define f :=

∑p

j=1 αj dj and

g :=
∑q

j=1 αp+j dp+j as above. Then f ∈ Ker X(t0). If we assume that e = 0, then for

c :=
∑q

j=1 αp+j cj we have

0 = −cT T0X0X
†(t0) X(t0) f = cT T0X0X

†(t0) X(t0) g

(3.7)
= cT T0X0X

†(t0) X(t0)

q
∑

j=1

αp+j µ0 X†(t0)B0T0 cj = µ0 cT P0 c = µ0

q
∑

j=1

α2
p+j λj ≤ 0,

where we used the formula X† = X†XX†. This is however possible only if αp+1 = · · · =
αp+q = 0. Therefore, we have g = 0, and consequently also f = −g = 0. The linear
independence of d1, . . . , dp now implies that α1 = · · · = αp = 0 as well. Hence, the vectors
d1, . . . , dp+q are linearly independent. �

4. Rayleigh principle

In this section we prove the following variational characterization of the finite eigen-
values of the eigenvalue problem (E). This theorem is a time scale generalization of the
continuous and discrete time results in [20, Theorem 1.1] and [6, Theorem 4.6]

Theorem 4.1 (Rayleigh principle). Assume that the principal solution Ẑ(·, λ) satisfies
condition (2.9), the functional Fλ0

is positive definite for some λ0 < 0, and (1.2) holds.
Let λ1 ≤ · · · ≤ λm ≤ . . . be the finite eigenvalues of the eigenvalue problem (E) with
the corresponding orthonormal finite eigenfunctions z1, . . . , zm, . . . . Then for each m ∈
N ∪ {0}

λm+1 = min

{

F0(z)

〈z, z〉W
, z ∈ A, (Wxσ)(·) 6≡ 0, z ⊥ z1, . . . , zm

}

. (4.1)

The list of finite eigenvalues λ1 ≤ · · · ≤ λm ≤ . . . in Theorem 4.1 really makes sense,
because by [21, Proposition 4.5 and Corollary 6.3] the finite eigenvalues of (E) are isolated
and bounded below. In addition, when there are only finitely many (say p < ∞) finite
eigenvalues of (E), then we put λp+1 := ∞ in (4.1). Before proving Theorem 4.1 we shall
develop some necessary auxiliary tools.
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Lemma 4.2. Let z1, . . . , zm be orthonormal finite eigenfunctions of (E) corresponding to
the (not necessarily distinct and not necessarily consecutive) finite eigenvalues λ1, . . . , λm.
For any β1, . . . , βm ∈ R we set ẑ :=

∑m

i=1 βizi. Then ẑ = (x̂, û) ∈ C1
prd ∩ A and

F0(ẑ) =

m
∑

i=1

λiβ
2
i , ‖ẑ‖2

W =

m
∑

i=1

β2
i . (4.2)

Proof. The identities in (4.2) follow by direct calculations by the aid of Lemma 3.1,
compare also with the proof of [20, Lemma 2.13]. �

Lemma 4.3 (Global Picone formula). Let λ ∈ R be fixed and suppose that Z = (X, U)
is a conjoined basis of (Sλ) satisfying conditions (i) and (ii) in (2.9). Then for any
admissible z = (x, u) with x(t) ∈ Im X(t) on [a, b]T we have

Fλ(z) ≥

∫ b

a

wT(t) P (t) w(t) ∆t + {xT UX†x}(t)
∣

∣

b

a
, (4.3)

where w := u−UX†x. If, in addition, kernel condition (2.7) holds,
∫ b

a
wT(t) P (t) w(t) ∆t =

0, and x(b) = 0, then x(t) ≡ 0 on [a, b]T.

Proof. The result follows from [24, Theorem 3.19] and its proof. Note that the assumption
P (t) ≥ 0 used in the proof of [24, Theorem 3.19] is satisfied under conditions (i) and (ii)
in (2.9). �

Remark 4.4. In the global Picone formula (4.3) we have the equality sign if the kernel
of X(·, λ) changes only at isolated points, which is for example the case of discrete time
in [5, Proposition 2.1(iv)].

In the next result we extend Lemma 4.3 to include the finite eigenfunctions of (E).
This statement is an extension of [6, Theorem 4.2] and [20, Theorem 3.1] to general time
scales.

Theorem 4.5 (Extended global Picone formula). Assume (1.2) and fix λ ∈ R. Let
Z = (X, U) be a a conjoined basis of (Sλ) satisfying conditions (i) and (ii) in (2.9).
Let λ1 ≤ · · · ≤ λm be finite eigenvalues of (E) with the corresponding orthonormal finite
eigenfunctions z1, . . . , zm. For any β1, . . . , βm ∈ R we set ẑ :=

∑m

i=1 βizi. Finally, let
z = (x, u) ∈ A be such that z ⊥ z1, . . . zm and such that z̃ = (x̃, ũ) := z + ẑ satisfies the
image condition

x̃(t) ∈ Im X(t) for all t ∈ [a, b]T.

Then with w̃ := ũ − UX†x̃ on [a, b]T we have the inequality

Fλ(z) ≥

∫ b

a

w̃T(t) P (t) w̃(t) ∆t +

m
∑

i=1

(λ − λi) β2
i . (4.4)

Proof. From z̃ = z + ẑ we have

Fλ(z̃) = Fλ(z) + Fλ(ẑ) + 2

∫ b

a

Ω(z, ẑ)(t) ∆t. (4.5)
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We now evaluate the terms in (4.5) separately. By Lemma 4.3 and z̃ ∈ A we have

Fλ(z̃) ≥

∫ b

a

w̃T(t) P (t) w̃(t) ∆t, (4.6)

while Lemma 4.2 yields

Fλ(ẑ) = F0(ẑ) − λ 〈ẑ, ẑ〉W =

m
∑

i=1

(λi − λ) β2
i . (4.7)

For the last term in (4.5) we have by Lemma 3.1
∫ b

a

Ω(z, ẑ)(t) ∆t =
m

∑

i=1

βi

∫ b

a

Ω(z, zi)(t) ∆t =
m

∑

i=1

βi λi 〈z, zi〉W = 0, (4.8)

because z ⊥ z1, . . . zm. Upon inserting formulas (4.6)–(4.8) into equation (4.5) we obtain
the result in (4.4). �

We are now ready to establish the Rayleigh principle on time scales.

Proof of Theorem 4.1. Let Ẑ(·, λ) = (X̂(·, λ), Û(·, λ)) be the principal solution of (Sλ).
Assumption (2.9) for the principal solution and Fλ0

> 0 implies through Proposition 2.2
that equality (2.11) holds, i.e., n1(λ) = n2(λ) for all λ ∈ R. Moreover, by Proposition 2.1,
we have n1(λ) ≡ 0 for all λ ≤ λ0.

Let us fix m ∈ N ∪ {0}. Consider the first m + 1 finite eigenvalues (including their
multiplicities) λ1 ≤ · · · ≤ λm+1 of (E) with the corresponding orthonormal finite eigen-
functions z1, . . . , zm+1. For convenience we put λ0 := −∞. Suppose that for a given
λ ∈ R we have λ ∈ (λm, λm+1), that is, n2(λ) = m and λ is not a finite eigenvalue of (E).
Hence, by the definition of finite eigenvalues,

rank X̂(b, λ0) = r(b) = max
κ∈R

rank X̂(b, κ).

This yields that def X̂(b, λ) = def X̂(b, λ0). And since Fλ0
> 0 is assumed, it follows

that b is not a proper focal point of Ẑ(·, λ), compare with the argument in the proof

of [6, Theorem 4.6, pg. 3120]. Therefore, the principal solution Ẑ(·, λ) has exactly m
proper focal points in the open interval (a, b)T and n1(λ) = n2(λ) = m. Let us denote
these proper focal points by τ1 < · · · < τl, where τ1 > a and τl < b, and where the
multiplicities of these proper focal points add up to m. By definition, if the point τj is

left-dense, then its multiplicity as a proper focal point of Ẑ(·, λ) is equal to

mj := def X̂(τj , λ) − def X̂(τ−
j , λ) = dim

(

[Ker X̂(τ−
j , λ)]⊥ ∩ Ker X̂(τj , λ)

)

,

while if the point τj is left-scattered, then its multiplicity is

mj := rankM(ρ(τj), λ) + ind P (ρ(τj), λ).

Moreover, the numbers mj satisfy
∑l

j=1 mj = m.

Consider now a linear combination ẑ = (x̂, û) of the finite eigenfunctions z1, . . . , zm, that
is, ẑ =

∑m

i=1 βizi, where the coefficients β1, . . . , βm ∈ R are at this moment unspecified.
Then ẑ is admissible and x̂(a) = 0 = x̂(b), i.e., ẑ ∈ A.

EJQTDE, 2011 No. 83, p. 10



For the function z̃ = (x̃, ũ) := ẑ we consider the homogeneous system of linear equations
for the variables β1, . . . , βm determined by the conditions

x̃(τj) ∈
(

[Ker X̂T (τ−
j , λ)]⊥ ∩ Ker X̂T (τj , λ)

)⊥
if τj is left-dense, (4.9)

MT (ρ(τj), λ) x̃(τj) = 0,

w̃(ρ(τj)) ⊥
{

α ∈ Rn, α is an eigenvector
corresponding to a negative
finite eigenvalue of P (ρ(τj), λ)

}















if τj is left-scattered, (4.10)

where w̃(t) := ũ(t) − Û(t, λ) X̂†(t, λ) x̃(t). Since for each left-dense point τj we have

def X̂T (τj , λ) − def X̂T (τ−
j , λ) = rank X̂T (τ−

j , λ) − rank X̂T (τj , λ)

= rank X̂(τ−
j , λ) − rank X̂(τj, λ)

= def X̂(τj , λ) − def X̂(τ−
j , λ) = mj ,

the number of equations in (4.9) is exactly the sum of the multiplicities mj corresponding
to the left-dense proper focal points τj . Moreover, the numbers of linearly independent
equations in (4.10)(i) and (4.10)(ii) are respectively rank MT (ρ(τj), λ) = rankM(ρ(τj), λ)
and ind P (ρ(τj), λ), so that the conditions in (4.10) represent in total exactly that many
equations as is the sum of the multiplicities mj corresponding to the left-scattered proper

focal points τj . Altogether, there are exactly
∑l

j=1 mj = m linearly independent homo-

geneous equations in system (4.9)–(4.10) for the m variables β1, . . . , βm.
We shall prove by the time scale induction principle, see [7, Theorem 1.7], that

x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, b]T. (4.11)

Therefore, for t0 ∈ [a, b]T we consider the statement

S(t0) := x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, t0]T.

(I) Initial condition. Let t0 = a. Then x̃(a) = 0 ∈ Im X̂(a, λ), so that the statement
S(a) holds true.

(II) Jump condition. Let t0 ∈ [a, ρ(b)]T be right-scattered and suppose that S(t0)

holds. Then x̃(t0) = X̂(t0, λ) c ∈ Im X̂(t0, λ) for some c ∈ Rn. If σ(t0) is not one of

the proper focal points of Ẑ(·, λ), then we have Ker X̂σ(t0, λ) ⊆ Ker X̂(t0, λ), and then

x̃σ(t0) ∈ Im X̂σ(t0, λ) follows from [15, Proposition 5.2] on [t0, σ(t0)]T, i.e., from the relation
between the kernel condition and the image condition. On the other hand, if σ(t0) = τj

for some j ∈ {1, . . . , l}, i.e., if (t0, σ(t0)]T contains a proper focal point of Ẑ(·, λ), then by
(4.10)(i)

0 = MT (t0, λ) x̃σ(t0) = BT (t0) [I − X̂σ(t0, λ) X̂σ†(t0, λ)] x̃σ(t0). (4.12)

The admissibility of z̃ yields as in [6, Lemma 4.3(ii)] that (suppressing the arguments t0
and λ in the calculations below)

x̃σ = (I + µA) X̂c + µBũ = (X̂σ − µBÛ) c + µBũ = X̂σc + µB(ũ − Ûc). (4.13)

EJQTDE, 2011 No. 83, p. 11



Hence, by inserting (4.13) into (4.12) we obtain

0 = MT x̃σ (4.13)
= BT (I − X̂σX̂σ†) [X̂σc + µB(ũ − Ûc)]

= µBT (I − X̂σX̂σ†)B(ũ − Ûc). (4.14)

Since the matrix I − X̂σX̂σ† is a projection, the multiplication of equation (4.14) from

the left by the vector µ (ũ − Ûc)T yields

‖(I − X̂σX̂σ†)B(ũ − Ûc)‖2 = 0, i.e., (I − X̂σX̂σ†)B(ũ − Ûc) = 0. (4.15)

Here we recall that a real n × n matrix A is a projection if it is symmetric and A2 = A.
Therefore,

x̃σ (4.13)
= X̂σc + µB(ũ − Ûc)

(4.15)
= X̂σc + µX̂σX̂σ†B(ũ − Ûc) ∈ Im X̂σ.

This shows that the statement S(σ(t0)) holds true.
(III) Continuation condition. Let t0 ∈ [a, b)T be right-dense and suppose that S(t0)

holds. Then x̃(t0) ∈ Im X̂(t0, λ) and, since the kernel of X̂(·, λ) is piecewise constant on

[a, b]T, Ker X̂(t, λ) ≡ Ker X̂(t+0 , λ) ⊆ Ker X̂(t0, λ) for all t ∈ (t0, t0 + ε]T for some ε > 0.

Thus, by [15, Proposition 5.2] on [t0, t0+ε]T we get x̃(t) ∈ Im X̂(t, λ) for all t ∈ [t0, t0+ε]T.
Consequently, the statement S(t) holds for all t ∈ (t0, t0 + ε]T, which we wanted to prove.

(IV) Closure condition. Let t0 ∈ (a, b]T be left-dense and suppose that S(t) holds for

all t ∈ [a, t0)T, i.e., x̃(t) ∈ Im X̂(t, λ) for all t ∈ [a, t0)T. If t0 is not one of the proper focal

points of Ẑ(·, λ), then Ker X̂(t−0 , λ) = Ker X̂(t0, λ), and in this case the image condition

x̃(t0) ∈ Im X̂(t0, λ) follows from [15, Proposition 5.2] on the interval [t0 − ε, t0]T for some

ε > 0 small enough, since we know that x̃(t0 − ε) ∈ Im X̂(t0 − ε, λ). On the other hand, if

t0 = τj is one of the proper focal points of Ẑ(·, λ), then Ker X̂(t−0 , λ) $ Ker X̂(t0, λ) and,
by (4.9),

x̃(t0)∈
(

[Ker X̂T (t−0 , λ)]⊥ ∩ Ker X̂T (t0, λ)
)⊥

= Ker X̂T (t−0 , λ) + [Ker X̂T (t0, λ)]⊥. (4.16)

The continuity of X̂T (·, λ) yields that

Ker X̂T (t−0 , λ) ⊆ Ker X̂T (t0, λ), i.e., [Ker X̂T (t0, λ)]⊥ ⊆ [Ker X̂T (t−0 , λ)]⊥,

so that the sum of subspaces in (4.16) is a direct sum. And since x̃(·) is continuous, we
have

x̃(t0) = x̃(t−0 ) ∈ Im X̂(t−0 , λ) = [Ker X̂T (t−0 , λ)]⊥.

Hence, by (4.16), it follows that

x̃(t0) ∈ [Ker X̂T (t0, λ)]⊥ = Im X̂(t0, λ).

This means that the statement S(t0) holds, which is what we wanted to prove.
By the induction principle we conclude that the image condition (4.11) is satisfied. We

now apply the extended global Picone formula (Theorem 4.5) with z := 0 to obtain

0 = Fλ(z) ≥

∫ b

a

w̃T (t) P (t, λ) w̃(t) ∆t +
m

∑

i=1

(λ − λi) β2
i . (4.17)
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The second term in (4.17) is nonnegative, because λ > λm ≥ · · · ≥ λ1 is now assumed.
Concerning the first term, we note that by (2.9)(ii) the matrix P (t, λ) ≥ 0 everywhere in
[a, ρ(b)]T except possibly at finitely many right-scattered points t0. And in this case

the principal solution Ẑ(·, λ) has a proper focal point in (t0, σ(t0))T, i.e., t0 = ρ(τj)
and σ(t0) = τj for some j ∈ {1, . . . , l}. From the construction in (4.10)(ii) we can
see that w̃(t0) is orthogonal to the eigenvectors corresponding to the negative eigenval-
ues of the matrix P (t0). This implies that w̃T (t0) P (t0) w̃(t0) ≥ 0, and consequently
∫ σ(t0)

t0
w̃T (t) P (t, λ) w̃(t) ∆t ≥ 0 for each such a point t0. Therefore,

∫ b

a

w̃T (t) P (t, λ) w̃(t) ∆t ≥ 0. (4.18)

Combining (4.18) and (4.17) we get the inequality 0 ≥
∑m

i=1(λ − λi) β2
i ≥ 0, so that

by using λ > λi for every i = 1, . . . , m we must necessarily have β1 = · · · = βm = 0.
Consequently, the linear system representing equations (4.9)–(4.10) possesses only the
trivial solution β1 = · · · = βm = 0. Therefore, the matrix of this linear system must be
invertible.

Let now z = (x, u) ∈ A be such that z ⊥ z1, . . . , zm. Then for the function z̃ := z + ẑ
the conditions in (4.9)–(4.10) represent a linear system for the coefficients β1, . . . , βm (and
in general this system may be inhomogeneous) with an invertible coefficient matrix, as we
just proved. Therefore, there exist unique β1, . . . , βm ∈ R satisfying this system. By the
same way as in the previous part of this proof (i.e., by the time scale induction principle)
we conclude that the image condition (4.11) is now satisfied for this z̃ = (x̃, ũ). The
extended global Picone formula (Theorem 4.5) then yields

Fλ(z) ≥

∫ b

a

w̃T (t) P (t, λ) w̃(t) ∆t +

m
∑

i=1

(λ − λi) β2
i ≥ 0, (4.19)

since λ > λi for every i = 1, . . . , m, and since (4.18) holds as a consequence of assumption

(2.9) for Ẑ(·, λ) and the construction of w̃(·) in (4.10)(ii). From (4.19) we get

F0(z) − λ 〈z, z〉W = Fλ(z) ≥ 0, i.e., F0(z) ≥ λ 〈z, z〉W . (4.20)

Inequality (4.20) is therefore established for every λ ∈ (λm, λm+1). If we now take the
limit as λ → λ−

m+1, we get from (4.20) the inequality

F0(z) ≥ λm+1 〈z, z〉W ,

showing that the infimum of the Rayleigh quotient F0(z)/〈z, z〉W in (4.1) does not exceed
λm+1. Since zm+1 = (xm+1, um+1) is a finite eigenfunction of (E) corresponding to the
finite eigenvalue λm+1, it follows that zm+1 ∈ A and W (·) xσ

m+1(·) 6≡ 0 on [a, ρ(b)]T, and
Fλm+1

(zm+1) = 0. Hence,

F0(zm+1) = λm+1 〈zm+1, zm+1〉W .

Since by the construction of the finite eigenfunctions we have zm+1 ⊥ z1, . . . , zm, it follows
that the minimum in (4.1) is indeed equal to λm+1 and this minimum is attained at
z = zm+1.
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Finally, if λm+1 = · · · = λm+p is a multiple finite eigenvalue of (E) with multiplicity
p ≥ 2, then any function z ∈ A with z ⊥ z1, . . . , zm+q (for any q ∈ {1, . . . , p}) satisfies
automatically z ⊥ z1, . . . , zm. Therefore, by the previous argument we have for such z

F0(z) ≥ λm+1 〈z, z〉W = · · · = λm+q 〈z, z〉W , q ∈ {1, . . . , p}.

This completes the proof of the Rayleigh principle on time scales (Theorem 4.1). �

Similarly to [20, Corollary 4.1] we can characterize the existence of finitely or infinitely
many finite eigenvalues in terms of the dimension of the space

W := { (Wxσ)(·), z = (x, u) ∈ A }.

The space W contains all the functions (Wxσ
i )(·), where zi = (xi, ui) are the finite eigen-

functions of (E). Consequently, the number of finite eigenvalues cannot be larger than
dim W. From Theorem 4.1 we can then conclude the following.

Corollary 4.6. Assume that (1.2) holds, the principal solution Ẑ(·, λ) of (Sλ) satisfies
condition (2.9), and Fλ is positive definite for some λ < 0.

(i) The eigenvalue problem (E) has infinitely many finite eigenvalues −∞ < λ1 ≤
λ2 . . . with λm → ∞ as m → ∞ if and only if dim W = ∞.

(ii) The eigenvalue problem (E) has exactly p ∈ N ∪ {0} finite eigenvalues if and only
if dim W = p.

In both cases (i) and (ii) in Corollary 4.6 the finite eigenvalues of (E) satisfy (4.1),
where in (ii) we put λp+1 := ∞. The final result of this section is a generalization
of [20, Theorem 4.3] and [6, Theorem 4.7] to time scales.

Theorem 4.7 (Expansion theorem). Assume that (1.2) holds, the principal solution

Ẑ(·, λ) of (Sλ) satisfies condition (2.9), and that Fλ is positive definite for some λ < 0.
Denote by I the index set which is equal to N if dim W = ∞ and which is equal to
{1, . . . , p} if dim W = p ≥ 1. Let z = (x, u) ∈ A. Then

x =
∑

i∈I

ci xi, i.e., lim
m→∞

∥

∥

∥

∥

z −
m

∑

i=1

ci zi

∥

∥

∥

∥

W

= 0, where ci := 〈z, zi〉W for all i ∈ I.

(4.21)

Proof. The proof is the same as in the continuous and discrete time cases in [20, The-
orem 4.3] and [6, Theorem 4.7] and it is therefore omitted. We need to mention that
the argument in these proofs yields in the time scale setting that xσ(·) =

∑

i∈I ci x
σ
i (·)

on [a, ρ(b)]T. But since the functions x(·) and xi(·) are continuous on [a, b]T and since
x(a) = 0 = xi(a) for every i ∈ I, it follows by [21, Lemma 5.10] that x(t) =

∑

i∈I ci xi(t)
on [a, b]T, as it is claimed in (4.21). �

5. Sturmian theorems

In this section we consider first the system (Sλ) and another time scale symplectic
system of the same form

x∆ = A(t) x + B(t) u, u∆ = C(t) x + D(t) u − λ W (t) xσ, t ∈ [a, ρ(b)]T, (Sλ)
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whose coefficients A(·), B(·), C(·), D(·), W (·) satisfy the same assumptions (1.1) as the
coefficients of system (Sλ). The quadratic functional corresponding to system (Sλ) will
be denoted by Fλ. Define on [a, ρ(b)]T the symmetric matrices (suppressing the argument
t in the notation)

G :=

(

CT − µ CTA + ATEA µ CT −ATE
µ C − EA E

)

, E := BB†(I + µD)B†,

and similarly we define the matrices G and E . Then a simple calculation shows that for
an admissible z = (x, u) we have

Ω(z, z) =

(

x
x∆

)T

G

(

x
x∆

)

, (I + µDT )B = BTEB. (5.1)

The following results gives a comparison of the definiteness of the functionals Fλ and Fλ.

Proposition 5.1 (Comparison theorem). Let λ, λ0 ∈ R with λ ≤ λ0 and assume that

G(t) ≥ G(t), 0 ≤ W (t) ≤ W (t), Im
(

A(t) −A(t) B(t)
)

⊆ ImB(t) on [a, ρ(b)]T. (5.2)

Then the positivity (nonnegativity) of the functional Fλ0
implies the positivity (nonnega-

tivity) of the functional Fλ.

Proof. The proof is similar to the proof of [16, Theorem 3.2], so the details are here
omitted. �

As a consequence we obtain a comparison of the definiteness of the functionals Fλ for
different values of λ. It allows to replace the condition on the positivity of Fλ for all
λ ≤ λ0 used in the oscillation theorem in [21, Corollary 6.4] by the positivity of Fλ0

alone
(compare the previous reference with Proposition 2.2).

Corollary 5.2. Suppose that (1.2) holds and let λ0 ∈ R be fixed. The functional Fλ0
is

positive definite (nonnegative) if and only if the functional Fλ is positive definite (non-
negative) for every λ ≤ λ0.

Proof. We take the coefficients in system (Sλ) to be equal to the coefficients of (Sλ). Then
the conditions in (5.2) are satisfied trivially and the result follows from Proposition 5.1. �

In the subsequent results we establish much more precise relationship between the
numbers of proper focal points of conjoined bases of the two systems of the form (Sλ) and
(Sλ). Let us consider two generic time scale symplectic systems

x∆ = A(t) x + B(t) u, u∆ = C(t) x + D(t) u, t ∈ [a, ρ(b)]T, (S)

x∆ = A(t) x + B(t) u, u∆ = C(t) x + D(t) u, t ∈ [a, ρ(b)]T, (S)

whose coefficients satisfy the assumptions in (1.1)(i). We shall now derive the Sturmian
comparison and separation theorems for these two systems. Accordingly to the matrix
P (·) in (2.4), we define the matrix P (·) through a conjoined basis Z = (X, U) of system
(S). And as in (2.9) we utilize similar hypotheses for the conjoined bases Z = (X, U) of
(S) and Z = (X, U) of (S). The following result is a generalization of [10, Theorem 1]
and [23, Theorem 1.1] to time scales.
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Theorem 5.3 (Sturmian separation theorem). Suppose that conditions (i) and (ii) in
(2.9) holds for every conjoined basis of (S). If there exists a conjoined basis of (S) with
no proper focal points in (a, b]T, then every other conjoined basis of (S) has at most n
proper focal points in (a, b]T.

Proof. The first assumption yields that every conjoined basis of (S) has finitely many
proper focal points in (a, b]T. The existence of a conjoined basis of (S) with no proper
focal points in (a, b]T implies by [16, Corollary 3.2] (or in fact it is equivalent to, by
Proposition 2.1) the positivity of the functional F0. Let Z = (X, U) be a conjoined basis
of (S) with totally r > n proper focal points in (a, b]T including the multiplicities, and
let these proper focal points be identified as a < τ1 < · · · < τk ≤ b with the multiplicities
m1, . . . , mk satisfying

∑k

i=1 mi = r. The above notation of these proper focal points
means that for every i ∈ {1, . . . , k} the conjoined basis Z has a proper focal point of
the multiplicity mi at the point τi if τi is left-dense, where mi is given by the number
(2.5) with t0 := τi, and Z has a proper focal point of the multiplicity mi in the interval
(ρ(τi), τi]T if τi is left-scattered, where mi is given by the number (2.6) with t0 := τi.

For every index i ∈ {1, . . . , k} such that τi is left-dense let d
[i]
1 , . . . , d

[i]
mi

∈ Rn be a
basis for the space [Ker X(τ−

i )]⊥ ∩ KerX(τi), whose dimension is exactly mi, and then

let z
[i]
j = (x

[i]
j , u

[i]
j ) for j ∈ {1, . . . , mi} be the corresponding admissible pairs defined by

(3.3) from Lemma 3.2, for which

x
[i]
j (b) = 0, x

[i]
j (·) 6≡ 0 on [a, b]T, F0(z

[i]
j ) = −(d

[i]
j )T XT (a) U(a) d

[i]
j (5.3)

for all j ∈ {1, . . . , mi}. Similarly, for every index i ∈ {1, . . . , k} such that τi is left-

scattered let d
[i]
1 , . . . , d

[i]
pi
∈ Ker X(τi)\Ker X(ρ(τi)), where pi := rankM(ρ(τi)), be linearly

independent vectors, and let c
[i]
1 , . . . , c

[i]
qi

∈ Rn be mutually orthogonal unit eigenvectors

corresponding to the negative eigenvalues λ
[i]
1 , . . . , λ

[i]
qi

of the symmetric matrix P (ρ(τi)),

i.e., (c
[i]
j )T P (ρ(τi)) c

[i]
j = λ

[i]
j < 0 for j ∈ {1, . . . , qi}, where qi := ind P (ρ(τi)), so that

pi + qi = mi. Let z
[i]
j = (x

[i]
j , u

[i]
j ) for j ∈ {1, . . . , pi} be the corresponding admissible pairs

defined by (3.3) from Lemma 3.2, for which (5.3) holds for all j ∈ {1, . . . , pi}. Further-

more, let z
[i]
j+pi

= (x
[i]
j+pi

, u
[i]
j+pi

) and d
[i]
j+pi

:= {µ(Xσ)†BTc
[i]
j }(ρ(τi)) for j ∈ {1, . . . , qi} be

the admissible pairs defined by (3.4) from Lemma 3.3, for which

x
[i]
j+pi

(b) = 0, x
[i]
j+pi

(·) 6≡ 0 on [a, b]T,

F0(z
[i]
j+pi

) = −(d
[i]
j+pi

)T XT (a) U(a) d
[i]
j+pi

+ µ(ρ(τi)) λ
[i]
j

}

(5.4)

for all j ∈ {1, . . . , qi}. Note that in both cases (τi left-dense or left-scattered) we have

z
[i]
j (·) ≡ 0 on [τi, b]T for all j ∈ {1, . . . , mi}. We now order the admissible pairs z

[i]
j as

z
[1]
1 , . . . , z[1]

m1
, z

[2]
1 , . . . , z[2]

m2
, . . . , z

[k]
1 , . . . , z[k]

mk
(5.5)

and denote these admissible pairs as z(1), . . . , z(r), i.e., the functions in (5.5) are indexed
as

z(1), . . . , z(m1), z(m1+1), . . . , z(m1+m2), . . . , z(r−mk+1), . . . , z(r) (5.6)

and they are determined by the corresponding vectors denoted by d1, . . . , dr.
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Since each of the initial values x(1)(a), . . . , x(r)(a) is an n-vector and since we assume
that we have r > n of these initial values, then they must be linearly dependent, i.e.,

r
∑

l=1

αl x
(l)(a) = 0 for some coefficients α1, . . . , αr ∈ R with some αl 6= 0. (5.7)

We now define the pair z = (x, u) by

z(t) :=
r

∑

l=1

αl z
(l)(t) for all t ∈ [a, b]T. (5.8)

Then z is admissible,

x(a) =

r
∑

l=1

αl x
(l)(a)

(5.7)
= 0, x(b) =

r
∑

l=1

αl x
(l)(b) =

k
∑

i=1

mi
∑

j=1

α
[i]
j x

[i]
j (b)

(5.3),(5.4)
= 0, (5.9)

where α
[i]
j := αm1+···+mi+j. Hence, z ∈ A and with notation (5.6) it follows that

F0(z) =
r

∑

l=1

r
∑

m=1

αl αm

∫ b

a

Ω(z(l), z(m))(t) ∆t.

The value of each of the above integrals is calculated by the aid of Lemmas 3.5–3.7
depending on the type of the proper focal point to which the admissible functions z(l) and
z(m) belong. Denote by J the set of indices i ∈ {1, . . . , k} such that the conjoined basis
Z has a proper focal point in the interval (ρ(τi), τi)T, that is, qi = ind P (ρ(τi)) ≥ 1. Then
by Lemmas 3.5–3.7 we get

F0(z) = Q −
r

∑

l=1

r
∑

m=1

αl αm [x(m)(a)]T u(l)(a)
(5.8)
= Q − xT (a) u(a)

(5.9)
= Q, (5.10)

where Q :=
∑

i∈J

qi
∑

j=1

qi
∑

s=1

α
[i]
j α[i]

s µ(ρ(τi)) (c
[i]
j )TP (ρ(τi)) c[i]

s .

Since for each i ∈ J the vectors c
[i]
1 , . . . , c

[i]
qi

are mutually orthogonal unit eigenvectors

corresponding to the negative eigenvalues λ
[i]
1 , . . . , λ

[i]
qi

of the symmetric matrix P (ρ(τi)),
it follows that for all j, s ∈ {1, . . . , qi} we have

(c
[i]
j )T P (ρ(τi)) c[i]

s = λ
[i]
j (c

[i]
j )T c[i]

s =

{

λ
[i]
j , for s = j,

0, for s 6= j,

Thus, by (5.10),

F0(z) = Q =
∑

i∈J

µ(ρ(τi))

qi
∑

j=1

λ
[i]
j

(

α
[i]
j

)2
≤ 0, (5.11)

and the inequality in (5.11) is strict if the set J is nonempty. Consequently, the positivity
of the functional F0 implies that x(·) ≡ 0 on [a, b]T. We will show that this necessarily
leads to α1, . . . , αr being zero.

Consider the last proper focal point τk. If τk is left-dense, then following the proof
of [23, Theorem 1.1], the definition of the admissible functions z(l)(·) in (3.3) yields that
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x(l)(·) ≡ 0 on [τk − ε, τk)T for some sufficiently small ε > 0 for every l = 1, . . . , r − mk.
Therefore, from equations (5.6) and (5.8) we obtain

r
∑

l=r−mk+1

αl x
(l)(·) = x(·) ≡ 0, i.e.,

mk
∑

j=1

α
[k]
j x

[k]
j (·) ≡ 0 on [τk − ε, τk)T. (5.12)

The identity in (5.12) holds also at τk by the definition of x
[k]
j (τk) or just by the continuity

of x
[k]
j (·). Hence, for every t ∈ [τk − ε, τk)T we have

0
(5.12)
=

mk
∑

j=1

α
[k]
j x

[k]
j (t)

(3.3)
=

mk
∑

j=1

α
[k]
j X(t) d

[k]
j = X(t) e, where e :=

mk
∑

j=1

α
[k]
j d

[k]
j . (5.13)

Since the vectors d
[k]
1 , . . . , d

[k]
mk

form a basis of the orthogonal complement of Ker X(τ−
k ) in

Ker X(τk), it follows that e ∈ [KerX(τ−
k )]⊥, since the vector e is by (5.13) a linear com-

bination of d
[k]
1 , . . . , d

[k]
mk

. On the other hand, formula (5.13) implies that e ∈ KerX(τ−
k ).

Consequently, e = 0. The definition of e in (5.13) and the linear independence of

d
[k]
1 , . . . , d

[k]
mk

now yields that α
[k]
1 = · · · = α

[k]
mk

= 0, that is, α(r−mk+1) = · · · = α(r) = 0.
If τk is left-scattered, then inspired by the proof of [10, Theorem 1] we have from (3.3)

and (3.4) that x(l)(ρ(τk)) = 0 for all l = 1, . . . , r − mk. Hence, by (5.6) and (5.8) we get
r

∑

l=r−mk+1

αl x
(l)(ρ(τk)) = x(ρ(τk)) = 0, i.e.,

mk
∑

j=1

α
[k]
j x

[k]
j (ρ(τk)) = 0. (5.14)

Consequently,

0
(5.14)
=

mk
∑

j=1

α
[k]
j x

[k]
j (ρ(τk))

(3.3), (3.4)
=

mk
∑

j=1

α
[k]
j X(ρ(τk)) d

[k]
j = X(ρ(τk)) e, (5.15)

where the vector e is defined by the second formula in (5.13). For brevity we set p := pk

and q := qk, and recall that the vectors d
[k]
1 , . . . , d

[k]
p “belong” to the focal point at τk,

while the vectors d
[k]
p+1, . . . , d

[k]
p+q “belong” to the focal interval (ρ(τk), τk)T, where from

Lemmas 3.3 and 3.8 the vectors d
[k]
p+j are given by formula (3.7) with t0 := τk and cj := c

[k]
j

for j ∈ {1, . . . , q}. From Im X† = Im XT we can see that d
[k]
p+1, . . . , d

[k]
p+q ∈ Im XT (ρ(τk)) =

[Ker X(ρ(τk))]
⊥. By splitting the vector e into the sum

e = f + g, where f :=

p
∑

j=1

α
[k]
j d

[k]
j , g :=

q
∑

j=1

α
[k]
p+j d

[k]
p+j,

we get f ∈ [Ker X(ρ(τk))]
⊥ ∩ Ker X(τk) and g ∈ [KerX(ρ(τk))]

⊥. Hence, e = f + g ∈
[Ker X(ρ(τk))]

⊥. And since by (5.15) we have f + g = e ∈ Ker X(ρ(τk)), it follows

that e = 0. But from Lemma 3.8 we know that the vectors d
[k]
1 , . . . , d

[k]
p+q are linearly

independent, so that e = 0 implies α
[k]
1 = . . . α

[k]
p+q = 0. Thus, as in the case of τk

left-dense, we proved that α(r−mk+1) = · · · = α(r) = 0.

Repeating the above argument with the proper focal points τk−1, . . . , τ1 we obtain α
[i]
j =

0 for every i ∈ {1, . . . , k} and j ∈ {1, . . . , mi}, i.e., α1 = · · · = αr = 0. However,
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this contradicts condition (5.7), where at least one coefficient αl 6= 0. Therefore, the
conjoined basis Z cannot have more than n proper focal points in (a, b]T and the proof is
complete. �

In the proofs of the subsequent results we will utilize the eigenvalue problems (E) and

(Sλ), x(a) = 0 = x(b), (E)

in which the matrices W (·) and W (·) are given by

W (t) ≡ I, W (t) ≡ I on [a, ρ(b)]T. (5.16)

The following result is a generalization of [23, Theorem 1.2] and [6, Theorem 1.2] to
arbitrary time scales. Note that in view of Proposition 2.1 the choice of m = 0 in
Theorem 5.4 yields the result of Theorem 5.3.

Theorem 5.4 (Sturmian comparison theorem). Under (5.16), suppose that the principal
solution of (Sλ) satisfies (2.9), and conditions (i) and (ii) in (2.9) hold for every conjoined
basis of (S). Furthermore, let the functional Fλ be positive definite for some λ < 0 and

G(t) ≥ G(t), Im
(

A(t) −A(t) B(t)
)

⊆ ImB(t) on [a, ρ(b)]T. (5.17)

If the principal solution of (S) has m ∈ N ∪ {0} proper focal points in (a, b]T, then every
conjoined basis of (S) has at most m + n proper focal points in (a, b]T.

Proof. The assumptions imply that there is finitely many proper focal points in (a, b]T for

every conjoined basis of (Sλ) and (S). Let Ẑ = (X̂, Û) be the principal solution of (S)
and suppose that it has m proper focal points in (a, b]T. Let Z = (X, U) be a conjoined
basis of (S) and let r be its number of proper focal points in (a, b]T. By Lemmas 3.2
and 3.3, for each proper focal point at τi and for each proper focal point in (ρ(τi), τi)T of
Z there is an (A,B)-admissible zi = (xi, ui) such that

xi(b) = 0, xi(·) 6≡ 0, F0(zi) = −xT
i (a) ui(a), (5.18)

xi(b) = 0, xi(·) 6≡ 0, F0(zi) = −xT
i (a) ui(a) + µ(ρ(τi)) λi, (5.19)

respectively, where λi is a negative eigenvalue of the matrix P (ρ(τi)). By Proposition 2.2,
the finite eigenvalues of (E) are bounded below and

n1(λ) = n2(λ) for all λ ∈ R, (5.20)

where

n1(λ) := the number of proper focal points of Ẑ(·, λ) in (a, b]T,

n2(λ) := the number of finite eigenvalues of (E) which are less or equal to λ,

and where Ẑ(·, λ) = (X̂(·, λ), Û(·, λ)) is the principal solution of (Sλ), i.e., X̂(a, λ) ≡ 0

and Û(a, λ) ≡ I for all λ ∈ R. Since we assume that the principal solution Ẑ = Ẑ(·, 0)
of (S) has m proper focal points in (a, b]T, i.e., n1(0) = m, formula (5.20) yields that
the eigenvalue problem (E) has m finite eigenvalues λ1 ≤ · · · ≤ λm ≤ 0. Let z1 =
(x1, u1), . . . , zm = (xm, um) be the corresponding orthonormal finite eigenfunctions. By
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the Rayleigh principle (Theorem 4.1), for every (A,B)-admissible z = (x, u) with x(a) =
0 = x(b), x(·) 6≡ 0, and z ⊥ z1, . . . , zm we have

F0(z) > 0 · 〈z, z〉 = 0, 〈z, z̃〉 := 〈z, z̃〉W =

∫ b

a

[xσ(t)]T x̃σ(t) ∆t. (5.21)

Consider the numbers

βij := 〈zi, zj〉 =

∫ b

a

[xσ
i (t)]T xσ

j (t) ∆t for i ∈ {1, . . . , r}, j ∈ {1, . . . , m},

and the vectors

di :=
(

βi1 βi2 . . . βim xT
i (a)

)T
∈ Rm+n for i ∈ {1, . . . , r},

where the functions zi = (xi, ui) are from (5.18) and (5.19). If we assume that r >
m+n, then these vectors d1, . . . , dr must be linearly dependent, i.e., there are coefficients
c1, . . . , cr ∈ R with some ci 6= 0 such that

r
∑

i=1

ci di = 0 ∈ Rm+n. (5.22)

Define now the pair z = (x, u) :=
∑r

i=1 ci zi. Since each zi is (A,B)-admissible with
xi(b) = 0, it follows that z is also (A,B)-admissible and x(b) = 0. Moreover, the definition
of the vectors d1, . . . , dr implies

x(a) =
r

∑

i=1

ci xi(a)
(5.22)
= 0.

Furthermore, for every j ∈ {1, . . . , m} we have

0
(5.22)
=

r
∑

i=1

ci βij =

r
∑

i=1

ci 〈zi, zj〉 =

〈 r
∑

i=1

ci zi, zj

〉

= 〈z, zj〉. (5.23)

This yields that z ⊥ z1, . . . , zm. The fact that x(·) 6≡ 0 follows by the same argument
as in the proof of Theorem 5.3, i.e., if x(·) ≡ 0, then all the coefficients c1, . . . , cr are
zero, which is a contradiction. Moreover, from (5.18) and (5.19) we get similarly to the
calculations in (5.10)–(5.11) that F0(z) ≤ 0.

Define the function x(t) := x(t) on [a, b]T. Then (suppressing the argument t) we have
x∆−Ax = Bu+(A−A) x ∈ Im

(

A−A , B
)

on [a, ρ(b)]T, so that by condition (5.17)(ii)

for each t ∈ [a, ρ(b)]T there exists a value u(t) ∈ Rn such that Bu = x∆ − Ax ∈ Cprd

on [a, ρ(b)]T. This means that the pair z = (x, u) is (A,B)-admissible, x(a) = x(a) = 0,
x(b) = x(b) = 0, and x(·) = x(·) 6≡ 0. Moreover, by (5.23) and the definition of 〈·, ·〉
we have 〈z, zj〉 = 〈z, zj〉 = 0 for each j ∈ {1, . . . , m}, that is, z ⊥ z1, . . . , zm. Inequality
(5.21) then implies that F0(z) > 0. On the other hand, by the definition of x, G, and G
we have (compare with [16, Theorem 3.2])

F0(z) =

∫ b

a

(

x(t)
x∆(t)

)T

G(t)

(

x(t)
x∆(t)

)

∆t
(5.17)

≤

∫ b

a

(

x(t)
x∆(t)

)T

G(t)

(

x(t)
x∆(t)

)

∆t = F0(z) ≤ 0.

This is a contradiction with the previously computed value F0(z) > 0. Hence, we must
have r ≤ m + n and the proof is complete. �
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Next we consider a generalization of [23, Theorem 1.3] and [6, Theorem 1.3] to time
scales.

Theorem 5.5 (Sturmian comparison theorem). Under (5.16), suppose that the principal
solution of (Sλ) and every conjoined basis of (Sλ) satisfy (2.9). Furthermore, let the
functional Fλ be positive definite for some λ < 0 and condition (5.17) satisfied. If the
principal solution of (S) has m ∈ N∪{0} proper focal points in (a, b]T, then every conjoined
basis of (S) has at least m proper focal points in (a, b]T.

Proof. Let Ẑ = (X̂, Û) be the principal solution of (S) with m proper focal points in
(a, b]T and let Z = (X, U) be a conjoined basis of (S). For any λ ∈ R let Z(·, λ) =
(X(·, λ), U(·, λ)) be the conjoined basis of (Sλ) given by the initial conditions X(a, λ) ≡

X(a) and U(a, λ) ≡ U(a), and let Ẑ(·, λ) = (X̂(·, λ), Û(·, λ)) be the principal solution

of (Sλ). Then Ẑ(·, λ) and Z(·, λ) have finitely many proper focal points in (a, b]T for
every λ ∈ R, which we denote by n1(λ) and p(λ), respectively. Then we need to prove
m = n1(0) ≤ p(0). We shall prove a stronger result

n1(λ) ≤ p(λ) for all λ ∈ R. (5.24)

Under (5.16) we consider the eigenvalue problems (E) and (E). By the oscillation theorem
(Proposition 2.2), the finite eigenvalues of (E) are bounded below and equality (2.11)
holds. Thus, there are n2(0) = n1(0) = m nonpositive finite eigenvalues of (E). Let
λ1 ≤ · · · ≤ λr ≤ λr+1 ≤ . . . be the finite eigenvalues of (E) with the corresponding
orthonormal finite eigenfunctions z1, z2, . . . . Put λ0 := −∞ and, if the dimension of the
admissible set A is finite, say dim A = r < ∞, then we put λr+j := ∞ for every j ∈ N.

Fix any λ ∈ R. Then λ ∈ [λk, λk+1) for some k ∈ N ∪ {0}, and k ≤ r if dim A = r. By
Proposition 2.2, it follows that n1(λ) = n2(λ) = k. If k = 0, then the required inequality
(5.24) holds trivially. Hence, we consider further on that k ≥ 1. First suppose that λ is
not a finite eigenvalue of (E), that is, λ ∈ (λk, λk+1). For constants β1, . . . , βk ∈ R we set

z̃ = (x̃, ũ) :=
∑k

i=1 βi zi, so that z̃ ∈ A.
Let p̃ be the number of proper focal points of Z(·, λ) in the interval (a, b)T. Then

p̃ ≤ p(λ). Choose the coefficients β1, . . . , βk so that the function z̃ satisfies p̃ linear
homogeneous equations determined by the conditions

x̃(τj) ∈
(

[Ker XT (τ−
j , λ)]⊥ ∩ KerXT (τj , λ)

)⊥
if τj is left-dense, (5.25)

MT (ρ(τj), λ) x̃(τj) = 0,

w̃(ρ(τj)) ⊥
{

α ∈ Rn, α is an eigenvector
corresponding to a negative
finite eigenvalue of P (ρ(τj), λ)

}



















if τj is left-scattered, (5.26)

where w̃(t) := ũ(t) − U(t, λ) X†(t, λ) x̃(t) and where τ1, . . . , τl are the proper focal points
of Z(·, λ) in (a, b)T whose multiplicities add up to p̃. The matrices M(·, λ) and P (·, λ) are
defined by (2.4) through the conjoined basis Z(·, λ).

Set x(t) := x̃(t) on [a, b]T. Since z̃ is (A,B)-admissible, assumption (5.17)(ii) implies
that z := (x, u) is (A,B)-admissible for some u(·). Moreover, x(a) = x̃(a) = 0, x(b) =
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x̃(b) = 0, and for each j ∈ {1, . . . , k}

〈z, zj〉 = 〈z̃, zj〉 =
k

∑

i=1

βi 〈zi, zj〉 = βj .

By the time scale induction principle, following the proof of Theorem 4.1, one can verify
that the image condition

x(t) ∈ Im X(t, λ) for all t ∈ [a, b]T

holds. Since by (5.1) the values of Ω(z̃, z̃) and 〈z̃, z̃〉 do not depend on the component ũ,
it follows that

Fλ(z) = Fλ(z̃), where Fλ(z) := F0(z) − λ 〈z, z〉. (5.27)

We now apply the extended global Picone formula (Theorem 4.5) with z = 0, m = k,
ẑ = z to obtain for w̃ := ũ − UX†x̃

Fλ(z)
(5.27)
= Fλ(z̃)

(4.4)

≥

∫ b

a

w̃T (t) P (t, λ) w̃(t) ∆t +
k

∑

i=1

(λ − λi) β2
i

≥

k
∑

i=1

(λ − λi) β2
i ≥ 0, (5.28)

where we used that λ > λi for every i ∈ {1, . . . , k} and that w̃ is orthogonal to the
eigenvectors corresponding to the negative eigenvalues of of P (ρ(τi), λ), see (5.26). On
the other hand, assumption (5.17) implies

F0(z) =

∫ b

a

(

x(t)
x∆(t)

)T

G(t)

(

x(t)
x∆(t)

)

∆t

(5.17)

≤

∫ b

a

(

x̃(t)
x̃∆(t)

)T

G(t)

(

x̃(t)
x̃∆(t)

)

∆t = F0(z̃). (5.29)

Therefore,

Fλ(z)
(5.27)
= F0(z) − λ 〈z, z〉

(5.29)

≤ F0(z̃) − λ 〈z̃, z̃〉 = Fλ(z̃)
(4.2)
=

k
∑

i=1

(λi − λ) β2
i , (5.30)

where the value of Fλ(z̃) is calculated separately by using Lemma 4.2. The combination
of equations (5.28) and (5.30) then yields

0 ≤
k

∑

i=1

(λ − λi) β2
i

(5.28)

≤ Fλ(z)
(5.30)

≤
k

∑

i=1

(λi − λ) β2
i ≤ 0,

where the last inequality follows from λ > λi for every i ∈ {1, . . . , k}. This is however
possible only if β1 = · · · = βk = 0. Therefore, system (5.25)–(5.26) of p̃ linear homoge-
neous equations has only the trivial solution. This implies that the number of equations
(that is, p̃) must be bigger or equal to the number of variables β1, . . . , βk (that is, k).
Consequently,

n1(λ)
(2.11)
= n2(λ) = k ≤ p̃ ≤ p(λ). (5.31)
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This shows the result in (5.24) when λ is not a finite eigenvalue of (E). When λ = λk is
one of the finite eigenvalues of (E), then from the right-continuity of the functions n1(·)
and p(·) on R, see [21, Theorem 6.1], it follows upon taking the limit in (5.31) as λ ց λ+

k

that

n1(λk) = n1(λ
+
k )

(5.31)

≤ p(λ+
k ) = p(λk).

Hence, inequality (5.24) holds also when λ = λk is a finite eigenvalue of (E). �

Remark 5.6. The proof of Theorem 5.5 shows that assumption (2.9) for every conjoined
basis of (Sλ) can be dropped. In that case we allow p(λ) = ∞, so that the inequality
n1(λ) ≤ p(λ), and in particular n1(0) ≤ p(0), is satisfied automatically.

Let now (Sλ)=(Sλ), so that conditions (5.17) are trivially satisfied. This yields a
generalization of [23, Theorem 1.4] and [6, Theorem 3.1] to time scales.

Theorem 5.7 (Sturmian separation theorem). Under (5.16), suppose that for every con-
joined basis of (Sλ) condition (2.9) holds and that Fλ is positive definite for some λ < 0.
If the principal solution of (S) has m ∈ N ∪ {0} proper focal points in (a, b]T, then any
other conjoined basis of (S) has at least m and at most m+n proper focal points in (a, b]T.

Proof. By assumption (2.9), every conjoined basis of (S) has finitely many proper focal
points in (a, b]T. Let the principal solution of (S) have m proper focal points in (a, b]T. Let
Z = (X, U) be any other conjoined basis of (S) and denote by p its number of proper focal
points in (a, b]T. Set S(t) := S(t) on [a, ρ(b)]T. Then by Theorem 5.4 we have p ≤ m + n,
while by Theorem 5.5 we get p ≥ m. Thus, m ≤ p ≤ m + n and the result is proven. �

The final result of this section generalizes [23, Theorem 1.5] and [6, Theorem 1.1] to
time scales.

Theorem 5.8 (Sturmian separation theorem). Under (5.16), suppose that for every con-
joined basis of (Sλ) condition (2.9) holds and that Fλ is positive definite for some λ < 0.
Then the difference between the numbers of proper focal points in (a, b]T of any two con-
joined bases of (S) is at most n.

Proof. By assumption (2.9), every conjoined basis of (S) has finitely many proper focal

points in (a, b]T. Let Ẑ = (X̂, Û) be the principal solution of (S) and let Z = (X, U) and

Z̃ = (X̃, Ũ) be any two conjoined basis of (S). Denote by m, p, p̃ their numbers of proper
focal points in (a, b]T, respectively. Then by Theorem 5.7 we have m ≤ p ≤ m + n and
m ≤ p̃ ≤ m + n. Upon subtracting m from both sides of these inequalities we obtain
0 ≤ p − m ≤ n and 0 ≤ p̃ − m ≤ n. Therefore, p − p̃ ≤ n if p ≥ p̃, or p̃ − p ≤ n if
p ≤ p̃. Combining these two inequalities yields |p− p̃| ≤ n, which is the statement of this
theorem. �

6. Special time scales

In this section we continue the study of the oscillation properties of symplectic systems
(S) and (S) on special time scales, which was initiated in [21, Section 9]. A time scale
T = [a, b]T is called special if it consists of a finite union of disjoint closed and bounded
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real intervals and/or finitely many isolated points. That is, a special time scale [a, b]T can
be partitioned as

a = t0 < t1 < · · · < tN+1 = b, where

[tj , tj+1]T = [tj , tj+1] or [tj , tj+1]T = {tj , tj+1},

}

(6.1)

i.e., for every two consecutive partition points tj and tj+1 the interval [tj , tj+1]T is connected
or (tj , tj+1)T is empty. Already such time scales unify the classical purely continuous and
discrete time scales. We shall make the following standing hypothesis

B(t) ≥ 0 on continuous intervals [tj , tj+1] ⊆ [a, b]T. (6.2)

Then, by [19, Theorem 3], every conjoined basis Z(·, λ) = (X(·, λ), U(·, λ)) of (Sλ) has the
kernel of X(·, λ) piecewise constant on the continuous intervals [tj, tj+1] ⊆ [a, b]T, hence
on [a, b]T. Moreover, by [15, Lemma 3.1] we have P = T [(I + µDT )B−µBT Uσ(Xσ)†B] T
on [a, ρ(b)]T × R, so that the matrix P (t, λ) = T (t, λ)B(t) T (t, λ) at every right-dense
point. Therefore, we can see that in this case assumption (6.2) implies condition (2.9).
In addition, on special time scales we have the result of [21, Theorem 9.5], saying that
under (6.2) and W (t) > 0 on [a, ρ(b)]T, in particular for W (·) ≡ I used in the previous
section, there exists λ < 0 such that the functional Fλ is positive definite. Therefore, the
assumptions in the statements of Sections 4 and 5 significantly simplify for the special
time scales.

The results below follow from the corresponding ones in Sections 4 and 5 and they are
stated without the proofs.

Theorem 6.1 (Rayleigh principle). Assume (6.1), (6.2), (1.2), and the functional Fλ

is positive definite for some λ < 0. Let λ1 ≤ · · · ≤ λm ≤ . . . be the finite eigenvalues
of the eigenvalue problem (E) with the corresponding orthonormal finite eigenfunctions
z1, . . . , zm, . . . . Then for each m ∈ N ∪ {0} equation (4.1) holds. Moreover, if W (t) > 0
for all t ∈ [a, ρ(b)]T instead of (1.2), then the assumption on Fλ positive definite for some
λ < 0 can be dropped.

Theorem 6.2 (Sturmian comparison theorem). Assume (6.1), (6.2), and (5.17). If the
principal solution of (S) has m ∈ N∪{0} proper focal points in (a, b]T, then every conjoined
basis of (S) has at most m + n proper focal points in (a, b]T.

Theorem 6.3 (Sturmian comparison theorem). Assume (6.1), (6.2), and (5.17). If the
principal solution of (S) has m ∈ N∪{0} proper focal points in (a, b]T, then every conjoined
basis of (S) has at least m proper focal points in (a, b]T.

Theorem 6.4 (Sturmian separation theorem). Assume (6.1) and (6.2). If the principal
solution of (S) has m ∈ N ∪ {0} proper focal points in (a, b]T, then any other conjoined
basis of (S) has at least m and at most m + n proper focal points in (a, b]T.

Theorem 6.5 (Sturmian separation theorem). Assume (6.1) and (6.2). Then the differ-
ence between the numbers of proper focal points in (a, b]T of any two conjoined bases of
(S) is at most n.
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