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1 Introduction

The mathematical modelling of epidemics has become a very important subject of

research after the seminal model of Kermac-McKendric on SIRS (susceptible-infected-

removed-susceptible) systems [18], in which the evolution of a disease which gets trans-

mitted upon contact is described. Important studies in the following decades have been

carried out, with the aim of controlling the effects of diseases and of developing suitable

vaccination strategies [10, 22, 29, 9, 16]. After the seminal models of Vito Volterra [36]

and Alfred James Lotka [20] in the mid 1920s for predator-prey interactions, mutual-

ist and competitive mechanisms have been studied extensively in the recent years by

researchers [21, 25, 32].
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In the natural world, however, species do not exist alone, it is of more biological

significance to study the persistence-extinction threshold of each population in systems

of two or more interacting species subjected to parasitism. Mathematical biology,

namely predator-prey systems and models for transmissible diseases are major fields of

study in their own right. But little attention has been paid so far to merge these two

important areas of research (see [2, 27, 37, 38, 39]). Eco-epidemiology is rather a young

subject of study, which tries to merge the epidemics models with some demographic

issues. The first papers along these guidelines were indeed [8, 24], where the dynamics

of a reproducing population is studied, which is also subject to an epidemics. A model

for a disease spreading among interacting populations was first described in [13]. In

[35], the Lotka-Volterra model is taken as the demographic basis on which to study the

influence of a disease propagating in one of the two species. In an acquatic medium,

a model of this kind has been first introduced in [3], while in the important domain

of viral diseases affecting plankton, it is studied in [31]. Also the recent ecological

literature has emphasized the importance of parasites in shaping the dynamics of both

plant and animal communities [11]. Nowadays it has been observed that viral, bacterial,

fungal and metazoan parasites can mediate host vulnerable to predation [15].

Studies on ecology and epidemiology share some common features. It is very impor-

tant from both the ecological and the mathematical points of view to study ecological

systems subject to epidemiological factors. A number of studies have been performed

in this direction, since transmissible disease in ecological situation cannot be ignored

[4, 6, 14]. In order to study the influence of disease on an environment where two or

more interacting species are present. In this paper, we shall put emphasis on such an

eco-epidemiological system consisting of three populations, namely, the healthy prey

(which is susceptible), the infected prey (which becomes infective by direct contact)

and the predator population.

We have two populations:

1. The prey, whose total population density is denoted by N(t).

2. The predator, whose population density is denoted by P (t).

We make the following assumptions:

(A1) In the absence of transmissible disease the prey population grows according

to logistic law with carrying capacity K (K > 0) and an intrinsic birth rate constant

r (r > 0) [12, 14, 30], i.e.,

dS(t)

dt
= rS(t)(1 −

S(t) + I(t)

K
).

(A2) In the presence of infection, the total prey population N(t) are divided into

two distinct classes, namely, susceptible populations, S(t), and infected populations,

I(t) [12, 14, 30]. Therefore, at any time t, the total density of prey population is

N(t) = S(t) + I(t).

EJQTDE, 2012 No. 44, p. 2



(A3) We assume the infected prey I(t) are removed by death (say its death rate is

a positive constant d1), or by predation before having the possibility of reproducing.

(A4) We assume that the disease is spread among the prey population only and the

disease is not genetically inherited. The infected populations do not recover or become

immune. The incidence is assumed to be the simple mass action incidence bS(t)I(t),

where b > 0 is called the transmission coefficient. Hence, the SI model of the infected

prey is:






Ṡ = rS(t)(1 −
S(t) + I(t)

K
) − bS(t)I(t),

İ = bS(t)I(t) − d1I(t)

(A5) Numerous field studies show that infected prey are more vulnerable to preda-

tion compared with their non-infected counterpart [17, 26]. Lafferty and Morris [19]

quantified that the predation rates on infected prey may be thirty one times higher

compared to that on susceptible prey. Thus, we consider the case when the predator

mainly eats the infected prey. And we are assuming in a more realistic fashion that the

present level of the predator affects instantaneously the growth of the infected prey,

but that the growth of the predator is influenced by the amount of infected prey in the

past. More precisely, the number of predators grows depending on the weight-averaged

time of the Michaelis-Menten function of I(t) over the past by means of the function

Q(t) given by the integral [33]

Q(t) =

∫ t

−∞

δI(τ)P (τ)

mP (τ) + I(τ)
exp(−δ(t− τ))dτ, (1.1)

where the exponential weight function satisfies

∫ t

−∞

δ exp(−δ(t− τ))dτ =

∫

∞

0

δ exp(−δs)ds = 1.

Clearly, this assumption implies that the influence of the past fades away exponentially

and the number 1
δ

might be interpreted as the measure of the influence of the past. So,

the smaller the δ > 0, the longer the interval in the past in which the values of I are

taken into account.

From the above assumptions we have the following model:























dS
dt

= rS(t)(1 − S(t)+I(t)
K

) − bS(t)I(t),

dI
dt

= bS(t)I(t) − d1I(t) −
aI(t)P (t)

mP (t) + I(t)
,

dP
dt

= −d2P (t) + h

∫ t

−∞

δI(τ)P (τ)

mP (τ) + I(τ)
exp(−δ(t− τ))dτ,

(1.2)

where S(t), I(t) and P (t) denote the quantities of sound prey, infected prey and preda-

tor, respectively. d2(> 0) and h(> 0) the death rate of predator and conversion rate,

respectively.
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The integro-differential system (1.2) can be transformed [5, 23] into the system of

differential equations on the interval [0,+∞)






















dS
dt

= rS(t)(1 − S(t)+I(t)
K

) − bS(t)I(t),
dI
dt

= bS(t)I(t) − d1I(t) −
aI(t)P (t)

mP (t)+I(t)
,

dQ

dt
= δI(t)P (t)

mP (t)+I(t)
− δQ(t),

dP
dt

= −d2P (t) + hQ(t).

(1.3)

We understand the relationship between the two systems as follows: If (S, I, P ) :

[0,+∞) → R
3 is the solution of (1.2) corresponding to continuous and bounded initial

function (S̄0, Ī0, P̄0) : [0,+∞) → R
3, then (S, I, Q, P ) : [0,+∞) → R

4 is a solution of

(1.3) with S̄0 = S0, Ī0 = I0, P̄0 = P0, and

Q(0) =

∫ 0

−∞

δI(τ)P (τ)

mP (τ) + I(τ)
exp(δτ)dτ.

Conversely, if (S, I, Q, P ) is any solution of (1.3) defined on the entire real line and

bounded on (−∞, 0], then Q is given by (1.1), and so (S, I, P ) satisfies (1.2).

System (1.3) will be analyzed with the following initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, Q(0) = Q0 > 0, P (0) = P0 > 0. (1.4)

The organization of the paper is as follows: Section 2 deals with some basic results,

e.g., positivity, existence of equilibria, boundedness of solutions. Section 3 is devoted

to studying the dynamical behavior of the linearized system around each of the equi-

libria. In Section 4, we discuss the orbital stability of bifurcating limit cycle using

Poore’s condition. The globally asymptotical stability of predator-free equilibrium is

presented in section 5. We perform a numerical analysis in Section 6 to support our

analytical findings. The paper ends with discussion on the results obtained in the

previous sections.

2 Some basic results

It is important to show positivity and boundedness for the system (1.3) as they rep-

resent populations. Positivity implies that populations survives and boundedness may

be interpreted as a natural restriction to growth as a consequence of limited resources.

In this section, we present some basic results, such as the positive invariance of system

(1.3), the existence of equilibria, the boundedness of solutions.

2.1 Equilibria

The model (1.3) has the following equilibria:

(i) the predator-free equilibrium E1(S1, I1, 0, 0), where S1 =
d1

b
and I1 =

r(bK − d1)

b(r + bK)
;
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(ii) the interior equilibrium E2(S2, I2, Q2, P2), where

S2 =
d1mh + ah− d2a

bmh
, I2 =

r(bmKh− d1mh− ah+ d2a)

bmh(r + bK)
,

Q2 =
r(bmKh− d1mh− ah + d2a)(h− d2)

bm2h2(r + bK)
, P2 =

r(bmKh− d1mh− ah + d2a)(h− d2)

bm2hd2(r + bK)
.

For positivity of E1, we assume bK > d1.

Positivity of I2 implies that bmKh + d2a > d1mh + ah. If h > d2, we can get

the positivity of Q2 and P2. In order to insure the positivity of S2 we must have

d1mh + ah > d2a. Hence, for positivity of E2, we assume bmKh + d2a > d1mh + ah

and h > d2.

2.2 Positive invariance

Theorem 2.1. Every solution of system (1.3) with initial conditions (1.4) exists in

the intervat [0,+∞) and remains positive for all t > 0.

Proof. Let us put Eq. (1.3) in a vector form by setting

X(t) = col(S(t), I(t), Q(t), P (t)) ∈ R
4, (2.5)

and

G(X(t)) =











G1(X(t))

G2(X(t))

G3(X(t))

G4(X(t))











=





















rS(t)(1 −
S(t) + I(t)

K
) − bS(t)I(t)

bS(t)I(t) − d1I(t) −
aI(t)P (t)

mP (t) + I(t)
δI(t)P (t)

mP (t) + I(t)
− δQ(t)

−d2P (t) + hQ(t)





















, (2.6)

where G : R
4 → R

4 and G ∈ C∞(R4). Then Eq. (1.3) becomes

Ẋ(t) = G(X(t)), (2.7)

where · = d
dt

and with X(0) = X0 ∈ R
4
+. It is easy to check in Eq. (2.2) that whenever

choosing X ∈ R
4
+ such that Xi = 0, then Gi(Xi)|Xi=0 ≥ 0, i = 1, 2, 3, 4. Due to the

well-known theorem by Nagumo [34] and the solution of Eq. (2.3) with X0 ∈ R
4
+, say

X = X(t, X0), is such that X(t) ∈ R
4
+ for all t > 0.

2.3 Boundedness of solutions

Now, let us prove that the solutions of the system (1.3) are bounded for t ≥ 0.

As is obvious for system (1.3), we have lim sup
t→+∞

S(t) ≤ K. Then there is a T > 0

such that for any sufficiently small ǫ > 0 we have S(t) ≤ K + ǫ for t > T .
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Theorem 2.2. There is an M > 0 such that, for any positive solution (S(t), I(t), Q(t), P (t))

of system (1.3), I(t) < M , Q(t) < M , P (t) < M for all large t.

Proof. Set V1 = S + I. Calculating the derivative of V1 along the solutions of

system (1.3), we find

V̇1(t) = rS(1 −
S + I

K
) − d1I −

aPI

mP + I

≤ −d1V1 + (r + d1)S −
rS2

K
≤ −d1V1 +M0,

where M0 = K(r+d1)2

4r
. Recall that S(t) ≤ K + ǫ for t > T . Then there exists an

M1, depending only on the parameters of system (1.3), such that V1 < M1 for t > T .

Then I(t) has an ultimately above bound M1. It follows from the third equation

of system (1.3) that Q(t) has an ultimately above bound M1

m
. And from the last

equation of system (1.3), we can find that P (t) has an ultimately above bound hM1

md2

.

Let M = max{M1,
M1

m
, hM1

md2
}. Then I(t) < M , Q(t) < M , P (t) < M for all large t.

The proof is complete. This shows that system (1.3) is dissipative.

Define

Ω = {(S, I, Q, P ) : 0 ≤ S ≤ K, 0 ≤ I, Q, P ≤M}.

3 Local stability

In this section, we discuss the local stability of each equilibrium of the system (1.3).

Let Ē(S̄, Ī , Q̄, P̄ ) be any arbitrary equilibrium of (1.3). The variational matrix of

the system at Ē is given by

JĒ =





















r −
2rS̄

K
−
rĪ

K
− bĪ −

rS̄

K
− bS̄ 0 0

bĪ bS̄ − d1 −
amP̄ 2

(mP̄ + Ī)2
0 −

aĪ2

(mP̄ + Ī)2

0
mδP̄ 2

(mP̄ + Ī)2
−δ

δĪ2

(mP̄ + Ī)2

0 0 h −d2





















.

The variational matrix at E1(S1, I1, 0, 0) is given by

JE1
=













−rS1

K

−rS1

K
− bS1 0 0

bI1 0 0 −a

0 0 −δ δ

0 0 h −d2













,

which gives the following characteristic equation in λ as:

[λ2 +
rS1

K
λ+ bI1(

rS1

K
+ bS1)][λ

2 + (d2 + δ)λ+ d2δ − hδ] = 0. (3.8)
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The equation

λ2 +
rS1

K
λ+ bI1(

rS1

K
+ bS1) = 0

has two roots with negative real part because their two coefficients are positive. There-

fore, the stability of E1 is determined by the sign of the real part of the following

equation

λ2 + (d2 + δ)λ+ d2δ − hδ = 0. (3.9)

Now this gives rise to the following cases:

Case 1. When d2 > h, the equation (3.2) has two eigenvalues with real part

negative, consequently, the predator-free equilibrium E1 is stable.

Case 2. When d2 = h, there is one eigenvalue zero and the other with real part

negative. System (1.3) has a saddle-node bifurcation at E1.

Case 3. When d2 < h, E1 becomes unstable.

The variational matrix for the equilibrium E2 is given by

JE2
=





















−
rS2

K
−
rS2

K
− bS2 0 0

bI2
aI2P2

(mP2 + I2)2
0 −

aI2
2

(mP2 + I2)2

0
mδP 2

2

(mP2 + I2)2
−δ

δI2
2

(mP2 + I2)2

0 0 h −d2





















.

The above variational matrix gives the following characteristic equation in λ:

D(λ) = λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 = 0, (3.10)

where

p1 = d2 + δ + rS2

K
− aI2P2

(mP2+I2)2
,

p2 = d2δ −
hδI2

2

(mP2+I2)2
+ (d2 + δ)( rS2

K
− aI2P2

(mP2+I2)2
) + bI2(

rS2

K
+ bS2) −

rS2

K
aI2P2

(mP2+I2)2
,

p3 = ( rS2

K
− aI2P2

(mP2+I2)2
)(d2δ −

hδI2

2

(mP2+I2)2
) + [bI2(

rS2

K
+ bS2) −

rS2

K
aI2P2

(mP2+I2)2
](d2 + δ)

+
hδI2

2

(mP2+I2)2
mδP 2

2

(mP2+I2)2
,

p4 = (d2δ −
hδI2

2

(mP2+I2)2
)[bI2(

rS2

K
+ bS2) −

rS2

K
aI2P2

(mP2+I2)2
] + rS2

K

hδI2

2

(mP2+I2)2
mδP 2

2

(mP2+I2)2
.

By the Routh-Hurwitz criterion, it follows that all eigenvalues of (3.3) have negative

real parts if and only if p1 > 0, p3 > 0, p4 > 0 and p1p2p3 > p2
3 + p2

1p4. And if rS2

K
>

aI2P2

(mP2+I2)2
, bI2(

rS2

K
+ bS2) >

rS2

K
aI2P2

(mP2+I2)2
and d2δ >

hδI2

2

(mP2+I2)2
hold, then p1 > 0, p3 > 0,

p4 > 0. Hence, E2 is locally stable if rS2

K
> aI2P2

(mP2+I2)2
, bI2(

rS2

K
+ bS2) >

rS2

K
aI2P2

(mP2+I2)2
,

d2δ >
hδI2

2

(mP2+I2)2
and p1p2p3 > p2

3 + p2
1p4.

Now, we shall find out the conditions for which the equilibrium E2 enters into Hopf

bifurcation as b varies over R.
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Routh-Hurwitz Criterion and Hopf bifurcation: Let ψ : (0,∞) → R be the following

continuously differentiable function of b:

ψ(b)
△
= p1(b)p2(b)p3(b) − p2

3(b) − p4(b)p
2
1(b). (3.11)

The assumptions for Hopf bifurcations to occur are the usual ones and these require

that the spectrum ̺(b) = {λ|D(λ) = 0} of the characteristic equation is such that

(A) there exists b∗ ∈ (0,∞), at which a pair of complex eigenvalues λ(b∗), λ̄(b∗) ∈ ̺(b)

satisfy

Reλ(b∗) = 0, Imλ(b∗)
△
= ω0 > 0, (3.12)

and the transversality condition

dReλ(b)

db
|b∗ 6= 0;

(B) all other elements of λ(b) have negative real parts.

The equivalent criteria for the above assumptions for Hopf bifurcation is as follows:

Hopf bifurcation of the equilibrium E2 occurs at b = b∗ if and only if

ψ(b∗) = 0,
dReλ(b)

db
|b∗ 6= 0;

and all other eigenvalues are of negative real parts, where λ(b) is purely imaginary at

b = b∗.

The existence of b∗ ∈ (0,∞) is ensured by solving the equation ψ(b∗) = 0. At

b = b∗, the characteristic equation (3.3) can be factored as

(λ2 +
p3

p1

)(λ2 + p1λ+
p1p4

p3

) = 0.

The first factor has two pure imaginary roots λ1, λ2 = λ̄1 at b = b∗, where λ1 = iω0 =

i
√

p3

p1
. Also, the following conditions hold:

λ3 + λ4 = −p1, (3.13)

ω2
0 + λ3λ4 = p2, (3.14)

ω2
0(λ3 + λ4) = −p3, (3.15)

ω2
0λ3λ4 = p4, (3.16)

where ω0 = Imλ1(b
∗). It is clear that

ω2
0 =

p3

p1
. (3.17)

Now, if λ3 and λ4 are complex conjugate, then from (3.6), it follows that 2Reλ3 =

−p1 < 0; if they are real roots, then by (3.6) and (3.9), λ3 < 0 and λ4 < 0. To complete

the discussion, it remains to verify the transversality condition in (3.5).
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As ψ(b) is a continuous function of all its roots, so there exists an open interval

b ∈ (b∗− ǫ, b∗ + ǫ) where λ1 and λ2 are complex conjugate for b. Suppose, their general

forms in this neighborhood are

λ1(b) = β1(b) + iβ2(b), (3.18)

λ2(b) = β1(b) − iβ2(b). (3.19)

The following condition has to be checked:

[
dReλj

db
]b∗ 6= 0, j = 1, 2. (3.20)

Substituting λ1(b) = β1(b) + iβ2(b) into (3.3) and calculating the derivative, we have

K(b)β ′

1 − L(b)β ′

2 +M(b) = 0,

L(b)β ′

1 +K(b)β ′

2 +N(b) = 0,

where

K(b) = 4β3
1 − 12β1β

2
2 + 3p1(β

2
1 − β2

2) + 2p2β1 + p3,

L(b) = 12β2
1β2 + 6p1β1β2 − 4β3

2 + 2p2β2,

M(b) = p1β
3
1 − 3p′1β1β

2
2 + p′2(β

2
1 − β2

2) + p′3β1,

N(b) = 3p′3β
2
1β2 − p′1β

3
2 + 2p′2β1β2 + p′3β2.

Since L(b)N(b) +K(b)M(b) 6= 0 at b = b∗, we have

[
dReλj

db
]b∗ =

L(b)N(b) +K(b)M(b)

K2(b) + L2(b)
6= 0.

Thus the conditions for Hopf bifurcation are verified. We may summarize the above

discussion in the form of following proposition:

Theorem 3.3. If the positive equilibrium E2 of the system (1.3) exists, then the

system around E2 has a Hopf bifurcation when b = b∗.

Remark 3.2. Theorem 3.3 shows the importance of b, the infection rate in con-

trolling the system dynamics.

Remark 3.3. The biological implication of Hopf bifurcation for E2 is that the

predator coexists with the susceptible prey and the infected prey, exhibiting oscillatory

balance behavior.

Remark 3.4. The period τ1 of the bifurcating periodic orbits for close to b = b∗ is

given by

τ1(b
∗) =

2π

ω0
, ω0 =

√

λ3(b∗)

λ1(b∗)
. (3.21)

Next we discuss the orbital stability of the limit cycle arising out of Hopf-bifurcation.

We apply here the Poore’s condition [28] for orbital stability.
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4 Stability of the bifurcating limit cycle

We apply Poore’s condition for verification of the orbital stability of the Hopf bifur-

cating limit cycle. Let a real, n-dimensional (n ≥ 2), first order system of autonomous

differential equations be of the form

dx

dt
= F̂(x, v), (4.22)

where v = (v1, v2, · · · , vm)⊤ denotes a vector of m-real parameters. Assume that

there exist a combination of the parameters, say, v0, a critical point a0 such that the

variational matrix F̂(a0, v0) has exactly two, nonzero, purely imaginary eigenvalues,

say ±iω0 with ω0 > 0 and other n−2 eigenvalues with nonzero real parts. To vary one,

some or all the m parameters, an m-dimensional vector function f(ε) is introduced

with the property that f(0) = 0, and hence we confine our analysis on the following

system of ODE:
dx

dt
= F(x, ε)

△
= F̂(x, v0 + f(ε)). (4.23)

It follows from the definition of F(x, ε) that F(a0, 0) = 0 and eigenvalues of Fx(a
0, 0)

are the same as those of F̂(a0, v0). It is assumed that F(x, ε) ∈ Ck[D × (−ε0, ε0)],

where k ≥ 3, D is a domain in R
n containing a0 and ε0 > 0. As there is no nonzero

eigenvalue of the variational matrix, Fx(a
0, 0) 6= 0 ∈ R

n, and hence the implicit function

theorem guarantees the existence of a critical point aε which is k-times continuously

differentiable in ε and satisfies F(aε, ε) = 0 for ε in a small neighborhood of ε = 0.

Using this definition of aε, we introduce a change of variables which is similar to that

used by K.O. Friedrichs [7]:

x = aε + µ′y, (1 + µ′η)s = t, ε = µ′δ, Aε = Fx(a
ε, ε), εBε = Aε −A0,

B0 = dAε

dε
|ε=0, µ

′2Q(y, µ′, ε) = F(aε + µ′y, ε)− µ′Aεy.
(4.24)

This reduces the differential equation (4.2) in the following form

dy

dt
= A0y + µ′G(y, µ′, δ, η), (4.25)

where A0 = Fx(a
0, 0) and G(y, µ′, δ, η) = δBµ′δy+ηAµ′δy+(1+µ′η)Q(y, µ′, µ′δ). Thus

the problem of periodic solutions of (4.2) is reduced to a perturbation problem in the

small parameter µ′.

Now, the stability information of the bifurcating periodic orbits is contained in the

following theorem of Poore, coupled with an algebraic expression, which completely

reduces the determination of stability to an algebraic problem. By the assumptions of

Theorem 2.3 in [28], the differential equation in (4.4) is continuously differentiable in µ′,

when δ = δ(µ′) and η = η(µ′) and in the function y in a neighborhood of the periodic

orbit. Thus the existing periodic orbit will be asymptotically orbitally stable with

asymptotic phase if n − 1 of the characteristic multipliers of the variational equation
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have moduli less than one. The information developed by Poore about the modulus of

each of the characteristic multipliers is given by the following lemma:

Lemma 4.1. Assume that there exists a nonconstant bifurcated periodic solution,

i.e., the hypothesis in Theorem 2.3 in [28] is satisfied. Then the n-characteristic mul-

tipliers, denoted by ̺l(µ
′) for 1 ≤ l ≤ n, are continuous functions of µ′ at µ′ = 0 and

satisfy the relations

̺1(µ
′) = exp(β̂(µ′)T ), ̺2(µ

′) = 1,

̺l(µ
′) = exp(λ0

l + o(1)), as µ′ → 0 (3 ≤ l ≤ n),

where β̂(µ′) is continuous at µ′ = 0 and β̂(0) = 0. Here, T is the period of oscillation

of the periodic solution y(s, µ′) of Theorem 2.3 in [28], and the λ0
l ’s denote the n − 2

eigenvalues (continuing multiplicities) of the variational matrix Fx(a
0, 0) = F̂x(a

0, 0)

with nonzero real parts.

Let α(ε) + iω(ε) denote the complex eigenvalue of Aε. α′(0) is the derivative of

α(ε) at ε = 0. And δ′(0) is the derivative of δ(ε) at ε = 0.

In addition, if k ≥ 4 in the smoothness assumption of F(x, ε) ∈ Ck[D × (−ε0, ε0)]

and δ′(0) 6= 0, then

̺1(µ
′) = exp(µ′2β(µ′)T ) = exp(−2µ′2α′(0)δ′(0)T + o(µ′2)), as µ′ → 0,

where β(µ′) is a real valued continuous function with k− 4 continuous derivatives in a

small neighborhood of µ′ = 0.

Hence, if α′(0)δ′(0) > 0 and Reλ0
l < 0 for 3 ≤ l ≤ n, then the bifurcated periodic

solution will be asymptotically stable with asymptotic phase for µ′ in a sufficiently

small neighborhood of µ′ = 0.

The following lemma reduces the above condition of stability to an algebraic ex-

pression as follows:

Lemma 4.2.[28] Let F(x, ε) satisfy the hypotheses in Theorem 2.3 in [28] and let

u and v denote the left and right eigenvector, respectively, for the eigenvalues +iω0

(ω0 > 0) of the variational matrix A0. If u and v are normalized in the sense that

uv = 1 (u is row and v is a column vector), then

8α′(0)δ′(0) + i8(ω′(0)δ′(0) + ω0η
′(0))

= b(0) · b(0){−uFxxxvvv̄ + 2uFxxvA
0−1Fxxvv̄ + uFxxv̄(A

0 − 2iω0)
−1Fxxvv},

where A0 = Fx(a
0, 0), Fxx = Fxx(a

0, 0), Fxxx = Fxxx(a
0, 0), b(0) is the µ′ = 0 value

of the two dimensional vector b(µ′) which occurs in Uy(s, µ′) = Φ(s)b(µ′), v̄ denotes

the complex conjugate of v, and the definition of Φ(s) can be found in (2.6) of [28].

Written out in component form, the above expression reduces to

8α′(0)δ′(0) + i8(ω′(0)δ′(0) + ω0η
′(0))

= b(0) · b(0){−ulF
l
xjxkxp

vjvkv̄p + 2ulF
l
xjxk

xj(A
0−1)krF

r
xpxq

vpv̄q

+ulF
l
xjxk

v̄j((A
0 − 2iω0)

−1)krF
r
xpxq

vpvq},

(4.26)
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where the repeated indices within each term imply a sum from 1 to n and all the

derivatives of F are evaluated at the equilibrium a0. The sign of the real and imaginary

parts of the right hand side of expression in Lemma 4.2 are independent of the choice of

b(µ′) in Uy(s, µ′) = Φ(s)b(µ′) and the eigenvectors u and v so long as b(0) · b(0) > 0

and uv = 1. So positivity of real part of the above expression in parenthesis really

indicates the orbital stability of the periodic solution arising out of Hopf bifurcation.

We rewrite our system of ODE (1.3) in the following form:

dS
dt

= rS(t)(1 − S(t)+I(t)
K

) − bS(t)I(t) = F1(S, I),
dI
dt

= bS(t)I(t) − d1I(t) −
aI(t)P (t)

mP (t)+I(t)
= F2(S, I, P ),

dQ

dt
= δI(t)P (t)

mP (t)+I(t)
− δQ(t) = F3(I, Q, P ),

dP
dt

= −d2P (t) + hQ(t) = F4(Q,P ).

Now all the second- and third-order derivatives of Fi (i = 1, 2, 3, 4) are as follows:

F1
SS = −2r

K
, F1

SI = F1
IS = − r

K
,

F2
II = 2amP 2

(mP+I)3
, F2

SI = F2
IS = b, F2

IP = F2
PI = − 2amPI

(mP+I)3
,F2

PP = 2amI2

(mP+I)3
,

F3
II = − 2mδP 2

(mP+I)3
, F3

PP = − 2mδI2

(mP+I)3
, F3

IP = F3
PI = 2mδIP

(mP+I)3
,

F2
III =

6amP 2

2

(mP+I)4
, F2

IIP = F2
IP I = F2

PII = −
4amP2I2−2am2P 2

2

(mP+I)4
,

F2
IPP = F2

PPI = F2
PIP =

4am2P2I2−2amI2

2

(mP+I)4
, F2

PPP = −
6am2δI2

2

(mP+I)4
,

F3
IIP = F3

IP I = F3
IIP = 2δmP (2I−mP )

(mP+I)4
, F3

III =
6δmP 2

2

(mP+I)4
,

F3
IPP = F3

PIP = F3
PPI = 2δmI(I−2mP )

(mP+I)4
, F3

PPP =
6m2δI2

2

(mP+I)4
.

And

(JE2
− 2iω0)

−1 =
1

∆











q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44











, Qω0
,

where

q11 = [ aI2P2

(mP2+I2)2
− 2iω0][(δ + 2iω0)(d+ 2iω0) −

hδI2

2

(mP2+I2)2
] −

ahmδI2

2
p2

2

(mP2+I2)4
,

q12 = −( rS2

K
+ bI2)[(δ + 2iω0)(d2 + 2iω0) −

hδI2

2

(mP2+I2)2
],

q13 = −
haI2

2
(

rS2

K
+bI2)

(mP2+I2)2
,

q14 = ( rS2

K
+ bI2)(δ + 2iω0)

aI2

2

(mP2+I2)2
,

q21 = bI2[(δ + 2iω0)(d2 + 2iω0) −
hδI2

2

(mP2+I2)2
],

q22 = −( rS2

K
+ 2iω0)[(δ + 2iω0)(d2 + 2iω0) −

hδI2

2

(mP2+I2)2
],
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q23 = −( rS2

K
+ 2iω0)

haI2

2

(mP2+I2)2
,

q24 = ( rS2

K
+ 2iω0)(δ + 2iω0)

aI2

2

(mP2+I2)2
,

q31 = −bI2(d2 + 2iω0)
mδP 2

2

(mP2+I2)2
,

q32 = ( rS2

K
+ 2iω0)(d2 + 2iω0)

mδP 2

2

(mP2+I2)2
,

q33 = −(d2 + 2iω0)[−( rS2

K
+ 2iω0)(

aI2P2

(mP2+I2)2
− 2iω0) + bI2(

rS2

K
+ bI2)],

q34 = −( rS2

K
+ 2iω0)[

δI2

2

(mP2+I2)2
( aI2P2

(mP2+I2)2
− 2iω0) +

amδI2

2
P 2

2

(mP2+I2)4
+

δbI3

2
(

rS2

K
+bS2)

(mP2+I2)2
],

q41 =
bhmδI2P 2

2

(mP2+I2)2
,

q42 = −( rS2

K
+ 2iω0)

hmδP 2

2

(mP2+I2)2
,

q43 = h[−( rS2

K
+ 2iω0)(

aI2P2

(mP2+I2)2
− 2iω0) + bI2(

rS2

K
+ bS2)],

q44 = −(δ + 2iω0)[−( rS2

K
+ 2iω0)(

aI2P2

(mP2+I2)2
− 2iω0) + bI2(

rS2

K
+ bS2)]

and

∆ = −( rS2

K
+ 2iω0)q11 − bI2q12.

Putting ω0 = 0 in the above expressions, we get the components of Q = (JE2
)−1.

Now we are to calculate the left and right eigenvector u and v respectively, of the

variational matrix JE2
, i.e., we have to find out a row vector u = (u1, u2, u3, u4), such

that uJE2
= iω0u, and a column vector v = (v1, v2, v3, v4)

⊤ , such that JE2
v = iω0v.

Proceeding in the above way and solving the set of equations, we find the left

eigenvector u = (u1, u2, u3, u4), where

u1 =
bδI3

2

(mP2+I2)2
−

bI2(d2δ−ω2

0
)

h
− iω0

bI2(d2+δ)
h

△
= f11 + iω0g11,

u2 =
rδS2I2

2

K(mP2+I2)2
−

rS2(d2δ−ω2

0
)

Kh
− (d2 + δ)ω2

0 + iω0[
δI2

2

(mP2+I2)2
− rS2(d2+δ)

Kh
−

d2δ−ω2

0

h
]

△
= f12 + iω0g12,

u3 =
arS2I2

2

K(mP2+I2)2
+ iω0

aI2

2

(mP2+I2)2
△
= f13 + iω0g13,

u4 =
aI2

2

h(mP2+I2)2
( rδS2

K
− ω2

0) + iω0[
aI2

2

h(mP2+I2)2
(δ + rS2

K
)]

△
= f14 + iω0g14,

and right eigenvector v = θ(v1, v2, v3, v4)
⊤, where

v1 = −
aI2

2
(

rS2

K
+bS2)(d2δ−ω2

0
)

(mP2+I2)2
− iω0

aI2

2
(

rS2

K
+bS2)(d2+δ)

(mP2+I2)2
△
= f21 + iω0g21,

v2 =
aI2

2
[
rS2

K
(d2δ−ω0)−(d2+δ)ω2

0
]

(mP2+I2)2
+ iω0

aI2

2
[
rS2

K
(d2+δ)+d2δ−ω2

0
]

(mP2+I2)2
△
= f22 + iω0g22,

v3 =
rS2

K
d2−ω2

0

h
{ aI2p2

(mP2+I2)2
[bδI3

2 ( rS2

K
+ bS2) + d2δ − ω2

0] − (d2 + δ)ω2
0 − ( rS2

K
+ bS2)(

abI2

2
P2

(mP2+I2)2

+
bmaδI2

2
P 2

2

(mP2+I2)2
) − (d2δ − ω2

0)} −
(d2+

rS2

K
)ω2

0

h
{ rS2

K
[a(d2+δ)I2P2

(mP2+I2)2
+ d2δ − ω2

0] − (d2 + δ)ω2
0 − ( rS2

K

+bS2)bI2[
aI2P2

(mP2+I2)2
+

maδI2

2
P 2

2

(mP2+I2)2
]} + iω0(

rS2

K
d2−ω2

0

h
{ rS2

K
[a(d2+δ)I2P2

(mP2+I2)2
+ d2δ − ω2

0] − (d2 + δ)ω2
0

−( rS2

K
+ bS2)bI2[

aI2P2

(mP2+I2)2
+

maδI2

2
P 2

2

(mP2+I2)2
]} +

(d2+
rS2

K
)

h
{ aI2p2

(mP2+I2)2
[bδI3

2 ( rS2

K
+ bS2) + d2δ − ω2

0]

−(d2 + δ)ω2
0 − ( rS2

K
+ bS2)(

abI2

2
P2

(mP2+I2)2
+

bmaδI2

2
P 2

2

(mP2+I2)2
) − (d2δ − ω2

0)})
△
= f23 + iω0g23,

v4 = rS2

K
{ aI2p2

(mP2+I2)2
[bδI3

2 ( rS2

K
+ bS2) + d2δ − ω2

0] − (d2 + δ)ω2
0 − ( rS2

K
+ bS2)(

abI2

2
P2

(mP2+I2)2

+
bmaδI2

2
P 2

2

(mP2+I2)2
) − (d2δ − ω2

0)} + iω0{
rS2

K
[a(d2+δ)I2P2

(mP2+I2)2
+ d2δ − ω2

0] − (d2 + δ)ω2
0

−( rS2

K
+ bS2)bI2[

aI2P2

(mP2+I2)2
+

maδI2

2
P 2

2

(mP2+I2)2
]}

△
= f24 + iω0g24.
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Now uv = 1, which upon calculation shows that θ = ϕ1−ϕ2iω0

ϕ2

1
+ϕ2

2
ω2

0

, and ϕ1, ϕ2 are given

by

ϕ1 = (f11f21 + f12f22 + f13f23 + f14f24) − ω2
0(g11g21 + g12g22 + g13g23 + g14g24),

ϕ2 = f11g21 + f12g22 + f13g23 + f14g24 + f21g11 + f22g12 + f23g13 + f24g14,

where ω0 is given by Eq. (3.10).

Now, writing the expression of (4.5) in detail, we have the following:

First term:

= −ulFxjxkxp
vjvkvp (each index varies from 1 to 4)

= −(u2F
2
III + u3F

3
III)v2|v̄2| − (u2F

2
PPP + u3F

3
PPP )v4|v̄4| − (u2F

2
IP I + u3F

3
IP I)(v

2
2 v̄4 + 2|v2|

2v4).

Second term:

= 2ulF
l
xjxk

vj(A
0−1)krF

r
xpxq

vpv̄q (each index varies from 1 to 4)

= 2[u1(F
1
SSv1 + F1

ISv2) + u2F
2
ISv2] × [Q11A+ Q12B + Q13C]

+2[u1F
1
SIv1 + u2(F

2
IIv2 + F2

PIv4) + u3(F
3
IIv2 + F3

PIv4)] × [Q21A+ Q22B + Q23C]

+2[u2(F
2
IP v2 + F2

PP v4) + u3(F
3
IP v2 + F3

PP v4)] × [Q41A+ Q42B + Q43C].

Third term:

= ulFxjxk
v̄j((A

0 − 2iω0)
−1)krF

r
xpxq

vpvq (each index varies from 1 to 4)

= [u1(F
1
SS v̄1 + F1

IS v̄2) + u2F
2
IS v̄2] × [Qω011A+ Qω012B + Qω013C]

+[u1F
1
SI v̄1 + u2(F

2
IS v̄1 + F2

II v̄2 + F2
PI v̄3)

+u3(F
3
II v̄2 + F3

PI v̄4)] × [Qω021A+ Qω022B + Qω023C] + [u2(F
2
IP v̄2 + F2

PP v̄4)

+u3(F
3
IP v̄2 + F3

PP v̄4)] × [Qω041A+ Qω042B + Qω043C].

In the above terms,

A = F1
SS|v1|

2 + F1
SI(v1v̄2 + v2v̄1),

B = F2
II |v2|

2 + F2
SI(v1v̄2 + v2v̄1) + F2

IP (v2v̄4 + v4v̄2) + F2
PP |v4|

2,

C = F3
II |v2|

2 + F3
IP (v2v̄4 + v4v̄2) + F3

PP |v4|
2.

Putting the values of Fxxx, Fxx, u, v and components of the matrix Q in terms of

the parameters of the model, the sign of the real part of the resulting expression (4.5)

can be deduced. This in turn indicates the orbital stability of the limit cycle arising

out of Hopf bifurcation.

5 Global stability of predator-free equilibrium E1

Theorem 5.1. The predator-free equilibrium E1(S1, I1, 0, 0) is globally asymptotically

stable whenever d2 > h and bK > d1.

Proof. By the positivity of the solution of system (1.3), we can obtain

dI

dt
≤ bS(t)I(t) − d1I(t). (5.27)
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Consider the following comparison equations











dw1

dt
= rw1(t)(1 −

w1(t) + w2(t)

K
) − bw1(t)w2(t),

dw2

dt
= bw1(t)w2(t) − d1w2(t).

(5.28)

It is easy to see that for bK − d1 > 0, (d1

b
,

r(bK−d1)
b(r+bK)

) is a unique positive equilibrium

of system (5.2) which is globally asymptotically stable. Let w1(0) ≥ S0, w2(0) ≥ I0. If

(w1(t), w2(t)) is a solution to (5.2) with initial value (w1(0), w2(0)), then by comparison

theorem we have S(t) ≤ w1(t), I(t) ≤ w2(t), for t > 0, and hence

lim sup
t→+∞

I(t) ≤
r(bK − d1)

b(r + bK)
= I1,

and

lim sup
t→+∞

S(t) ≤
d1

b
= S1.

From the last two equations of system (1.3), we have dQ

dt
≤ δP (t) − δQ(t).

Consider the following comparison equations











dw3

dt
= δw4(t) − δw3(t),

dw4

dt
= −d2w4(t) + hw3(t).

(5.29)

It is easy to see that if d2 > h for any solution of (5.3) with nonnegative initial

values we have

lim
t→+∞

w3(t) = 0, lim
t→+∞

w4(t) = 0.

Let 0 < Q(0) ≤ u3(0), 0 < P (0) ≤ u4(0). If (w3(t), w4(t)) is a solution of system (5.3)

with initial values (u3(0), u4(0)), then by comparison theorem we have Q(t) ≤ w3(t),

P (t) ≤ w4(t), for t > 0. Hence,

lim
t→+∞

Q(t) = 0, lim
t→+∞

P (t) = 0.

So all solutions to system (1.3) approach the S − I plane, then for any solution

(S(t), I(t),

Q(t), P (t)) to system (1.3) starting in Ω we have

lim
t→+∞

S(t) = S1, lim
t→+∞

I(t) = I1, lim
t→+∞

Q(t) = 0, lim
t→+∞

P (t) = 0.

This completes the proof.

6 Numerical results

In the previous sections, we introduced the analytical tools proposed and used them

for a qualitative analysis of the system obtaining some results about the dynamics of
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the system. In this section, we perform a numerical analysis of the model based on the

previous results.

In order to numerically experiment the effects of parameter changes in the proposed

model, we have run simulations using the standard MATLAB differential equations

integrator for the Runge-Kutta method, i.e., routine ODE45 or ODE15S if needed.

From the analysis of section 4, we can see that the infection rate plays a vital role in

describing the behavior of the system. Keeping this mind, we have varied the infection

rate, b, to observe the dynamics of the system (1.3). We select r = 1, K = 10, d1 = 0.6,

a = 0.2, m = 1, δ = 1.8, d2 = 0.5, h = 1.5. Using these sets of parametric values and

initial values S(0) = 1, I(0) = 1, Q(0) = 0.1, P (0) = 0.1, the following interesting dy-

namic behavior of the system was observed. Our numerical results show that the infec-

tive population will be asymptotically stable for b = 1.2 (Fig. 1). Increasing the infec-

tion rate to b = 2.2, we observe that the three species of system (1.3) enter into an oscil-

latory steady state from a stable situation (Fig. 2). In fact, for b = 1.2, the system (1.3)

has a positive equilibrium E2(0.6111111111, 0.7222222222, 0.4814814815, 1.444444444).

And the characteristic equation (3.3) is

λ4 + 2.316666667λ3 + 1.324135802λ2 + 1.614012345λ+ 0.4131111109 = 0.

Hence, we can get the eigenvalues λ1 = −2.006497886, λ2 = −0.2952317702, λ3 =

−0.007468505200 − 0.8350551723i, λ4 = −0.007468505200 + 0.8350551723i. From

the fact of all the eigenvalues have the negative part, we can obtain E2 is locally

asymptotically stable. For b = 2.2, the characteristic equation (3.3) is

λ4 + 2.288888889λ3 + 1.281851852λ2 + 1.647037037λ+ 0.4253333332 = 0.

Hence, we can get the eigenvalues λ1 = −2.006483572, λ2 = −.2948720419, λ3 =

0.006233362427 − 0.8478487227i, λ4 = 0.006233362427e + 0.8478487227i. Obviously,

E2(0.3333333333, 0.4202898551, 0.2801932367, 0.8405797101) is unstable and Hopf bi-

furcation occurs.

In most studies of eco-epidemiological models, the predation rate is also an impor-

tant parameter that plays a vital role in the dynamics of the system. Therefore, we

then vary the parameter h keeping the other parameter values. We consider a hypo-

thetical set of parametric values, where r = 1, K = 10, d1 = 0.6, a = 0.2, m = 1,

δ = 1.8, d2 = 0.5, b = 2.2 and different values of h. We can observe that when h = 1.5

the three species periodically oscillate, i.e., Hopf bifurcation occurs around E2 (Fig.

2); when h = 4 the three species coexist, i.e, E2 is asymptotically stable (Fig. 3).

Select r = 1, K = 10, d1 = 0.6, a = 0.2, m = 1, δ = 1.8, d2 = 0.5, b = 2.2 and h =

0.4. We can see that the predator-free equilibrium E1(0.2727272727, 0.4229249012, 0, 0)

is asymptotically stable (Fig. 4).

7. Discussion
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Figure 1: A solution for model (1.3) with r = 1, K = 10, d1 = 0.6, a = 0.2, m = 1, δ =

1.8, d2 = 0.5, h = 1.5 and b = 1.2. Here, the interior equilibrium E2 is asymptotically

stable.

Figure 2: A solution for model (1.3) with r = 1, K = 10, d1 = 0.6, a = 0.2, m = 1,

δ = 1.8, d2 = 0.5, h = 1.5 and b = 2.2. Here, the interior equilibrium E2 becomes

stable and periodic solutions occur.
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Figure 3: A solution for model (1.3) with r = 1, K = 10, d1 = 0.6, a = 0.2, m = 1,

δ = 1.8, d2 = 0.5, b = 2.2 and h = 4. Here, the interior equilibrium E2 is asymptotically

stable.

Figure 4: A solution for model (1.3) with r = 1, K = 10, d1 = 0.6, a = 0.2, m = 1,

δ = 1.8, d2 = 0.5, b = 2.2 and h = 0.4. Here, the predator-free equilibrium E1 is

asymptotically stable.
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In this paper we proposed and analyzed, both analytically and numerically, an eco-

epidemiological model with distributed delay. Firstly, we obtain the positivity and

boundedness of solutions. Secondly, by using of Routh-Hurwitz criterion, the asymp-

totical stability of the non-negative equilibria are obtained. Thirdly, we have obtained

conditions for small amplitude periodic solutions bifurcating from the boundary equi-

librium E2 and the positive interior equilibrium E2 by applying both mathematical

and numerical techniques. It is observed that when the infection rate b crosses a crit-

ical value, say b∗, the system (1.3) enters into Hopf bifurcation that induces periodic

solutions near the boundary equilibrium E2. And the stability as well as the direction

of bifurcation near the positive interior equilibrium E2 is obtained by applying the

algorithm due to Poore. From numerical simulations, we find that the predation rate

is also an important parameter that plays a vital role in the dynamics of the system.

It is straightforward to show that system (1.2) also has two ecologically meaning

possible equilibria E0(0, 0, 0, 0) and E01(K, 0, 0, 0). The Jacobian matrixes are not well-

defined at E0(0, 0, 0, 0) and E01(K, 0, 0, 0). We can follow the technique of [1] to obtain

the stability of E0(0, 0, 0, 0) and E01(K, 0, 0, 0). We leave them in the future.

Lastly, we present the global asymptotical stability of predator-free equilibrium E1.

In conclusion, this paper emphasizes that the value of the per capita disease contact

rate b, the predation rate h and the existence of the predator population have important

implications for predator species persistence and the the existence of Hopf bifurcation

in a simple eco-epidemiological model where the preys are infected by transmissible

disease.
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