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Abstract

The aim of this work is to study the dissipative control problem for singular impulsive

dynamical systems. We start by introducing the impulse to the singular systems, and give

the definition of the dissipation for singular impulsive dynamical systems. Then we dis-

cuss the dissipation of singular impulsive dynamical systems, we obtain some sufficient

and necessary conditions for dissipation of these systems by solving some linear matrix

inequalities (LMIs). By using this method, we design a state feedback controller to make

the closed-loop system dissipative. At last, we testify the feasibility of the method by a

numerical example.
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1. Introduction

Singular systems are found in engineering systems, such as electrical circuit net-

work, power systems, aerospace engineering, and chemical processing, social systems,

economic systems, biological systems, network analysis, time-series analysis, singular

singularly perturbed systems with which the singular system has a great deal to do, etc

[1]. The concept of dissipation is of much interest in physics and engineering [2, 3, 4].

And dissipative systems can be used as models for physical phenomena in which the

energy or entropy exchanged with the environment plays a role. The storage function

measures the amount of energy which is stored inside the system at any instant of time,

and when the storage function is taken as the special form, the dissipation is changed

into passivity. In practical systems, such as in the electrical circuit network systems, the

impulse always exists, thus many scholars interest in the control problem of dynamical
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impulse systems, and this problem has been extensively studied and applied in many ar-

eas; see, e.g. [5, 6, 7, 8]. Now Hadded et al. have developed dissipation and exponential

dissipation concepts for nonlinear impulse dynamical systems and left-continuous sys-

tems, see, e.g. [9, 10, 11, 12]. They have extended the notions of classical dissipative

theory using generalized storage functions and supply rates for dynamical impulsive

systems and left-continuous dynamical systems. And in [13], robust dissipativity for

uncertain impulsive dynamical systems is discussed. Moreover singular systems and the

impulse exists widely [14, 15], in order to study the dynamical impulsive systems more

widely, we discuss the robust dissipative control problem for singular dynamical impul-

sive system , and obtain the robust impulsive dissipative state feedback controller of

singular dynamical impulsive systems by solving the linear matrix inequalities.

The contents of the paper are as follows. In Section 2 we establish definitions, nota-

tion and review some important results. In Section 3, we obtain sufficient and necessary

conditions of the dissipation for singular dynamical impulse systems, and then give the

sufficient and necessary conditions to prove the singular dynamical impulsive system is

dissipative. In Section 4, by using the method we design a state feedback controller for

singular dynamical impulsive systems. Then in Section 5, we testify the feasibility of the

method by a numerical example. Finally we draw conclusions in Section 6.

2. Singular Impulsive Dynamical Systems

In this section we introduce the dynamical impulse into the singular systems, and a

singular dynamical impulsive system consists of three elements:

(i) A singular continuous-time dynamical equation, which governs the motion of the

system between resetting events;

(ii) A difference equation, which governs the way the states are instantaneously changed

when a resetting event occurs;

(iii) A criterion for determining when the states of the system are to be reset.

A singular dynamical impulsive system has the following form























Eẋ(t) = Ax(t) + Bcωc(t), t 6= tk;

∆x(t) = x(t+k ) − x(tk) = Dkx(t) + Bdωd(t), t = tk;

yc(t) = Ccx(t) + Dcωc(t), t 6= tk;

yd(t) = Cdx(t) + Ddωd(t), t = tk.

(1)

where x ∈ R
n is the state, ωc ∈ R

mc , ωd ∈ R
md the outside perturbation of the system

whose square is integral, and yc ∈ R
lc, yd ∈ R

ld are output, E, A, Bc, Bd, Dk, Cc, Cd, Dc
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and Dd are known constant matrices of appropriate dimensions, and E is singular.

Definition 1. A function rc(ωc, yc), rd(ωd, yd), where rc : R
mc × R

lc → R and rd : R
md ×

R
ld → R are such that rc(0, 0) = 0 and rd(0, 0) = 0, is called a supply rate of system (1)

if rc(ωc, yc) is locally integrable; that is, for all input-output pairs (ωc(t), yc(t)), rc(ωc, yc)

satisfies
∫ t̂

t
|rc(ωc(s), yc(s))|ds < ∞ for any t̂ ≥ t ≥ 0, and rd(ωd, yd) is locally summable.

In other words, for all input-output pairs (ωd(tk), yd(tk)), rd(ωd, yd) satisfies

∑

k∈N[t,t̂)

|rd(ωd(tk), yd(tk))| < ∞

where N[t, t̂) = {k : t ≤ tk < t̂}.

Definition 2. The singular impulsive dynamical system (1) is said to be dissipative with

respect to supply rate (rc, rd) if there exists a Cr(r ≥ 0) nonnegative function V : R
n →

R with V (0) = 0, called storage function, such that, for all (ωc, ωd) ∈ U , the following

dissipation inequality holds:

V (x(t)) ≤ V (x(t0)) +

∫ t

t0

rc(ωc(s), yc(s))ds +
∑

k∈N[t,t̂)

rd(ωd(tk), yd(tk)) (2)

where x(t), t ≥ t0 is a solution to system (1) with (ωc, ωd) ∈ R
mc ×R

md, and x(t0) = x0.

Lemma 1. [16] Suppose S11 and S22 are symmetric. The condition

[

S11 S12

ST
12 S22

]

≥ 0 (3)

is equivalent to

S22 ≥ 0, S11 − S12S
+
22S

T
12 ≥ 0, S12(I − S22S

+
22) = 0, (4)

where S+
22 denotes the Moore-Penrose inverse of S22.

3. Dissipation of Singular Impulsive Dynamical Systems

From [9], we can get the trivial result of singular impulsive dynamical system as the

following theorem:

Theorem 1. A singular impulsive dynamical system given by (1) is dissipative with respect

to the supply rate (rc, rd) if and only if there exists a C1 nonnegative definite function
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V : R
n → R such that for all k ∈ N = {0, 1, 2, . . .}

V (x(t̂)) − V (x(t)) ≤

∫ t̂

t

rc(ωc(s), yc(s))ds, tk < t ≤ t̂ ≤ tk+1 (5)

V (x(t+k )) − V (x(tk)) ≤ rd(ωd(tk), yd(tk)). (6)

Remark 1. In the theorem, V (·, x(·)) is C1 a.e. on [t0,∞) except on an unbounded closed

discrete set T = {t1, t2, · · · }, where T is the set of times when jumps occur for x(t), then

an equivalent statement for dissipation of the singular impulsive dynamical system (1)

with respect to the supply rate (rc, rd) is

V̇ (t, x(t)) ≤ rc(ωc(t), yc(t)), tk < t ≤ tk+1 (7)

∆V (tk, x(tk)) = V (t+k , x(t+k )) − V (tk, x(tk))

≤ rd(ωd(tk), yd(tk)).
(8)

In the paper, we consider the following storage function and supply rate

V = xTETPx (9)

rc(ωc, yc) = yT
c Qcyc + 2yT

c Scωc + ωT
c Rcωc, (10)

rd(ωd, yd) = yT
d Qdyd + 2yT

d Sdωd + ωT
d Rdωd,

where ETP = PTE ≥ 0, and the matrices Qc, Sc, Rc, Qd, Sd, and Rd are given matrices

with appropriate dimensions.

Without loss of the generality, we can assume that Qc and Qd are both negative defi-

nite. Then we will discuss the dissipation of the singular dynamical impulsive systems.

Theorem 2. For system (1), if and only if the following inequalities have the feasible solu-

tion P ,







ATP + PTA PTBc − CT
c Sc CT

c

∗ −DT
c Sc − ST

c Dc − Rc DT
c

∗ ∗ Q−1
c






≤ 0 , (11)













−ETP −CT
d Sd (I + Dk)

T CT
d

∗ −DT
d Sd − ST

d Dd − Rd BT
d DT

d

∗ ∗ −(ETP )+ 0

∗ ∗ ∗ Q−1
d













≤ 0 , (12)
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(I + Dk)(I − E+E) = 0 , (13)

BT
d (I − E+E) = 0 , (14)

system (1) is dissipative with respect to the supply rate (10), where ” ∗ ” denotes the sym-

metric part of the matrix.

Proof. According to the storage function and the supply rate, we obtain

V̇ (t, x(t)) =

[

x

ωc

]T [

ATP + PTA PTBc

BT
c P 0

] [

x

ωc

]

, (15)

rc(ωc, yc) =

[

x

ωc

]T [

CT
c QcCc CT

c QcDc + CT
c Sc

DT
c QT

c Cc + ST
c Cc DT

c QcDc + DT
c Sc + ST

c Dc + Rc

] [

x

ωc

]

,

(16)

and

V (t+k , x(t+k )) − V (tk, x(tk))

= xT(t+k )ETPx(t+k ) − xT(tk)E
TPx(tk)

=

[

x(tk)

ωd(tk)

]T [

(I + Dk)
TETP (I + Dk) − ETP (I + Dk)

TETPBd

BT
d ETP (I + Dk) BT

d ETPBd

][

x(tk)

ωd(tk)

]

,

rd(ωd(tk), yd(tk))

=

[

x(tk)

ωd(tk)

]T [

CT
d QdCd CT

d QdDd + CT
d Sd

DT
d QT

d Cd + ST
d Cd DT

d QdDd + DT
d Sd + ST

d Dd + Rd

] [

x(tk)

ωd(tk)

]

,

then by Theorem 1, we obtain

[

ATP + PTA − CT
c QcCc PTBc − CT

c QcDc − CT
c Sc

∗ −DT
c QcDc − DT

c Sc − ST
c Dc − Rc

]

≤ 0 (17)

Ξ =

[

Ξ11 Ξ12

∗ Ξ22

]

≤ 0 (18)
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where

Ξ11 = (I + Dk)
TETP (I + Dk) − ETP − CT

d QdCd,

Ξ12 = (I + Dk)
TETPBd − CT

d QdDd − CT
d Sd,

Ξ22 = BT
d ETPBd − DT

d QdDd − DT
d Sd − ST

d Dd − Rd.

Then using Lemma 1, we get the the conclusion of theorem.

4. Dissipative Controller Design for Singular Impulsive Dynamical Systems

In this section, we will design a state feedback controller for the singular dynamical

impulsive systems. The system considered is as the following:























Eẋ(t) = Ax(t) + Bcωc(t) + Gcuc(t), t 6= tk;

∆x(t) = x(t+k ) − x(tk) = Dkx(t) + Bdωd(t) + Gdud(t), t = tk;

yc(t) = Ccx(t) + Dcωc(t) + Jcuc(t), t 6= tk;

yd(t) = Cdx(t) + Ddωd(t) + Jdud(t), t = tk.

(19)

where uc ∈ R
sc, ud ∈ R

sd are the input. And the state feedback controller is as the

following:
{

uc(t) = Kcx(t),

ud(tk) = Kdx(tk).
(20)

Using Theorem 2 , we obtain the following results:

Theorem 3. For system (1), if BT
d [I − (ET)+E] = 0 and the following inequalities have

the feasible solution X, Wc, Wd,

XTET = EX ≥ 0 (21)






(AX + GcWc)
T + (AX + GcWc) Bc − (CcX + JcWc)

TSc (CcX + JcWc)
T

∗ −DT
c Sc − ST

c Dc − Rc DT
c

∗ ∗ Q−1
c






≤ 0 ,

(22)













−XTET −(CdX + JdWd)
TSd (X + DkX + GdWd)

T (CdX + JdWd)
T

∗ −DT
d Sd − ST

d Dd − Rd BT
d DT

d

∗ ∗ −XT(ET)+ 0

∗ ∗ ∗ Q−1
d













≤ 0 ,

(23)

(X + DkX + GdWd)
T[I − (ET)+E] = 0 (24)
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then system (1) has dissipative feedback controller (20), where Kc = WcX
−1, and Kd =

WdX
−1.

Proof. The closed-loop system of system (19) via the feedback controller (20) is























Eẋ(t) = (A + GcKc)x(t) + Bcωc(t), t 6= tk;

∆x(t) = x(t+k ) − x(tk) = (Dk + GdKd)x(t) + Bdωd(t), t = tk;

yc(t) = (Cc + JcKc)x(t) + Dcωc(t), t 6= tk;

yd(t) = (Cd + JdKd)x(t) + Ddωd(t), t = tk.

(25)

Using Theorem 2, we obtain that







ĀTP + PTĀ PTBc − C̄T
c Sc C̄T

c

∗ −DT
c Sc − ST

c Dc − Rc DT
c

∗ ∗ Q−1
c






≤ 0 , (26)













−ETP −C̄T
d Sd (I + Dk + GdKd)

T C̄T
d

∗ −DT
d Sd − ST

d Dd − Rd BT
d DT

d

∗ ∗ −(ETP )+ 0

∗ ∗ ∗ Q−1
d













≤ 0 , (27)

(I + Dk + GdKd)
T[I − (ETP )+(ETP )] = 0 (28)

BT
d [I − (ETP )+(ETP )] = 0 (29)

where

Ā = A + GcKc,

C̄c = Cc + JcKc,

C̄d = Cd + JdKd,

then multiply diag{XT, I , I} by the left side of (26) and its transfer by the right side,

and then using Lemma 1, we can obtain (22), where X = P−1. And by using the similar

method, we can obtain the result.

5. Example

The parameters of system (1) are given as follows:
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E =







1 0 0

0 1 0

0 0 0






, A =







−10 0 0

0 −15 0

0 −10 −1






, Bc =







−1 10

−10 −7

0 0






,

Bd =







−7 0

0 −9

0 0






, Cc =

[

5 0 0

0 −3 2

]

, Cd =

[

1 0 0

0 −2 2

]

, Dc =

[

2 2

1 3

]

,

Dd =

[

3 2

0 1

]

, Dk =







−1 0 0

0 −1 0

0 0 −1






, Gc =







−5 −10

−4 −6

−1 −10






, Gd =







−1 1

0 0

0 0






,

Jc =

[

−9 5

−6 7

]

, Jd =

[

−12 13

−1 −11

]

, Qc = Qd =

[

−0.5 0

0 −0.5

]

,

Sc =

[

7 2

2 4

]

, Sd =

[

2 1

1 4

]

, Rc =

[

10 0

0 10

]

, Rd =

[

17 0

0 15

]

.

By using the Theorem 2 and Theorem 3, we can solve that

Kc =

[

1.0679 0.4679 −0.3064

0.9235 0.8445 −0.5522

]

, Kd =

[

0.0620 −0.2048 0.1858

−0.0155 −0.1812 0.1695

]

.

Therefore we can obtain the dissipative feedback controller is as follows:

uc(t) =

[

1.0679 0.4679 −0.3064

0.9235 0.8445 −0.5522

]

x(t),

ud(tk) =

[

0.0620 −0.2048 0.1858

−0.0155 −0.1812 0.1695

]

x(tk).

If we take

ωc(t) =

[

0.5sint

0.5sint

]

, ωd(t) =

[

0.5cost

0.5cost

]

,

and the initial value is

x(0) ==







3

−2

1






,

we get the value of V̇ (t, x(t)) − rc(ωc(t), yc(t)) ≤ 0, ( t 6= tk) for the system via the state

feedback controller as Figure 1, and the value of V (t+k )−V (tk)−rd(ωd(t), yd(t)) ≤ 0, ( t =

tk) for the system via the state feedback controller as Figure 2. From the figures, we can

make a conclusion that a singular impulsive dynamical system is dissipative with respect
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−40
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−20

−15

−10

−5

0

t

dV
−

V
c

Figure 1: The value of V̇ (t, x(t)) − rc(ωc(t), yc(t)) ≤ 0, ( t 6= tk) for the system via the state feedback

controller.

to the supply rate.

6. Conclusion

We have studied the dissipation with respect to the quadratic supply rate for singular

dynamical impulsive systems. By solving linear matrix inequalities, some sufficient and

necessary conditions of dissipation for this kind of system are obtained. As the problem

of the dissipation with respect to other supply rate for the singular dynamical impulsive

systems exists, we will discuss it in future papers.
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