
Nonresonance Impulsive Higher Order Functional
Nonconvex-Valued Differential Inclusions

M. Benchohra1, J. R. Graef2, J. Henderson3 and S. K. Ntouyas4

1 Department of Mathematics, University of Sidi Bel Abbes
BP 89 2000 Sidi Bel Abbes Algeria

e-mail: benchohra@yahoo.com

2 Mathematics Department, University of Tennessee at Chattanooga
Chattanooga, TN 37403-2504 USA

e-mail: John-Graef@utc.edu

3 Department of Mathematics, Baylor University
Waco, TX 76798-7328 USA

e-mail: Johnny Henderson@baylor.edu

4 Department of Mathematics, University of Ioannina
451 10 Ioannina Greece

e-mail: sntouyas@cc.uoi.gr

Abstract

In this paper, the authors investigate the existence of solutions for nonreso-

nance impulsive higher order functional differential inclusions in Banach spaces

with nonconvex valued right hand side. They present two results. In the first

one, they rely on a fixed point theorem for contraction multivalued maps due

to Covitz and Nadler, and for the second one, they use Schaefer’s fixed point

theorem combined with lower semi-continuous multivalued operators with de-

composable values.
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1 Introduction

In the interval J = [0, T ], let 0 = t0 < t1 < · · · < tm < tm+1 = T be fixed. In this
paper, we are concerned with the existence of solutions for a nonresonance problem for
the functional differential inclusion,

y(n)(t) − λy(t) ∈ F (t, yt), t ∈ J \ {t1, . . . , tm}, (1)
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subject to the impulse effects,

∆y(i)(tk) = I i
k(y(t

−
k )), 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m, (2)

satisfying the initial condition,

y(t) = φ(t), t ∈ [−r, 0], (3)

and satisfying the boundary conditions,

y(i)(0) − y(i)(T ) = µi, 0 ≤ i ≤ n− 1, (4)

where λ ∈ IR, 0 < r < ∞, E is a real, separable Banach space with norm | · |, P(E)
is the family of all subsets of E, F : J ×D → P(E) is a multivalued map,

D = {ψ : [−r, 0] → E |ψ is continuous everywhere except for a finite number
of points t̃ at which ψ(t̃−) and ψ(t̃+) exist and ψ(t̃−) = ψ(t̃)},

φ ∈ D, µi ∈ E, 0 ≤ i ≤ n− 1, I i
k ∈ C(E,E), 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m, and

∆y(i)(tk)) = y(i)(t+k ) − y(i)(t−k ), 0 ≤ i ≤ n− 1.

As usual, for any continuous function y from [−r, T ]\{t1, . . . , tm} to E, and any t ∈ J ,
we define yt ∈ D by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

We observe, in addition, that when µi = 0, 0 ≤ i ≤ n − 1, the conditions (4) are
periodic boundary conditions.

Impulsive differential equations have been used for some time to model evolution
processes subject to abrupt changes in their state. The books by Bainov and Simeonov
[1], Lakshmikantham, et al. [14], and Samoilenko and Perestyuk [15] give such models
for space-craft control, inspection processes in operations research, drug administration,
and threshold theory in biology.

More recently, there have been extensions concerning impulsive problems made to
functional differential equations and inclusions. Some of these extensions for classes
of nonresonance problems with convex nonlinearity can be found in Benchohra, et
al. [2, 3], and Dong [9], in which coincidence degree theory or a Martelli fixed point
theorem for multivalued maps were applied.

We consider the case when λ 6= 0. We observe that, if the impulses were absent
(i.e., I i

k ≡ 0, 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m), then the problem (1)–(4) is a nonresonance
problem since the linear part in the equation (1) is invertible. In that light, this
paper constitutes a generalization of Benchohra, Henderson, and Ntouyas [4], which
dealt with (1)–(4) for n = 1 and n = 2. As in [4], the approach used to obtain our
first result (Theorem 3.3 below) is based on a Covitz-Nadler [7] fixed point theorem
for contraction multivalued maps. Our second main result (Theorem 3.8 below) makes
use of a selection result of Bressan and Colombo [5] and Schaefer’s fixed point theorem.
The results in this paper allow the nonlinearity F to be nonconvex-valued.
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2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multi-
valued analysis which are used throughout this paper.

Given a compact interval I ⊂ IR, C(I, E) is the Banach space of all continuous
functions from I to E with the norm

‖φ‖ = sup{|φ(t)| : t ∈ I},

and given an interval H ⊂ IR, we will let AC i(H,E) denote the space of i-times
differentiable functions y : H → E, whose ith derivative, y(i), is absolutely continuous.
Also, L1(H,E) denotes the Banach space of Bochner integrable functions y : H → E.

Let (X, d) be a metric space. We use the notations:

P (X) = {Y ⊂ X : Y 6= ∅}, Pcl(X) = {Y ∈ P (X) : Y closed},

Pb(X) = {Y ∈ P (X) : Y bounded }, Pcp(X) = {Y ∈ P (X) : Y compact}.

We define Hd : P (X) × P (X) −→ IR+ ∪ {∞} by

Hd(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)

}

,

where d(A, b) = inf
a∈A

d(a, b), d(a, B) = inf
b∈B

d(a, b).

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (complete)
metric space (see [13]).

Definition 2.1 A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

A multivalued operator N : X → Pcl(X) has a fixed point if there is an x ∈ X such
that x ∈ N(x). The set of fixed points of the multivalued operator N will be denoted
by FixN . For more detailed works on multivalued maps, we cite the books of Deimling
[8], Gorniewicz [11], Hu and Papageorgiou [12], and Smirnov [17].

Our first existence result for (1)–(4) will arise as an application of a Covitz-Nadler
[7] fixed point theorem for multivalued mappings (see also Theorem 11.1 in Deimling
[8]).
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Theorem 2.2 Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contrac-
tion, then FixN 6= ∅.

To set the framework for our second existence result, we need to introduce the
following concepts. Let A be a subset of J × E. We say that A is L ⊗ B measurable
if A belongs to the σ-algebra generated by all sets of the form N × D where N is
Lebesgue measurable in J and D is Borel measurable in E. A subset B of L1(J, E)
is decomposable if, for all u, v ∈ B and all measurable subsets N of J , the function
uχN + vχJ−N ∈ B, where χ denotes the characteristic function.

Let E be a Banach space, X be a nonempty closed subset of E, and G : X →
P(E) be a multivalued operator with nonempty closed values. Then G is lower semi-
continuous (l.s.c.) if the set {x ∈ X : G(x) ∩ C 6= ∅} is open for any open set C in
E.

Definition 2.3 Let Y be a separable metric space and let N : Y → P(L1(J, E)) be a
multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : J ×D → P(E) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

F : Ω → P(L1(J, E))

by letting
F(y) = {w ∈ L1(J, E) : w(t) ∈ F (t, yt) for a.e. t ∈ J}

where Ω is an appropriately chosen Banach space. The operator F is called the
Niemytzki operator associated with F.

Definition 2.4 Let F : J × D → P(E) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its as-
sociated Niemytzki operator F is lower semi-continous and has nonempty closed and
decomposable values.

Finally, we state a selection theorem due to Bressan and Colombo.

Theorem 2.5 [5]. Let Y be a separable metric space and let N : Y → P(L1([0, T ], E))
be a multivalued operator which has property (BC). Then N has a continuous selection;
i.e., there exists a continuous function (single-valued) g : Y → L1(J, E) such that
g(y) ∈ N(y) for every y ∈ Y.

EJQTDE, 2002 No. 13, p. 4



3 Nonresonance Higher Order Impulsive FDIs

In this section, we provide constraints on F and the impulse operators I i
k so that (1)–(4)

has a solution. This will be done by an application of Theorem 2.2.
Let Jk = [tk, tk+1], 0 ≤ k ≤ m, and given a function y : [−r, T ] → E, let yk denote

the restriction of y to Jk. We will seek a solution of (1)–(4) from a subset of the space,

Ω : = Ω([−r, T ])
= {y : [−r, T ] −→ E : yk ∈ C(Jk, E), 0 ≤ k ≤ m, and both

y(t−k ) and y(t+k ) exist, with y(t−k ) = y(tk), 1 ≤ k ≤ m},

which is a Banach space with the norm

‖y‖Ω = max{‖yk‖, 0 ≤ k ≤ m}.

In addition, for each y ∈ Ω we define the set

SF,y =
{

v ∈ L1(J, E) : v(t) ∈ F (t, yt) for a.e. t ∈ J
}

.

We next define what we mean by a solution of (1)–(4).

Definition 3.1 A function y ∈ Ω ∩ACn−1((tk, tk+1), E), k = 0, . . . , m, is said to be a
solution of (1)–(4), if y satisfies the conditions (1) to (4).

In applying Theorem 2.2, we will define an operator whose resolvent kernel is the
Green’s function, G(t, s), for the periodic boundary value problem,

y(n)(t) − λy(t) = 0, y(i)(0) − y(i)(T ) = 0, 0 ≤ i ≤ n− 1. (5)

Among various properties of G(t, s), we recall that

∂i

∂ti
G(0, 0) −

∂i

∂ti
G(T, 0) =

{

0, 0 ≤ i ≤ n− 2,
1, i = n− 1.

The following result is fundamental is establishing solutions of (1)–(4). The proof is
simply an extension of the result for second order problems given in [3], and so we omit
the proof.

Lemma 3.2 [3]. A function y ∈ Ω ∩ ACn−1((tk, tk+1), E), k = 0, . . . , m, is a solution
to the problem (1)–(4) if and only if y ∈ Ω and there exists v ∈ SF,y such that y satisfies
the impulsive integral equation,

y(t) =







































φ(t), t ∈ [−r, 0],

∫ T

0
G(t, s)v(s)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1

+
m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(tk)), t ∈ J.

(6)
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We now establish the existence of solutions of (1)–(4).

Theorem 3.3 Assume the following conditions are satisfied:

(H1) F : [0, T ]×D −→ Pcp(E) has the property that, for each u ∈ D, F (·, u) : [0, T ] →
Pcp(E) is measurable.

(H2) There exists l ∈ L1([0, T ], IR) such that Hd(F (t, u), F (t, u)) ≤ l(t)‖u − u‖, for
each t ∈ [0, T ] and u, u ∈ D and d(0, F (t, 0)) ≤ l(t), for all t ∈ J.

(H3) For each 0 ≤ i ≤ n − 1, 1 ≤ k ≤ m, there exist constants di
k ≥ 0, such that

|I i
k(y) − I i

k(y)| ≤ di
k|y − y|, for each y, y ∈ E.

Let l∗ =
∫ T
0 l(t)dt and Mi = sup(t,s)∈J×J

∣

∣

∣

∂i

∂ti
G(t, s)

∣

∣

∣ , 0 ≤ i ≤ n− 1. If

[

M0l
∗ +

n−1
∑

i=0

Mi

(

m
∑

k=1

di
k

)]

< 1,

then the problem (1)-(4) has at least one solution on [−r, T ].

Proof. In order to apply the Covitz-Nadler fixed point theorem, that is, Theorem
2.2, we define a multivalued operator N : Ω → P (Ω) by

N(y) =







































h ∈ Ω : h(t) =







































φ(t), t ∈ [−r, 0],

∫ T

0
G(t, s)v(s)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1

+
m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(tk)), t ∈ J,







































where v ∈ SF,y. It is straightforward that fixed points of N are solutions of (1)–(4).
In addition, by (H1), F has a measurable selection from which Castaing and Valadier
(see Theorem III in [6]) have proved that, for each y ∈ Ω, the set SF,y is nonempty.

We will now verify that N satisfies the conditions of Theorem 2.2; this will be done
in a couple of steps.

Our first step is to show that, for each y ∈ Ω, we have N(y) ∈ Pcl(Ω). Indeed, let
(yn)n≥0 ∈ N(y) be such that yn −→ ỹ in Ω. Then ỹ ∈ Ω, and there exists gn ∈ SF,y

such that for each t ∈ J ,

yn(t) ∈
∫ T

0
G(t, s)gn(s)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1 +

m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(t

−
k )).
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Using the fact that F has compact values and (H2) holds, we may pass to a subsequence
if necessary to obtain that gn converges to g in L1(J, E), and hence g ∈ SF,y. Then, for
each t ∈ [0, b],

yn(t) → ỹ(t) ∈
∫ T

0
G(t, s)g(s)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1 +

m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(t

−
k )).

So ỹ ∈ N(y), and in particular, N(y) ∈ Pcl(Ω).

Our second step is to show there exists a 0 ≤ γ < 1 such that Hd(N(y), N(y)) ≤
γ‖y− y‖ for each y, y ∈ Ω. To this end, let y, y ∈ Ω and h1 ∈ N(y). Then there exists
v1(t) ∈ F (t, yt) such that for each t ∈ J ,

h1(t) =
∫ T

0
G(t, s)v1(s)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1 +

m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(t

−
k )).

From (H2) it follows that, for t ∈ J,

Hd(F (t, yt), F (t, yt)) ≤ l(t)‖yt − yt‖.

Hence, there is w ∈ F (t, yt) such that

|v1(t) − w| ≤ l(t)‖yt − yt‖, t ∈ J.

Consider U : J → P(E) defined by

U(t) = {w ∈ E : |v1(t) − w| ≤ l(t)‖yt − yt‖}.

By a result in Castaing and Valadier (see Proposition III.4 in [6]), the multivalued
operator V (t) = U(t) ∩ F (t, yt) is measurable, and hence there exists a measurable
selection for V , call it v2(t). Now v2(t) ∈ F (t, yt) and

|v1(t) − v2(t)| ≤ l(t)‖y − y‖, t ∈ J.

For each t ∈ J , we define

h2(t) =
∫ T

0
G(t, s)v2(s)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1 +

m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(t

−
k )).

Then, for t ∈ J , we have

|h1(t) − h2(t)| ≤
∫ T

0
|G(t, s)||v1(s) − v2(s)| ds
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+
m
∑

k=1

n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(t, tk)

∣

∣

∣

∣

∣

|I i
k(y(t

−
k )) − I i

k(y(t
−
k ))|

≤ M0

∫ T

0
l(s)‖ys − ys‖ds

+
m
∑

k=1

n−1
∑

i=0

Mid
i
k|y(t

−
k ) − y(t−k )|

≤

[

M0l
∗ +

m
∑

k=1

n−1
∑

i=0

Mid
i
k

]

‖y − y‖Ω.

Thus,

‖h1 − h2‖Ω ≤

[

M0l
∗ +

m
∑

k=1

n−1
∑

i=0

Mid
i
k

]

‖y − y‖Ω.

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd(N(y), N(y)) ≤

[

M0l
∗ +

m
∑

k=1

n−1
∑

i=0

Mid
i
k

]

‖y − y‖Ω.

Therefore, N is a contraction and so by Theorem 2.2, N has a fixed point y, which is
a solution to (1)-(4). This completes the proof of the theorem.

Using Schaefer’s fixed point theorem combined with the selection theorem of Bres-
san and Colombo for lower semi-continuous maps with decomposable values, we will
next present our second existence result for the problem (1)-(4). We will make use of
the following conditions.

(A1) F : [0, T ] × D −→ P(E) is a nonempty, compact-valued, multivalued map such
that:
a) (t, u) 7→ F (t, u) is L⊗ B measurable;
b) u 7→ F (t, u) is lower semi-continuous for a.e. t ∈ [0, T ].

(A2) For each q > 0, there exists a function hq ∈ L1([0, T ], IR+) such that

‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ hq(t)

for a.e. t ∈ [0, T ] and u ∈ D with ‖u‖ ≤ q.

The following lemma is crucial in the proof of our main theorem:

Lemma 3.4 [10]. Let F : [0, T ] × D → P(E) be a multivalued map with nonempty,
compact values. Assume (A1) and (A2) hold. Then F is of l.s.c. type.
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The following result gives sufficient conditions for the existence of solutions to the
problem (1)-(4).

Theorem 3.5 Suppose that hypotheses (A1) and (A2) and the following are satisfied:

(A3) For each 0 ≤ i ≤ n − 1, 1 ≤ k ≤ m, there exist constants di
k ≥ 0, such that

|I i
k(y)| ≤ di

k, for each y ∈ IR;

(A4) There exists M ∈ L1(J, IR) such that, for all y ∈ Ω and almost all t ∈ J,

‖F (t, yt)‖ = sup{|v| : v ∈ F (t, yt)} ≤M(t).

(A5) For each t ∈ J , the multivalued map F (t, ·) : D → P(E) maps bounded sets into
relatively compact sets.

Then the problem (1)–(4) has at least one solution on [−r, T ].

Proof. First note that (A1), (A2), and Lemma 3.4 imply that F is of lower
semi-continuous type. Then, from Theorem 2.5, there exists a continuous function
f : Ω → L1([0, T ], E) such that f(y) ∈ F(y) for all y ∈ Ω. Consider the problem,

y′(t) = f(yt), t ∈ [0, T ], t 6= tk, k = 1, . . . , m, (7)

∆y(i)(tk) = I i
k(y(t

−
k )), 0 ≤ i ≤ n− 1, 1 ≤ k ≤ m, (8)

y(t) = φ(t), t ∈ [−r, 0], (9)

y(i)(0) − y(i)(T ) = µi, 0 ≤ i ≤ n− 1. (10)

It is clear that if y ∈ Ω is a solution of the problem (7)–(10), then y is a solution to
the problem (1)-(4).

We transform the problem (7)–(10) into a fixed point problem. Consider the oper-
ator N : Ω → Ω defined by:

N(y)(t) =







































φ(t), t ∈ [−r, 0],

∫ T

0
G(t, s)f(ys)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1

+
m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(tk)), t ∈ J.

We will show that N is a completely continuous, that is, it is continuous and sends
bounded sets into relatively compact sets.
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Step 1: N is continuous.

Let {yn} be a sequence such that yn −→ y in Ω. Then,

|N(yn(t)) −N(y(t))| ≤
∫ T

0
|G(t, s)||f(yns) − f(ys)|ds

+
m
∑

k=1

n−1
∑

i=0

∂i

∂ti
|G(t, tk)||I

i
k(yn(tk)) − I i

k(y(tk))|.

Since the functions f and Ik, k = 1, . . . , m, are continuous,

‖N(yn) −N(y)‖Ω → 0 as n→ ∞.

Step 2: N maps bounded sets into bounded sets in Ω.

Indeed, it is enough to show that there exists a positive constant ` such that, for
each y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q}, we have ‖N(y)‖Ω ≤ `. From (A1)-(A2), for each
t ∈ J , we have

|h(t)| ≤
∫ T

0
|G(t, s)||f(ys)|ds+

n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(t, 0)

∣

∣

∣

∣

∣

|µn−i−1|

+
m
∑

k=1

n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(t, tk)I

i
k(y(tk))

∣

∣

∣

∣

∣

≤
∫ T

0
|G(t, s)|hq(s)ds+

n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(t, 0)

∣

∣

∣

∣

∣

|µn−i−1|

+
m
∑

k=1

n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(t, tk)

∣

∣

∣

∣

∣

sup{|I i
k(|y|)| : ‖y‖Ω ≤ q}.

Then, for each h ∈ N(Bq), we have

‖h‖Ω ≤ sup
(t,s)∈J×J

|G(t, s)|
∫ T

0
hq(s)ds+

n−1
∑

i=0

|µn−i−1| sup
t∈J

∣

∣

∣

∣

∣

∂i

∂ti
G(t, 0)

∣

∣

∣

∣

∣

+
m
∑

k=1

n−1
∑

i=0

sup
t∈J

∣

∣

∣

∣

∣

∂i

∂ti
G(t, tk)

∣

∣

∣

∣

∣

sup{|I i
k(|y|)| : ‖y‖Ω ≤ q}

:= `.

Step 3: N maps bounded sets into equicontinuous sets in Ω.

Let τ1, τ2 ∈ J, τ1 < τ2 and Bq be a bounded set (as described above) in Ω. Let
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y ∈ Bq. Then,

|h(τ2) − h(τ1)| ≤
∫ T

0
|G(τ2, s) −G(τ1, s)|hq(s)ds

+
n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(τ2, 0) −

∂i

∂ti
G(τ1, 0)

∣

∣

∣

∣

∣

|µn−i−1|

+
m
∑

k=1

n−1
∑

i=0

∣

∣

∣

∣

∣

∂i

∂ti
G(τ2, tk) −

∂i

∂ti
G(τ1, tk)

∣

∣

∣

∣

∣

di
k.

If we let τ2 → τ1 in the above inequality, the right hand side tends to zero. Also, the
equicontinuity for the other cases, τ1 < τ2 ≤ 0 and τ1 ≤ 0 ≤ τ2, are straightforward.

As a consequence of Steps 1 to 3, condition (A5), and the Arzela-Ascoli theorem,
we conclude that N : Ω −→ Ω is completely continuous.

Step 4: It remains to show that the set

E(N) := {y ∈ Ω : y = βN(y), for some 0 < β < 1}

is bounded.

Choose y ∈ E(N); then y = βN(y), for some 0 < β < 1, and thus, for each t ∈ J ,

y(t) = β

[

∫ T

0
G(t, s)f(ys)ds+

n−1
∑

i=0

∂i

∂ti
G(t, 0)µn−i−1 +

m
∑

k=1

n−1
∑

i=0

∂i

∂ti
G(t, tk)I

i
k(y(tk))

]

.

By (A3) and (A4), we have

|y(t)| ≤ sup
(t,s)∈J×J

|G(t, s)|
∫ T

0
M(s)ds+

n−1
∑

i=0

sup
t∈J

∣

∣

∣

∣

∣

∂i

∂ti
G(t, 0)

∣

∣

∣

∣

∣

|µn−i−1|

+
m
∑

k=1

n−1
∑

i=0

sup
t∈J

∣

∣

∣

∣

∣

∂i

∂ti
G(t, tk)

∣

∣

∣

∣

∣

di
k,

:= b,

where b depends only on T and the function M . In particular, ‖y‖Ω ≤ b, and E(N) is
bounded.

With X := Ω, we conclude by Schaefer’s theorem (see [16], p. 29) that N has
a fixed point which in turn is a solution of (1)–(4). This completes the proof of the
theorem.
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