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1 Introduction

In this paper, consider neutral differential difference equations with piecewise constant argument

of the forms

((t) + pr(t = )N = ga([t = 1]) + £(2), (1)

((t) + pr(t = 1))N) = qa([t = 1]) + g(t, 2(t), ([t - 1])). (2)

Here [-] is the greatest integer function, p and ¢ are nonzero constants, N is a positive integer,
f:R - Rand g : RxR? — R are continuous. Throughout this paper, we use the following
notations: R is the set of reals; Z the set of integers; i.e., Z = {0,4+1,+2,---}; Z* the set of positive
integers; C denotes the set of complex numbers. A function x : R — R is called a solution of Eq. (1)
(or (2)) if the following conditions are satisfied:

(i) x is continuous on R;
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(ii) the N-th order derivative of x(t)+p(t)z(t — 1) exists on R except possibly at the points ¢t = n,
n € Z, where one-sided N-th order derivatives of x(t) + p(t)x(t — 1) exist;

(iii) x satisfies Eq. (1) (or (2)) on each interval (n,n + 1) with integer n € Z.

Differential equations with piecewise constant arguments describe hybrid dynamical systems (a
combination of continuous and discrete systems) and, therefore, combine the properties of both
differential equations and difference equations. For a survey of work on differential equations with
piecewise constant arguments we refer to [1], and for some excellent works in this field we refer to
[2-5] and references therein.

In paper [2], Yuan studied the existence of almost periodic solutions for second-order equations
involving the argument 2[(¢+ 1)/2] in the unknown function. In paper [3], Piao studied the existence
of almost periodic solutions for second-order equations involving the argument [t — 1] in the unknown
function. In paper [4], Seifert intensively studied the existence of almost periodic solutions for second-
order equations involving the argument [t] in the unknown function by using different methods.
However, to the best of our knowledge, there are no results regarding the existence of almost periodic
solutions for N-th order neutral differential equations with piecewise constant argument as Eq. (1)
(or (2)) up to now. Motivated by the ideas of Yuan [2], Piao[3] and Seifert [4], in this paper we will
investigate the existence of almost periodic solutions to Eq. (1) and (2).

Our present paper is organized as follows: in Section 2, we state some definitions and lemmas; in

Section 3, we state our main results and prove them.

2 Definitions and Lemmas

Now we start with some definitions.
Definition 2.1 ([6]). A set K C R is said to be relatively dense if there exists L > 0 such that
[a,a+ LN K # O for all a € R.
Definition 2.2 ([6]). A bounded continuous function f: R — R (resp. C) is said to be almost

periodic if the e—translation set of f
T(fe)={reR:|f(t+7)—f(t)| <e, VteR},

is relatively dense for each ¢ > 0. We denote the set of all such function f by AP(R,R) (resp.
AP(R,C)).
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Definition 2.3 ([6]). A bounded continuous function g : R x R? — R (resp. C)is said to be
almost periodic function for ¢ uniformly on R x Q, where € is an open subset of R?, if, for any

compact subset W C €2, the e—translation set of g,
T(g,e, W)={1€eR:|g(t+T,2) —g(t,z)| <e, V(t,z)eRxW},

is relatively dense in R. 7 is called the e—period for g. Denote by AP(RxW,R) (resp. AP(RxW,C))
the set of all such functions.
Definition 2.4 ([6]). A sequence z : Z — RF (resp. C¥), k € Z,k > 0, denoted by {z,}, is called

an almost periodic sequence if the e-translation set of {x,}
T({xnte) ={1€Z: |xpir —xn| <e, VneZ},

is relatively dense for each e > 0, here | - | is any convenient norm in R¥ (resp. C¥). We denote the
set of all such sequences {z,} by APS(Z,R¥) (resp. APS(Z,CF)).

Proposition 2.5. {z,} = {(zn1,Tn2, -, Tni)} € APS(Z,RF) (vesp. APS(Z,CF)) if and only if
{zni} € APS(Z,R) (resp. APS(Z,C)),i=1,2,--- k.

Proposition 2.6. Suppose that {z,} € APS(Z,R), f € AP(R,R). Then the sets T(f,e) N Z
and T'({zn},e) NT(f,e) are relatively dense.

Lemma 2.7 ([2, 3]). Let z : R — R is a continuous function, and w(t) = x(t) + pz(t — 1). Then

2(0)] < e sup |alty +6)+b sup fwu)l, t> 1o,
—1<6<0 to<u<t
where [p| < 1,a =log1/|p|,b=1/(1 — |p[), or
z(t)] < eo8PIE=0) sup |a(to +0)|+b sup |w(u+1)], t<to,
0<6<1 t<u<to

where |p| > 1,b=1/(|p| — 1).

3 Main Results

Now we rewrite Eq. (1) as the following equivalent system

(

(@(t) +pz(t — 1)) = (), (31)
y1(t) = y2(2), (32)

(3)
Yn—2(t) = yn—1(), (3n-1)
Yn—1(t) = qz(t —1]) + f(2). (3n)
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Lemma 3.1. If (z(¢),y1(¢),- - -,yn—1(t)) be a solutions of system (3) on R, (defined similarly as

above for (1)), then for n € Z,

z(n+1) = (1= p)z(n) + y1(n) + gy2(n) + - + wrpyyn-1(n) + (o + g7)z(n — 1)

yn—a(n+1) = yn_a(n) + yv—1(n) + Sx(n — 1) + f¥ Y, (4n-1)
yn—1(n+1) =yn_1(n) + qz(n — 1) + fr(zN), (4n)
where
ntl  pty to n+l  pto
/ / f(t)dtrdty - - dty, -, fN7Y :/ f(ty)dtdts,

o) _ / F(t1)dtr.

Proof. For n <t <n+1,n € Z, using (3x5) we obtain

N1 (t) = yn—1(n) + q(n — 1)(t —n) + / f(t)dt,

and using this with (3y_1) we obtain

yN_Q(t) = yN_Q(n) + yN_l(TL)(t — Tl) + %qw(n — 1)(t — n)2 + /t " f(tl)dtldtz.

Continuing this way, and at last we get

w(t) +po(t—1) = a(n) +pe(n— 1)+ ()(t —n) + Sun(n)(t )+
o (=Y o (= 1) = )Y

tn to
// [ Seydndrs - di

Since z(t) must be continuous at n + 1, these equations yield system (4).
Lemma 3.2. If f € AP(R,R), then sequences {fr(f)} € APS(Z,R),i=1,2,---, N.
Proof. We typically consider {f,sl)}. Ve >0 and 7 € T(f,e) NZ, we have

fr(z{zr - fr(zl)

IN

n+1l pin to
[ [ [ - sidndes - duy
g

IN

+1, (41
y1(n+1) = y1(n)+y2(n) + qys(n) + -+ mgyn-1(n)+ iy — 1)+ 12, (42)

n+7+1 tn to n+1 tn to
/ / [ f(t)dtdty - - diy — / / o [ ft)dtdts - -
n-+ n+r n+r n n n

dtn
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From Definition 2.4, it follows that { f,sl)} is an almost periodic sequence. In a manner similar to
the proof just completed, we know that { fy(?)}, { f,ss)}, e fy(LN)} are also almost periodic sequences.

This completes the proof of lemma. U

Next we express system (4) in terms of an equivalent system in RV*! given by

Upt1 = Avy + hy, (9)
where
I-p 1 % (Nil)' p+ ]gn
1
0 L1 (N=2)! (Ngl)'
A=

0 0 0 1 %
0 o 0 --- 1 q
1 0O 0 --- 0 0

and v, = (2(n),y1(n), ya(n), - -~ yn—1,2(n — 1) hy = (F, 12 18 0)T.

Lemma 3.3. Suppose that all eigenvalues of A are simple (denoted by A1, Ag,- -+, An41) and
|Ail #1,1 <i < N + 1. Then system (9) has a unique almost periodic solution.

Proof. From our hypotheses, there exists a (N + 1) x (N + 1) nonsingular matrix P such that
PAP~!' = A, where A = diag(A1, A2, - - -y Any1) and Ap, Ag, - - -, An41 are the distinct eigenvalues of
A. Define v,, = Puy, then (9) becomes

Vpa1 = Ay, + hy, (10)

where h,, = Ph,,.

For the sake of simplicity, we consider first the case || < 1. Define

Up1 = Z )\?_mﬁ(mfl)l

m<n

where h, = (hn1, hn2, - - -,Bn(NH))T,n € Z. Clearly {hy1} is almost periodic, since h,, = Ph,,, and
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{hn} is. For 7 € T({hn1},¢), we have

‘T)(n—l—r) 1~ Uni

= Z AP By — Z AT A1y

m<n+T1 m<n

(letting m = m’ + 7, then replacing m’ by m)

= Z AL B —1)1 — Z A" R

m<n m<n

= Z A?im (B(m-l—’r—l)l - B(m—l)l)

m<n
£
<
1— M|

this shows that {v,;} € APS(Z,C).

If |N] < 1,2 <4 < N +1, in a manner similar to the proof just completed for A\;, we know
that {v,;} € APS(Z,C),2 <i < N + 1, and so {v,} € APS(Z,CN*1). It follows easily that then
{P~'v,} = {v,} € APS(Z,RN*1) and our lemma follows.

Assume now |A;] > 1. Now define

Up1 = Z A Bm—1)1, 1 € .

m<n

As before, the fact that {v,1} € APS(Z,C) follows easily from the fact that {h,1} € APS(Z,C). So
in every possible case, we see that each component v,;,? = 1,2, -, N + 1, of v, is almost periodic
and so {v,} € APS(Z,RN*1).

The uniqueness of this almost periodic solution {v,} of (9) follows from the uniqueness of the
solution v, of (10) since P~'%, = v,, and the uniqueness of @, of (10) follows, since if ¥, were
a solution of (10) distinct from v,,u, = v, — 0, would also be almost periodic and solve u,+1 =
Au,,n € Z. But by our condition on A, it follows that each component of u,, must become unbounded
either as n — oo or as n — —oo, and that is impossible, since it must be almost periodic. This proves

the lemma. O

Lemma 3.4. Let (cn,dg),df), .. -,d,(lel))

the unique first N components of the almost periodic
solution of (9) given by Lemma 3.3, then there exists a solution (z(t),y1(t),y2(t), -, yn—1(t)),t € R,

of (3) such that z(n) = ¢,,y1(n) = dy, .. Syn—1(n) = dN Y nez.
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Proof. Define

1 1
w(t) = cn+pep_1+dP(t—n)+ —dﬁf) (t—n)+- + mdﬁfv_”(t —n)N-1
1 tN to
N'qcn 1t —n)N / / . f (t1)dtidty - - - din, (11)

forn <t <n+1,n € Z. It can easily be verified that w(t) is continuous on R. we omit the details.

Define z(t) = ¢(t), —1 < t < 0, where ¢(t) is continuous, and ¢(0) = cp, d(—1) = c_1;

z(t) = (wt+1) -zt +1))/p, —3<t< -2

Continuing this way, we can define z(t) for ¢ < 0. Similarly, define
z(t) = —pop(t — 1) +w(t), 0<t<1,

z(t) = —px(t—1)+w(t), 1<t<2

continuing in this way z(t) is defined for ¢ > 0, and so z(¢) is defined for all ¢ € R.

Next, define y(t) = w'(t),y2(t) = w’(t),- - -, yn—1(t) = w NV (t),t # n € Z, and by the
appropriate one sided derivative of w'(t),w”(t),- - ,w™N=D(t) at n € Z. It is easy to see that
y1(t),y2(t), - -,yn—1(t) are continuous on R, and (z(n),y1(n),y2(n), -, yn—-1(n)) = (cn,dg),dg),- .
“ dglel)) for n € Z; we omit the details. O

It is easy to see that x(t) is continuous on R, z(n) = ¢, and satisfies Eq. (1). We don’t know if
x(t) is an almost periodic one, but we can show that w(t) := x(t) + pz(t — 1) is an almost periodic
function.

Lemma 3.5. Suppose that conditions of Lemma 3.3 hold, z(t) is as defined as above with

iD d® .. gDy

(Cnydy’ydn -, the unique first N components of the almost periodic solution of (9) given

by Lemma 3.3, then w(t) := z(t) + px(t — 1) is almost periodic.

EJQTDE, 2013 No. 9, p. 7



Proof. Indeed, for 7 € T({ca},e) N T({dP},e) nT{dP Y, e) n-- - nT{dY "V}, e) nT(F, ),

jw(t +7) —w(?)]
1
= |(entr = en) +plenpror = enmr) + (@A, = dD)(t =) + (@7, — dD)(E — )+

1
+71>u<dffiﬂ AN )t =)V 4+ E(entr—1 — ca)(t =)

t+1 tN to tn
/ / ftl)dtldtQ Sdty — // . ftl)dtldtg e dty]
< lal
< | lel+ 5 +Z (12)

It follows from definition that w(t) is almost periodic. O

Theorem 3.6. Suppose that |p| # 1 and all eigenvalues of A in (9) are simple (denoted by
AL, A2, -, An+1) and satisfy |A;| # 1,1 < ¢ < N+ 1. Then Eq. (1) has a unique almost periodic
solution Z(t).

Proof . Case I: |p| < 1. For each m € Z* define z,,(t) as follows:

T (t) = w(t) — prp(t—1), t>—m, (13)

Tm(t) = o(t), t<-m, (14)
here w(t) is as defined in the proof of Lemma 3.4, and
d(t) =cn+ (cny1 —cn)(t—n), n<t<n+1,neZ,

where ¢, is the first component of the solution v, of (9) given by Lemma 3.3. Let [ € Z*, then

from (13) we get

(=) zm(t —1) = (—p)'w(t =) + (=p) Tam(t —1—1), t>—m. (15)
It follows 1
Ty (t) = Z(—p)jw(t —§) 4 (=) am(t = 1), t>—m.
=0

Ifl>t+m,xn(t—1)= ¢t —1), and so for such [,
-1
)= S (pPult - )| < Iol(t - D).

j=0

Let | — oo, we get
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Sito(=pYw(t —j), t>-—m,
o(t), t< —m.

(16)

T (t) =

Since w(t) and ¢(t) are uniformly continuous on R, it follows that {x,,(t) : m € ZT} is equicontin-
uous on each interval [—L, L], L € Z™", and by the Ascoli-Arzeld Theorem, there exists a subsequence,
which we again denote by x,,(t), and a function Z(¢) such that z,,(t) — Z(¢) uniformly on [—L, L],
and by a familiar diagonalization procedure, can find a subsequence, again denoted by z;,(t) which

is such that z,,(t) — z(t) for each ¢ € R. From (16) it follows that

o0

2(t) = Y (=p)w(t - j), (17)

j=0
and so Z(t) is almost periodic since w(t — j) is almost periodic in ¢ for each j > 0, and |p| < 1. From
(13), letting m — oo, we get z(t) + pz(t — 1) = w(t),t € R, and since w(t) solves Eq. (1), z(t) does
also.

The uniqueness of Z(t) as an almost periodic solution of (1) follows from the uniqueness of the
almost periodic solution v, : Z — RN*1 of (9) given by Lemma 3.3, which determines the uniqueness
of w(t), and therefore from (17) the uniqueness of Z(t).

Case II: |p| > 1. Rewriting (15) as

(F1) emte-t= (S w0+ (1) et s om

p p p

we deduce in a similar manner that

S0 (3) wit -9, 1>-m

o(t), t < —m.

Tm(t) =
The remainder of the proof is similar to that of Case I, we omit the details. U

Theorem 3.7. Suppose that the conditions of Theorem 3.6 are satisfied, and g : RxR xR — R
is almost periodic for ¢ uniformly on R x R, then there exists n* > 0 such that if g satisfies
lg(t, x1,51) = g(t, 22, y2)| < Mllzy — x| + |y1 — 12l], 0 < <7,

for (t,z;,y;) € RxR xR,i=1,2. Eq. (2) has a unique almost periodic solution.
Proof. It is easy to see that the space AP(R,R) is a Banach space with supremum norm
l|6]] = supser |6(t)| (see [6, 7]). For any ¢ € AP(R,R), g(t, (), #([t — 1])) is an almost periodic

function (see [6]). We consider the following equation:

((t) +pr(t = 1)N) = ga([t = 1]) + g(t, $(t), ¢([t — 1]))- (20)
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From Theorem 3.6, it follows that Eq. (20) has a unique almost periodic solution, denote by T'¢.
Thus, we obtain a mapping 7" : AP(R,R) — AP(R,R). For any ¢, € AP(R,R), T — T satisfies

the following equation:

(2(t) + p2(t = 1)) = qz([t = 1]) + g(t, (1), o([t = 1)) = g(t,$(2), ¥([t = 1])). (21)

Since Ty and T are almost periodic, there exists a constant B > 0 such that |Ty|,|Ty| < B
and there exists a sequence {a},a — +00 as k — 400, such that (T'¢)(t + ar) — (Ty)(t) and
(TY)(t + ax) — (TY)(t) as k — oo. Setting ¢, = (T')(n) — (T'¢)(n), and repeating the preceding
steps of Lemma 3.1, we have

( _
enst = (L= p)en +d + 5d? + -+ ipd ™ + 0+ e + £V,

d(l)1 —d(1)+d(2) %dg’)_i__FﬁdgN_ )—l— (N =11 n— 1+fn )

: (22)
dNP = a1 d N e+ VY,
dg—\‘,f—l D= a4 ey + 1Y,
where
n+1 tN to
7o = / / / gt (1), ol — 1)) — gt 0(t), 0([t — 1))]dtadts - - - di,
N n+1 to
A0 = [ [Tttt = 1) = ot w(e) ol = 1),
- n+1
N = / [9(t1, @(t1), p([tr — 1])) — g(t1,(t1), ([t1 — 1]))]dt1.
Systems (22) equivalent to
Upt1 = Av, + En, (23)

where v, = (cp, d,(ll), d,(f), ce d%Nﬁl),cn,l)T,En = (ﬁ(Ll), ﬂf),- - f,(@N), 0)”. Let P be the nonsingular
matrix such that PAP~! = A, where A = diag(A1, A2, - -+, An+1) and A1, Ag, -+ -, A1 are the distinct

eigenvalues of A. Define v,, = Pu,, then (23) becomes
Tpa1 = A0y, + hy, (24)

where h,, = Pﬁn. Repeating the steps of lemma 3.3, we can prove that Eq. (23) has a unique almost
periodic solution v,,. Let the elements of the first column of matrix P~! be ki, ko, - - -, ky41, then we

have

Cn = Un1 = k1Un1 + koUp2 + - - - + EN41UN41-
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Let L={l|N| < 1,1 <I<N+1}, L' ={l|IN] >1,1 <I<N+1}. Then LNL =@, LUL =
{1,2,---,N + 1}, and

Cn = Z ky Z AP A1y + Z Ky Z AT A1)

leL. m<n lelZ  m<n

So, there exists Ky > 0, K71 > 0 such that
(T)(n) — (T¥)(n)| < Kosup |hn| = Kosup |Phy| < Kinle —9|,n € Z.
nez nez
Denote

1
W(t) = entpeny+dD(t—n)+ 5dd(t—n)*+. -

+%dw Dt —n)N" %qcn Lt —n)N
/ /tN /t2 (t1, (1), o([t1 — 1])) — g(t1, ¥ (t1), ¥([t1 — 1]))]dt1dty - - - dty,

Then there exists a sufficiently large Ko > 0 such that |W(t)| < Kan|p —1|. We easily conclude that

(Te)(t) = (TY)(1) + pl(Te)(t = 1) = (TY)(t = 1)] = W ().

We typically consider the case when |p| < 1. Using the first inequality in Lemma 2.7, we have

(Te)(t) = (TP)(B)] < e ") sup [(Te)(to +0) = (T)(to + 0)| + b sup (W (w)]

< 2e7 B 4 bKonle — |, t > to.
Furthermore, we have
(T)(t+ o) — (TY)(t + a)| < 2~ %I B 4 bEKomlp — 4|, + g > to.
Note (To)(t 4+ ap) — (T)(t) and (T9)(t + ag) — (T)(t) as k — co. we have
[(Te)(t) = (TY)(1)] < bE2nle — .

Let n* = (bK3)~ L. Then 0 < < n* implies that T : AP(R,R) — AP(R,R) is a contraction mapping.
It follows that there exists a unique ¢ € AP(R,R) such that T'¢ = ¢, that is, Eq. (2) has a unique
almost periodic solution.

For the case when |p| > 1, we use the second inequality in Lemma 2.7, the rest of the proof is

virtually the same as the above.
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