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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
NONLINEAR DIFFERENTIAL EQUATIONS
AND GENERALIZED GUIDING FUNCTIONS

CEZAR AVRAMESCU

Abstract

Let f: RxIRY — IRY be a continuous function and let 4 : R — R
be a continuous and strictly positive function. A sufficient condition
such that the equation & = f(t,x) admits solutions = : R — RY
satisfying the inequality |z (t)| < k-h(t),t € R, k > 0, where || is the
euclidean norm in IR™, is given. The proof of this result is based on
the use of a special function of Lyapunov type, which is often called
guiding function. In the particular case h = 1, one obtains known
results regarding the existence of bounded solutions.

Mathematics Subject Classifications: 34C11, 34B40, 34A40.
Key words and phrases: Boundary value problems on infinite interval,
Differential inequalities, Guiding functions.

1 Introduction

Let f: RxIRY — IRY be a continuous function. Within the problem of the
existence of bounded solutions (and in particularly of periodic solutions) for
the equation

= f(tx), (1)
the method of guiding functions is very productive.

The guiding functions, which is fact are functions of Lyapunov type, have
been introduced in [14] and then generalized and used in diverse ways (see
e.g. [16], [17]). These cited works contain rich bibliographical informations
in this field. The use of Lyapunov functions in the study of certain quali-
tative properties of solutions constitutes the object of numerous interesting
works; in this direction we mention the ones of T.A. Burton (see e.g. [10],
1], 12)).

EJQTDE, 2003 No. 13, p. 1



The classical guiding functions can not be used in general, in the study
of some properties of solutions, more complicated than the ones of bound-
edness. Such a behavior of a solution z (-) of the equation (1) could be for
example the existence of finite limits of this at 400 or —oo., limits denoted
x (£oo) (ie. z(£o0):= lim xz(t)).

t—=o0

This type of behavior has been recently considered in the notes [1] —
[8] and it is closely related to the existence of heteroclinic and homoclinic
solutions. Indeed, in the case of an autonomous system & = f (z), each
solution z (-) for which there exist z (+00) is a heteroclinic solution and a
solution x (-) for which z (+00) = z (—00) is a homoclinic solution. In fact,
some authors (see e.g. [1], [9]) named the solutions x (-) for which = (+00) =
x (—00) = 0 homoclinic. We shall call such a solution evanescent.

A way to establish the fact that a solution x (-) is evanescent is to prove
that x (-) satisfies a inequality of type

lx ()| <k-h(t), teR, (2)

where h : IR — IR is a continuous function with i (£oo0) = 0.

The idea to use estimations of type (2) for qualitative informations for
the solutions of the equation (1), belongs to C. Corduneanu (see [13]), which
has started from some classical results of Perron. Corduneanu organizes the
set of continuous functions fulfilling (2), for ¢ > 0,as a Banach space. This
manner to treat the qualitative problems has been used by many authors;
through the interesting results obtained last years, we mention [10].

In the present paper we give an existence theorem for the problem (1),
(2), by using a guiding function, adequate to this problem.

2 General hypothesis

We begin this section with the notations and general hypotheses.

Denote by (-,-) the inner product in IR™ and by |-| the euclidean norm
determined by this.

Let f: IR x RV — IR" be a continuous function and ¢ : R — IR be a
function of class C'' with the property that

inf{g(t), te R} > 1.

Obviously, one can consider that the minimum of the function g on IR
is an arbitrary number a > 0, but the case a = 1 does not constitute a
restriction.
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Let us consider a continuous function V : IR — IR which satisfies the

following conditions:
Vi) lim V (z) = oc;

|| —o0
V3) Vis of class C'! on the set {x, |z| > r}, wherer > 01is a real number.
Set
Vo= sup{V (2, |al <7}

By condition V) it results
@) k>r, V(z) >V, |z| >k (3)

Denote by (div V) (z) the divergence of V' in x; the divergence is defined
for |x| > 7.

Definition 1. We call a guiding function for (1) along the function g,
the following expression:

Vo (z,t) := ((div V) (¢ () ), g () x + gf (t,2)), (4)

where g denoted the differential of g with respect to t.
An easy calculus shows us that if x (-) is solution for (1), then

d

Vo (t),t) = 2 V(g(t)z(?)), (5)

for every t for which |z (¢)| > r. Remark that if |« (¢)| > r, then |g () (¢)| >
r and so the equality (4) has sense.
Consider the space

C.:= {x R —>RY, continuous}
endowed with the family of seminorms

al, = sup {lz()[}, n> 1.

n
te[—n,n]

The topology determined by this family of seminorms is the topology of
uniform convergence on each compact of IR. Recall that the compactity in
C. is characterized by the Ascoli-Arzela theorem; more precisely, a family
of functions from C, is relatively compact if and only if it is equi-continuous
and uniformly bounded on each compact of IR.
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3 The main result

The main result of this note is contained in the following theorem.
Theorem 1. Suppose that

Vo(t,x) <0, teR, |z]>r. (6)

Then, the equation (1) admits at least one solution fulfilling the condition

1
k-——, teR. (7)
g(t)
Proof. The proof is partially inspired by the work [1].
Let tp € IR be arbitrary and let z (-) be a solution of the equation (1)
satisfying

—

~~
S~—
IA

z (tg) = 0. (8)
The mapping t — |g () z (t)| being continuous, it follows that
(3) t1 > to, \g(t):c(t)\ <r<k, te [to,tl). (9)

If t{ = 400, then

1
k-——, t € lty,+00 10
5 1€ lto+oo) (10)
and the inequality (10) assures us that the solution z (-) is defined on the
whole interval [tg, 00).
If t; < oo, then denoting by T the right extremity of the maximal interval
of existence of the solution x (-), we have

—~
~
==
VAN

lim |z ()] = +o0
t /T

and therefore,

li = +o0.
tl/n%!g(t)x(t)\ +00

Hence, there exists 7 € [tg,T), such that

g (T)a ()] <.

Set
to :=sup {7 € [to,T), lg(W)z ()| <r, t € [to,T)}.
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It follows that

lg (@) z ()| <r <k, té€lto,t2), (11)
g (t2) z (t2)| = (12)

So,
V(g (t2)z (t2)) < V. (13)

We want to prove that
90z ()] < K t € [f0,T). (14)
Let us admit, by means of contradiction, that (14) does not hold. Then,

(3) t3 > ta, |g(t3)z (t3)] > k. (15)
By (11) and (15) it results that there exists t4 > to, such that
g (ta) 2 (09)] = & (10
and
r<lgt)x(t)| <k, teltsts. (17)
By hypothesis (6) we get

d
V@) <0, teftat
and therefore the function V (g (t) x (t)) is decreasing on [ta,%4]; from (3),

(13), (16), it follows that

Vo < V(g (ta)z (ta)) <V (g (t2) x (t2)) < Vo.

The obtained contradiction proves that the inequality (14) is true; but,
then it follows that T = 400 since else we have

lim |z (t)| = +o0.
t T
We obtain that for each ¢y € IR, there exists a solution z () of the
equation (1) which fulfills the initial condition x (t¢) = 0 and for which we
have )
PO <k —— >t (18)
g(t)
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In particular, we take tg = —n and denote by x,, () the solution of the
equation (1), fulfilling the conditions

ZTp (—n) =0, |z, (t)] <k- ok t>—n. (19)

Prolong at left of —n the solution x,, (), by setting
Tn (—t) =0, t < —n.

We get a sequence (x,,),, C C., which is relatively compact.
Indeed, let [—a,a] C IR be a compact arbitrary and let n > a; we have
then

|z, (1) < k ﬁgk,te[—a,a], n>a. (20)
Set
M (a) :=sup{|f (t,z)|, t € [-a,a], |z] <k}.
Since

In (t) = f(t,zn (1)), t € [—a,a], (21)
it results that

|zn (') — 20 ()| < M (a)|t' =t"|, n>a, t', t" € [—a,aq].

The sequence z, (-) is relatively compact on [—a,a] and since a is ar-
bitrary, x, () is relatively compact in C.. One can suppose without loss of
generality that x,, (-) converges in C. at z (-). But then, by (24), it follows
that x (-) is solution for (1) on every compact of IR, so on IR. On the other
hand, from (20) it results that

PO <k~ 1€ [a 22)
()| <k -—, —a,a
g(t)

and since a is arbitrary, it results that

!w(t)lﬁhm,

which ends the proof. O

teRR, (23)

EJQTDE, 2003 No. 13, p. 6



4 Final remarks

For g = 1, the condition (6) becomes
(div V) (2), f (t2)) <0, t € R,[a] > 7, (24)

which deals us to a known result of Krasnoselskii, regarding the bounded
solutions (see [14] or [17], Lemma 7).
One of the easiest choice for the function V is

V() = [z
in this case the condition (6) is satisfied if
2§ (1) + g (8) (x, f (t,2)) <0, t € R, |z] > 7. (25)

Remark that the same condition is obtained if we take
N
Viz)= Z z7
i=1

Setting g (t) = 1 + t2, the condition (24) becomes
(z, f (t,2)) % + 2t [2* + (@, f (t,2)) < 0.

This last inequality will be fulfilled if

(f (t,),2) < —|a. (26)
For example, if f = (fi),c7% and f; (t,2) = ¢; (t,2) 2 + 5 (¢, 2), where

pi (t,z) < =1, 29 (t,z) <0,
then (26) is fulfilled.

Remark that, by writing (26) under the form

(f(t,z) +2,2) <0,

we obtain (24), where V (z) = |z| and instead of f is f (¢,x) + x; in this
way, the condition (26) ensures the existence of a bounded solution for the
equation

t=x+ f(tx).

Another possible choice for g is
242
c°t
g(t) = exp (—2 ) ,

(@, f(t,2)) < =t

when (25) becomes
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