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Abstract

Let f : IR×IRN → IRN be a continuous function and let h : IR → IR
be a continuous and strictly positive function. A sufficient condition
such that the equation ẋ = f (t, x) admits solutions x : IR → IRN

satisfying the inequality |x (t)| ≤ k ·h (t) , t ∈ IR, k > 0, where |·| is the
euclidean norm in IRN , is given. The proof of this result is based on
the use of a special function of Lyapunov type, which is often called
guiding function. In the particular case h ≡ 1, one obtains known
results regarding the existence of bounded solutions.
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1 Introduction

Let f : IR×IRN → IRN be a continuous function. Within the problem of the
existence of bounded solutions (and in particularly of periodic solutions) for
the equation

ẋ = f (t, x) , (1)

the method of guiding functions is very productive.
The guiding functions, which is fact are functions of Lyapunov type, have

been introduced in [14] and then generalized and used in diverse ways (see
e.g. [16] , [17]). These cited works contain rich bibliographical informations
in this field. The use of Lyapunov functions in the study of certain quali-
tative properties of solutions constitutes the object of numerous interesting
works; in this direction we mention the ones of T.A. Burton (see e.g. [10] ,
[11] , [12]).
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The classical guiding functions can not be used in general, in the study
of some properties of solutions, more complicated than the ones of bound-
edness. Such a behavior of a solution x (·) of the equation (1) could be for
example the existence of finite limits of this at +∞ or −∞., limits denoted
x (±∞) (i.e. x (±∞) := lim

t→±∞
x (t)).

This type of behavior has been recently considered in the notes [1] −
[8] and it is closely related to the existence of heteroclinic and homoclinic
solutions. Indeed, in the case of an autonomous system ẋ = f (x), each
solution x (·) for which there exist x (±∞) is a heteroclinic solution and a
solution x (·) for which x (+∞) = x (−∞) is a homoclinic solution. In fact,
some authors (see e.g. [1] , [9]) named the solutions x (·) for which x (+∞) =
x (−∞) = 0 homoclinic. We shall call such a solution evanescent.

A way to establish the fact that a solution x (·) is evanescent is to prove
that x (·) satisfies a inequality of type

|x (t)| ≤ k · h (t) , t ∈ IR, (2)

where h : IR → IR is a continuous function with h (±∞) = 0.
The idea to use estimations of type (2) for qualitative informations for

the solutions of the equation (1) , belongs to C. Corduneanu (see [13]), which
has started from some classical results of Perron. Corduneanu organizes the
set of continuous functions fulfilling (2) , for t ≥ 0, as a Banach space. This
manner to treat the qualitative problems has been used by many authors;
through the interesting results obtained last years, we mention [10] .

In the present paper we give an existence theorem for the problem (1) ,
(2), by using a guiding function, adequate to this problem.

2 General hypothesis

We begin this section with the notations and general hypotheses.
Denote by 〈·, ·〉 the inner product in IRN and by |·| the euclidean norm

determined by this.
Let f : IR × IRN → IRN be a continuous function and g : IR → IR be a

function of class C1 with the property that

inf {g (t) , t ∈ IR} ≥ 1.

Obviously, one can consider that the minimum of the function g on IR
is an arbitrary number a > 0, but the case a = 1 does not constitute a
restriction.
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Let us consider a continuous function V : IRN → IR which satisfies the
following conditions:

V1) lim
|x|→∞

V (x) = ∞;

V2) V is of class C1 on the set {x, |x| ≥ r}, where r > 0 is a real number.
Set

V0 := sup {V (x) , |x| ≤ r} .

By condition V1) it results

(∃) k ≥ r, V (x) > V0, |x| ≥ k. (3)

Denote by (div V ) (x) the divergence of V in x; the divergence is defined
for |x| > r.

Definition 1. We call a guiding function for (1) along the function g,
the following expression:

Vg (x, t) := 〈(div V ) (g (t)x) , ġ (t)x+ gf (t, x)〉 , (4)

where ġ denoted the differential of g with respect to t.
An easy calculus shows us that if x (·) is solution for (1), then

Vg (x (t) , t) =
d

dt
V (g (t)x (t)) , (5)

for every t for which |x (t)| ≥ r. Remark that if |x (t)| ≥ r, then |g (t)x (t)| ≥
r and so the equality (4) has sense.

Consider the space

Cc :=
{

x : IR → IRN , x continuous
}

endowed with the family of seminorms

|x|n := sup
t∈[−n,n]

{|x (t)|} , n ≥ 1.

The topology determined by this family of seminorms is the topology of
uniform convergence on each compact of IR. Recall that the compactity in
Cc is characterized by the Ascoli-Arzelà theorem; more precisely, a family
of functions from Cc is relatively compact if and only if it is equi-continuous
and uniformly bounded on each compact of IR.
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3 The main result

The main result of this note is contained in the following theorem.
Theorem 1. Suppose that

Vg (t, x) ≤ 0, t ∈ IR, |x| ≥ r. (6)

Then, the equation (1) admits at least one solution fulfilling the condition

|x (t)| ≤ k ·
1

g (t)
, t ∈ IR. (7)

Proof. The proof is partially inspired by the work [1] .
Let t0 ∈ IR be arbitrary and let x (·) be a solution of the equation (1)

satisfying
x (t0) = 0. (8)

The mapping t→ |g (t)x (t)| being continuous, it follows that

(∃) t1 > t0, |g (t)x (t)| < r ≤ k, t ∈ [t0, t1). (9)

If t1 = +∞, then

|x (t)| ≤ k ·
1

g (t)
, t ∈ [t0,+∞) (10)

and the inequality (10) assures us that the solution x (·) is defined on the
whole interval [t0,∞).

If t1 <∞, then denoting by T the right extremity of the maximal interval
of existence of the solution x (·), we have

lim
t↗T

|x (t)| = +∞

and therefore,
lim
t↗T

|g (t) x (t)| = +∞.

Hence, there exists τ ∈ [t0, T ), such that

|g (τ)x (τ)| ≤ r.

Set
t2 := sup {τ ∈ [t0, T ), |g (t)x (t)| ≤ r, t ∈ [t0, τ)} .
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It follows that

|g (t) x (t)| ≤ r < k, t ∈ [t0, t2), (11)

|g (t2)x (t2)| = r. (12)

So,
V (g (t2)x (t2)) ≤ V0. (13)

We want to prove that

|g (t)x (t)| ≤ k, t ∈ [t0, T ). (14)

Let us admit, by means of contradiction, that (14) does not hold. Then,

(∃) t3 > t2, |g (t3)x (t3)| > k. (15)

By (11) and (15) it results that there exists t4 > t0, such that

|g (t4) x (t4)| = k (16)

and
r < |g (t)x (t)| < k, t ∈ [t2, t4] . (17)

By hypothesis (6) we get

d

dt
V (g (t)x (t)) ≤ 0, t ∈ [t2, t4]

and therefore the function V (g (t)x (t)) is decreasing on [t2, t4] ; from (3) ,
(13) , (16), it follows that

V0 < V (g (t4)x (t4)) ≤ V (g (t2)x (t2)) ≤ V0.

The obtained contradiction proves that the inequality (14) is true; but,
then it follows that T = +∞ since else we have

lim
t↗T

|x (t)| = +∞.

We obtain that for each t0 ∈ IR, there exists a solution x (·) of the
equation (1) which fulfills the initial condition x (t0) = 0 and for which we
have

|x (t)| ≤ k ·
1

g (t)
, t ≥ t0. (18)
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In particular, we take t0 = −n and denote by xn (·) the solution of the
equation (1), fulfilling the conditions

xn (−n) = 0, |xn (t)| ≤ k ·
1

g (t)
, t ≥ −n. (19)

Prolong at left of −n the solution xn (·), by setting

xn (−t) = 0, t ≤ −n.

We get a sequence (xn)n ⊂ Cc, which is relatively compact.
Indeed, let [−a, a] ⊂ IR be a compact arbitrary and let n ≥ a; we have

then

|xn (t)| ≤ k ·
1

g (t)
≤ k, t ∈ [−a, a] , n ≥ a. (20)

Set
M (a) := sup {|f (t, x)| , t ∈ [−a, a] , |x| ≤ k} .

Since
ẋn (t) = f (t, xn (t)) , t ∈ [−a, a] , (21)

it results that

∣

∣xn

(

t′
)

− xn

(

t′′
)
∣

∣ ≤M (a)
∣

∣t′ − t′′
∣

∣ , n ≥ a, t′, t′′ ∈ [−a, a] .

The sequence xn (·) is relatively compact on [−a, a] and since a is ar-
bitrary, xn (·) is relatively compact in Cc. One can suppose without loss of
generality that xn (·) converges in Cc at x (·) . But then, by (24), it follows
that x (·) is solution for (1) on every compact of IR, so on IR. On the other
hand, from (20) it results that

|x (t)| ≤ k ·
1

g (t)
, t ∈ [−a, a] (22)

and since a is arbitrary, it results that

|x (t)| ≤ k ·
1

g (t)
, t ∈ IR, (23)

which ends the proof. 2
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4 Final remarks

For g ≡ 1, the condition (6) becomes

〈(div V ) (x) , f (t, x)〉 ≤ 0, t ∈ IR, |x| ≥ r, (24)

which deals us to a known result of Krasnoselskii, regarding the bounded
solutions (see [14] or [17] , Lemma 7).

One of the easiest choice for the function V is

V (x) = |x| ;

in this case the condition (6) is satisfied if

|x|2 ġ (t) + g (t) 〈x, f (t, x)〉 ≤ 0, t ∈ IR, |x| ≥ r. (25)

Remark that the same condition is obtained if we take

V (x) =
N
∑

i=1

x2
i .

Setting g (t) = 1 + t2, the condition (24) becomes

〈x, f (t, x)〉 t2 + 2t |x|2 + 〈x, f (t, x)〉 ≤ 0.

This last inequality will be fulfilled if

〈f (t, x) , x〉 ≤ − |x|2 . (26)

For example, if f = (fi)i∈1,N
and fi (t, x) = ϕi (t, x) xi + ψi (t, x), where

ϕi (t, x) ≤ −1, xiψi (t, x) ≤ 0,

then (26) is fulfilled.
Remark that, by writing (26) under the form

〈f (t, x) + x, x〉 ≤ 0,

we obtain (24), where V (x) = |x| and instead of f is f (t, x) + x; in this
way, the condition (26) ensures the existence of a bounded solution for the
equation

ẋ = x+ f (t, x) .

Another possible choice for g is

g (t) = exp

(

c2t2

2

)

,

when (25) becomes
〈x, f (t, x)〉 ≤ −c2t |x|2 .
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