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1. Introduction

The existence of periodic solutions for fourth-order nonlinear differential equations have

been widely investigated and are still being investigated due to their applications in many

fields such as nonlinear oscillations[1-2], fluid mechanical and nonlinear elastic mechanical

phenomena [3-8]. Recently, C. Bereanu [9], C. Zhao et al. [10] and Q. Fan et al. [11]

discussed the existence of T -periodic solutions of fourth-order nonlinear differential equation

of the type

u
′′′′

(t) + au
′′′

(t) − pu
′′

(t) + qu′(t) − g(t, u(t)) = e(t) (1.1)

where a, p, q ∈ R, g : R2 → R is continuous, T -periodic in t, f : R → R is continuous, and

e : R → R is a continuous T -periodic function.

Moreover, the authors in [9−11] also provided some sufficient conditions for the exis-

tence of T -periodic solutions of equation (1.1), which generalized and improved the known

results in references [1, 4, 6, 7]. However, to the best of our knowledge, most authors of

the bibliographies listed above only consider the existence of periodic solutions of equation

(1.1), and there exist few results for the existence and uniqueness of periodic solutions of this

equation. Thus, in this case, it is worth to study the problem of existence and uniqueness of

periodic solutions of fourth-order nonlinear differential equation (1.1).

The purpose of this article is to investigate the existence and uniqueness of T -periodic

solutions of (1.1). By using some inequality techniques and Mawhin’s continuation theorem,

we establish some sufficient conditions for the existence and uniqueness of T -periodic solutions

of (1.1). Moreover, two illustrative examples are given in Section 4.

2. Preliminary Results

Let us introduce some notations. For m ∈ N, we denote by Cm
T the Banach space

Cm
T = {u ∈ Cm(R,R) : u(t) = u(t + T ) for all t ∈ R}

endowed with the norm

‖u‖(m) =
m∑

k=0

‖u(k)‖∞ (u ∈ Cm
T ),

EJQTDE, 2012 No. 69, p. 2



where, for a function v ∈ C0
T , we have that

‖v‖∞ = max
[0,T ]

|v|.

For x ∈ C0
T , we will denote

|x|p = (

∫ T

0
|x(t)|pdt)

1

p (p > 0).

Now, let f̃ : R5 → R be a continuous function, T -periodic with respect to the first variable

and consider the fourth-order differential equation

u
′′′′

= f̃(t, u, u
′

, u
′′

, u
′′′

). (2.1)

Lemma 2.1(see [12]) Assume that the following conditions hold.

(i) There exists ρ > 0 such that, for each λ ∈ (0, 1], one has that any possible T -periodic

solution u of the problem

u
′′′′

= λf̃(t, u, u
′

, u
′′

, u
′′′

)

satisfies the a priori estimation ‖u‖(3) < ρ.

(ii) The continuous function F : R → R defined by

F (x) =

∫ T

0
f̃(t, x, 0, 0, 0)dt (x ∈ R),

satisfies F (−ρ)F (ρ) < 0.

Then, (2.1) has a least one T -periodic solution u such that ‖u‖(3) < ρ.

From Lemma 2.2 in [13] and the proof of inequality (10) in [11, pp 124], we obtain

Lemma 2.2. Let x(t) ∈ C1
T . Suppose that there exists a constant D ≥ 0 such that

|x(τ0)| ≤ D, τ0 ∈ [0, T ]. (2.2)

Then

|x|2 ≤ T

π
|x′|2 +

√
TD, |x|∞ ≤ D +

1

2

√
T (

∫ T

0
|x′

(t)|2dt)1/2. (2.3)

Lemma 2.3. For any u ∈ C2
T one has that

∫ T

0
|u′

(t)|2dt ≤ (
T

2π
)2

∫ T

0
|u′′

(t)|2dt. (2.4)
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Proof. Lemma 2.3 is a direct consequence of the Wirtinger inequality, and see [14,15]

for its proof.

Lemma 2.4.(see [11]) For any u ∈ C4
T one has that

‖u(k)‖∞ ≤ T 3−k(
1

2
)3−(k−1)

∫ T

0
|u′′′′

(t)|dt (k = 1, 2, 3). (2.5)

Lemma 2.5. Assume that that one of the following conditions is satisfied:

(A1) for t, x1, x2 ∈ R,x1 6= x2,

1 + p(
T

2π
)2 > 0, (g(t, x1) − g(t, x2))(x1 − x2) < 0;

(A2) there exists a nonnegative constant B such that 1 > B(T
π )2( T

2π )2, and

1 + p(
T

2π
)2 > B(

T

π
)2(

T

2π
)2, B(x1 − x2)

2 ≥ (g(t, x1) − g(t, x2))(x1 − x2) > 0,

where t, x1, x2 ∈ R,x1 6= x2.

Then (1.1) has at most one T -periodic solution.

Proof. Suppose that u1(t) and u2(t) are two T -periodic solutions of (1.1). Set Z(t) =

u1(t) − u2(t). Then, we obtain

(u1(t) − u2(t))
′′′′

+ a(u1(t) − u2(t))
′′′ − p(u1(t) − u2(t))

′′

+ q(u1(t) − u2(t))
′

−(g(t, u1(t)) − g(t, u2(t))) = 0. (2.6)

Integrating (2.6) from 0 to T , it results that

∫ T

0
(g(t, u1(t)) − g(t, u2(t)))dt = 0,

Therefore, in view of integral mean value theorem, it follows that there exists a constant

γ ∈ [0, T ] such that

g(γ, u1(γ))) − g(γ, u2(γ)) = 0. (2.7)

Since g(t, x) is a strictly monotone function in x, (2.7) implies that

Z(γ) = u1(γ) − u2(γ) = 0. (2.8)
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Then, from (2.3), we have

|Z|2 ≤ T

π
|Z ′|2. (2.9)

Multiplying Z(t) and (2.6) and then integrating it from 0 to T , it follows that

∫ T

0
|Z ′′

(t)|2dt + p

∫ T

0
|Z ′

(t)|2dt =

∫ T

0
Z(t)(g(t, u1(t)) − g(t, u2(t)))dt

=

∫ T

0
(u1(t) − u2(t))(g(t, u1(t)) − g(t, u2(t)))dt. (2.10)

Now suppose that (A1)(or (A2)) holds, we shall consider two cases as follows.

Case (i) If (A1) holds , (2.4) and (2.10) yield that

0 ≤ (1 + p(
T

2π
)2)

∫ T

0
|Z ′′

(t)|2dt

≤
∫ T

0
|Z ′′

(t)|2dt + p

∫ T

0
|Z ′

(t)|2dt

=

∫ T

0
(u1(t) − u2(t))(g(t, u1(t)) − g(t, u2(t)))dt

≤ 0, where p < 0, (2.11)

and

0 ≤
∫ T

0
|Z ′′

(t)|2dt

≤
∫ T

0
|Z ′′

(t)|2dt + p

∫ T

0
|Z ′

(t)|2dt

=

∫ T

0
(u1(t) − u2(t))(g(t, u1(t)) − g(t, u2(t)))dt

≤ 0, where p ≥ 0, (2.12)

which, together with (2.8), implies that

Z(t) ≡ Z ′(t) ≡ Z
′′

(t) ≡ 0, for all t ∈ R.

Hence, equation (1.1) has at most one T -periodic solution.

Case (ii) If (A2) holds, using (2.3), (2.4) and (2.9), we obtain

(1 + p(
T

2π
)2)

∫ T

0
|Z ′′

(t)|2dt ≤
∫ T

0
|Z ′′

(t)|2dt + p

∫ T

0
|Z ′

(t)|2dt

=

∫ T

0
Z(t)(g(t, u1(t)) − g(t, u2(t)))dt
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≤ B

∫ T

0
|Z(t)|2dt

≤ B(
T

π
)2

∫ T

0
|Z ′

(t)|2dt

≤ B(
T

π
)2(

T

2π
)2

∫ T

0
|Z ′′

(t)|2dt, where p < 0, (2.13)

and
∫ T

0
|Z ′′

(t)|2dt ≤
∫ T

0
|Z ′′

(t)|2dt + p

∫ T

0
|Z ′

(t)|2dt

≤ B(
T

π
)2(

T

2π
)2

∫ T

0
|Z ′′

(t)|2dt, where p ≥ 0, (2.14)

From (2.8) and (A2), (2.13) and (2.14) yield that

Z(t) ≡ Z ′(t) ≡ Z ′′(t) ≡ 0, for all t ∈ R.

Therefore, equation (1.1) has at most one T -periodic solution. The proof of Lemma 2.5 is

now complete.

3. Main Results

Theorem 3.1. Assume that that one of the following conditions is satisfied:

(A1)
∗ Let (A1) hold, and there exists a nonnegative constant d0 such that

(g(t, u) + e(t))u < 0, for all t ∈ R, |u| ≥ d0;

(A2)
∗ There exist nonnegative constants d0 and B such that (A2) holds, and

(g(t, u) + e(t))u > 0, for all t ∈ R, |u| ≥ d0.

Then equation (1.1) has a unique T -periodic solution.

Proof. From Lemma 2.5, together with (A1)
∗(or (A2)

∗), it is easy to see that equation

(1.1) has at most one T -periodic solution. Thus, to prove Theorem 3.1, it suffices to show

that equation (1.1) has at least one T -periodic solution. To do this, we shall use Lemma 2.1

with the nonlinearity f̃ : R5 → R given by

f̃(t, u, v, w, z) = e(t) − az + pw − qv + g(t, u) ((t, u, v, w, z) ∈ R5).
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For λ ∈ (0, 1], we consider the fourth-order differential equation

u
′′′′

(t) + λau
′′′

(t) − λpu
′′

(t) + λqu′(t) − λg(t, u(t)) = λe(t). (3.1)

Let us show that (i) in Lemma 2.1 is satisfied, that means, there exists ρ > 0 such that any

possible T -periodic solution u of (3.1) is such that

‖u‖3 < ρ. (3.2)

Let λ ∈ (0, 1] and u be a possible T-periodic solution of (3.1). In what follows Ck denotes a

fixed constant independent of λ and u. Integrating in (3.1) from 0 to T , it results that

∫ T

0
[g(t, u(t)) + e(t)]dt = 0,

which together with (A1)
∗ (or (A2)

∗ ) imply that

∃ξ ∈ [0, T ] : |u(ξ)| < d0.

It follows from (2.3) that

‖u‖∞ ≤ d0 +
1

2

√
T (

∫ T

0
|u′

(t)|2dt)1/2. (3.3)

In view of (2.4), (3.3) implies that

‖u‖∞ ≤ d0 +
T
√

T

4π
(

∫ T

0
|u′′

(t)|2dt)1/2. (3.4)

It follows that

|
∫ T

0
e(t)u(t)dt| ≤ Td0‖e‖∞ +

T 2
√

T

4π
‖e‖∞(

∫ T

0
|u′′

(t)|2dt)1/2, (3.5)

and

|
∫ T

0
g(t, 0)u(t)dt| ≤ Td0‖g(t, 0)‖∞ +

T 2
√

T

4π
‖g(t, 0)‖∞(

∫ T

0
|u′′

(t)|2dt)1/2. (3.6)

On the other hand, multiplying equation (3.1) by u and integrating it from 0 to T , it

follows that

∫ T

0
|u′′

(t)|2dt + λp

∫ T

0
|u′

(t)|2dt = λ

∫ T

0
u(t)g(t, u(t))dt + λ

∫ T

0
e(t)u(t)dt (3.7)

Now suppose that (A1)
∗(or (A2)

∗) holds, we shall consider two cases as follows.
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Case (1) If (A1)
∗ holds, using (2.4), (3.5), (3.6) and (3.7), we have

(1 + p(
T

2π
)2)

∫ T

0
|u′′

(t)|2dt

≤
∫ T

0
|u′′

(t)|2dt + λp

∫ T

0
|u′

(t)|2dt

≤ λ

∫ T

0
(u(t) − 0)(g(t, u(t)) − g(t, 0))dt + λ

∫ T

0
u(t)g(t, 0)dt

+Td0‖e‖∞ +
T 2

√
T

4π
‖e‖∞(

∫ T

0
|u′′

(t)|2dt)1/2

≤ Td0(‖g(t, 0)‖∞ + ‖e‖∞)

+
T 2

√
T

4π
(‖g(t, 0)‖∞ + ‖e‖∞)(

∫ T

0
|u′′

(t)|2dt)1/2, where p < 0,

and

∫ T

0
|u′′

(t)|2dt ≤
∫ T

0
|u′′

(t)|2dt + λp

∫ T

0
|u′

(t)|2dt

≤ Td0(‖g(t, 0)‖∞ + ‖e‖∞)

+
T 2

√
T

4π
(‖g(t, 0)‖∞ + ‖e‖∞)(

∫ T

0
|u′′

(t)|2dt)1/2, where p ≥ 0,

which imply that there exists a positive constant C1 satisfying

∫ T

0
|u′′

(t)|2dt ≤ C1 and

∫ T

0
|u′′

(t)|dt ≤
√

TC1 (3.8)

Case (2) If (A2)
∗ holds, using (2.3), (2.4), (3.5), (3.6) and (3.7), we obtain

(1 + p(
T

2π
)2)

∫ T

0
|u′′

(t)|2dt

≤
∫ T

0
|u′′

(t)|2dt + λp

∫ T

0
|u′

(t)|2dt

≤ λ

∫ T

0
(u(t) − 0)(g(t, u(t)) − g(t, 0))dt + λ

∫ T

0
u(t)g(t, 0)dt

+Td0‖e‖∞ +
T 2

√
T

4π
‖e‖∞(

∫ T

0
|u′′

(t)|2dt)1/2

≤ B|u|22 + Td0(‖g(t, 0)‖∞ + ‖e‖∞)

+
T 2

√
T

4π
(‖g(t, 0)‖∞ + ‖e‖∞)(

∫ T

0
|u′′

(t)|2dt)1/2

≤ B(
T

π
|u′|2 +

√
Td0)

2

+Td0(‖g(t, 0)‖∞ + ‖e‖∞) +
T 2

√
T

4π
(‖g(t, 0)‖∞ + ‖e‖∞)(

∫ T

0
|u′′

(t)|2dt)1/2
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≤ B(
T

π

T

2π
|u′′|2 +

√
Td0)

2 + Td0(‖g(t, 0)‖∞ + ‖e‖∞)

+
T 2

√
T

4π
(‖g(t, 0)‖∞ + ‖e‖∞)(

∫ T

0
|u′′

(t)|2dt)1/2, where p < 0,

and

∫ T

0
|u′′

(t)|2dt ≤
∫ T

0
|u′′

(t)|2dt + λp

∫ T

0
|u′

(t)|2dt

≤ B(
T

π

T

2π
|u′′|2 +

√
Td0)

2 + Td0(‖g(t, 0)‖∞ + ‖e‖∞)

+
T 2

√
T

4π
(‖g(t, 0)‖∞ + ‖e‖∞)(

∫ T

0
|u′′

(t)|2dt)1/2, where p ≥ 0,

which, together with 1 + p( T
2π )2 > B(T

π )2( T
2π )2 and 1 > B(T

π )2( T
2π )2, yield that (3.8) holds.

Using (3.4) and (3.8) it follows that there exists C2 such that

‖u‖∞ ≤ C2 (3.9)

If a = 0, using (3.1), (3.8) and (3.9) it follows that there exists C3 such that

∫ T

0
|u′′′′

(t)|dt ≤ C3, (3.10)

which together with (2.5) and (3.9) implies the existence of a constant ρ > d0 such that (3.2)

holds.

If a 6= 0, multiplying equation (3.1) by u′′′ and integrating it from 0 to T , it follows that

|a|
∫ T

0
|u′′′

(t)|2dt ≤ |q|
∫ T

0
|u′

(t)||u′′′

(t)|dt

+ sup
|u|≤C2,t∈R

|g(t, u)|
∫ T

0
|u′′′

(t)|dt + |e|∞
∫ T

0
|u′′′

(t)|dt

≤ |q|(
∫ T

0
|u′

(t)|2dt)
1

2 (

∫ T

0
|u′′′

(t)|2dt)
1

2

+( sup
|u|≤C2,t∈R

|g(t, u)| + |e|∞)(

∫ T

0
|u′′′

(t)|2dt)
1

2 (

∫ T

0
1dt)

1

2

≤ (|q| T

2π

√
C1 +

√
T sup

|u|≤C2,t∈R
|g(t, u)| +

√
T |e|∞)(

∫ T

0
|u′′′

(t)|2dt)
1

2 ,

which yields that there exists a positive constant C4 satisfying

∫ T

0
|u′′′

(t)|2dt ≤ C4 and

∫ T

0
|u′′′

(t)|dt ≤
√

TC4 (3.11)
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Then, we can also show that (3.10) hold. This implies the existence of a constant ρ > d0

such that (3.2) holds.

Now, to show that (ii) in Lemma 2.1 is satisfied, it suffices to remark that

F (x) =

∫ T

0
[g(t, x) + e(t)]dt (x ∈ R).

Hence, from (A1)
∗(or (A2)

∗) and ρ > d0 it results that F (−ρ)F (ρ) < 0. Then, using Lemma

2.1 it follows that equation (3.1) has at least one T -periodic solution u satisfying (3.2). This

completes the proof.

Theorem 3.2. Suppose that
∫ T
0 e(t)dt = 0. Assume that that one of the following

conditions is satisfied:

(A1)
∗∗ Let (A1) hold. Moreover, for any continuous T - periodic function u we have

∫ T

0
g(t, u(t))dt < 0 if min

R

u ≥ d0,

and ∫ T

0
g(t, u(t))dt > 0 if max

R

u ≤ −d0;

(A2)
∗∗ Let (A2) hold. Moreover, for any continuous T - periodic function u we have

∫ T

0
g(t, u(t))dt > 0 if min

R

u ≥ d0,

and ∫ T

0
g(t, u(t))dt < 0 if max

R

u ≤ −d0.

Then equation (1.1) has a unique T -periodic solution.

Proof. Integrating in (3.1) from 0 to T , it results that

∫ T

0
g(t, u(t))dt = 0,

which together with (A1)
∗∗ (or (A2)

∗∗ ) imply that

∃ξ ∈ [0, T ] : |u(ξ)| < d0.

Now the proof proceeds in the same way as in Theorem 3.1.
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4. Examples and Remarks

Example 4.1 Let a, b, c : R → R be two continuous, strictly positive and T -periodic

function and e : R → R be continuous, T -periodic. Then the fourth-order differential equation

u
′′′′

(t) + 200u
′′′

(t) + (
1.5π

T
)2u

′′

(t) + 500u′(t) + a(t)u(t) + b(t)u3(t) + c(t)u5(t) = e(t)

has a unique T -periodic solution. For the proof, it suffice to remark that the function g(t, u) ≡
−a(t)u − b(t)u3 − c(t)u5 satisfies

(g(t, u) + e(t))u < 0, for all t ∈ R, |u| ≥ d0,

where d0 ∈ R is sufficiently large. Hence, p = −(1.5π
T )2 and g satisfy (A1)

∗ and the result

follows from Theorem 3.1.

Example 4.2 Let β : R → R be continuous, strictly positive and T -periodic, and

e : R → R be continuous, T -periodic with
∫ T
0 e(t)dt = 0. If ‖β‖∞ < 1, then the fourth-order

differential equations

u
′′′′

(t) + 1200u
′′′

(t) + (
1.5π

T
)2u

′′

(t) + 100u′(t) − 5

16

1

1 + (T
π )2( T

2π )2
β(t)u(t) = e(t)

has a unique T -periodic solution. For the proof, it suffice to remark that the function g(t, u) ≡
(1 − (1.5π

T )2)β(t)u(t) with B = 5
16

1
1+(T

π
)2( T

2π
)2

and p = −(1.5π
T )2 satisfy 1 > B(T

π )2( T
2π )2, and

1 + p(T/2π)2 > B(
T

π
)2(

T

2π
)2, B(x1 − x2)

2 ≥ (g(t, x1) − g(t, x2))(x1 − x2) > 0,

where t, x1, x2 ∈ R,x1 6= x2. Hence, (4.2) satisfies (A2)
∗∗ and the result follows from Theorem

3.2.

Remark 4.1. Obviously, the authors in [9−11] only consider the existence of periodic

solutions of fourth-order nonlinear differential equation. Hence, the results obtained in [9−11]

and the references cited therein are not applicable to Examples 4.1-4.2.
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