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ANTI-PERIODIC PROBLEMS FOR SEMILINEAR PARTIAL NEUTRAL

EVOLUTION EQUATIONS†

RONG-NIAN WANG‡, DE-HAN CHEN

Abstract. We study the anti-periodic problem for the semilinear partial neutral evolution

equation in the form

d

dt
[u(t) + h(t, u(t))] + Au(t) = f(t, u(t)), t ∈ R

in a Banach space X, where h, f are given X-valued functions, and −A : D(A) ⊆ X → X is

the infinitesimal generator of a compact analytic semigroup. Some new theorems concerning

the existence of anti-periodic mild solutions for the problem are established. The theorems

formulated are essential extensions of those given previously for the anti-periodic problems for

evolution equations in Banach spaces. The main tools in our study are the analytic semigroup

theory of linear operators, fractional powers of closed operators, and a fixed point theorem

due to Krasnoselkii. Furthermore, we provide an illustrative example to justify the practical

usefulness of the obtained abstract results.

1. Introduction

Anti-periodic problems arise from the mathematical models of various process and phenomena

in physics. As in [1], the mathematical modelling of the electron beam focusing system in

travelling-wave tube’s theories can be cast into an anti-periodic problem. For a comprehensive

exposition of further examples illustrating the outstanding importance of this class of problems

in applications, we refer the readers to [2–4] and the references therein.

Anti-periodic problems represented by linear and nonlinear abstract evolution equations have

been extensively studied up to now, especially since the work of Okochi [5] in 1988 (see also

[6, 7]). Here, we mention some references, but not a list of all references is included. Following

Okochi’s work, Haraux [8] proved the existence of anti-periodic solutions for nonlinear first order

evolution equations in Hilbert spaces by using Brouwer’s or Schauder’s fixed point theorem.

Aftabizadeh et al. [9] and Aizicovici et al. [10] considered the anti-periodic solutions for second

order evolution equations in Hilbert and Banach spaces by utilizing monotone and accretive

operator theory (see also [11, 12] for nonmonotone cases). In particular, making use of the

maximal monotone property of the derivative operator with anti-periodic conditions and the

theory of pseudomonotone perturbations of maximal monotone mappings, Liu [13] recently

studied the anti-periodic problem for nonlinear abstract differential equation with nonmonotone

perturbation of form






du(t)

dt
+Au(t) +Gu(t) = f(t), a.e. t ∈ (0, T ),

u(T ) = −u(0)
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in a real reflexive Banach space V , where T > 0, and A is monotone and G is not; Q. Liu [14]

recently dealed with the existence of the anti-periodic mild solutions to the semilinear abstract

differential equation in the form






du(t)

dt
+Au(t) = f(t, u(t)), t ∈ R,

u(t+ T ) = −u(t), t ∈ R,

where R stands for the set of real numbers and A is the generator of a hyperbolic C0-semigroup.

From [2,15,16] and the references therein, one can find more results about anti-periodic problems

for abstract evolution equations.

However, to the best of our knowledge, the existence of anti-periodic solutions for neutral

evolution equation is still a untreated topic in the literature. Moreover, as indicated in [15], the

existence of anti-periodic solutions plays a key role in characterizing the behavior of linear and

nonlinear differential equations. Inspired by these, in the present paper we study the existence

of T -anti-periodic mild solutions to the following semilinear partial neutral evolution equation

d

dt
[u(t) + h(t, u(t))] +Au(t) = f(t, u(t)), t ∈ R, (1.1)

subject to anti-periodic condition

u(t+ T ) = −u(t), t ∈ R, (1.2)

where −A : D(A) ⊆ X → X is the infinitesimal generator of a compact analytic semigroup

(S(t))t≥0 on a Banach space X and h, f are given X-valued functions to be specified later. As

can be seen, “u(t+ T ) = −u(t) (t ∈ R)” constitutes an anti-periodic condition.

It is worth mentioning that neutral evolution equations arise in many areas of applied math-

ematics and have, in some cases, better effects in applications than evolution equations without

neutral item (cf. [17–19]). For instance, Wu and Xia [18] proposed and studied a system of

partial neutral evolution equations defined on the unit circle S, which models a continuous

circular array of resistively coupled transmission lines with mixed initial boundary conditions.

That is why those equations have been objects of investigation with increasing interest dur-

ing the past decades. The literature relative to neutral evolution equations is quite extensive;

see, for instance, Hale [17] for ordinary neutral evolution equations, Adimy and Ezzinbi [20],

Hernández [21], Hernández and Henriquez [22], Wu [23], and Wu and Xia [18, 19] for partial

neutral evolution equations, and dos Santos and Cuevas [24] for fractional neutral evolution

equations.

We would like to note that in the recent papers such as Agarwal et al. [25], Diagana et al.

[26–28], Ezzinbi et al. [29], and N’Guerekata [30], the problem of the existence of almost periodic,

asymptotically almost periodic, pseudo almost periodic, almost automorphic, and asymptotically

almost automorphic solutions for partial neutral evolution equations has been investigated to a

large extent. As to the study of related issues on neutral integral equations, we refer readers to

Ait Dads and Ezzinbi [31], Burton and Furumochi [32], Ding et al. [33] and references therein.

Our object in this paper is to give some new results concerning the existence of anti-periodic

mild solutions to the problem (1.1)-(1.2). The theorems formulated are essential extensions of

those given previously for the anti-periodic problems for evolution equations in Banach spaces.

As the reader will see, the hypotheses in our theorems are reasonably weak, the proofs provided

are concise, and the methods used in this paper can also be applied to deal with the existence

of periodic mild solutions for the semilinear partial neutral evolution equation with periodic
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condition (see Remark 3.3). The main tools in our study are the analytic semigroup theory,

fractional powers of closed operators, and fixed point theorems due to Banach and Krasnoselkii.

An application to partial differential equation with homogeneous Dirichlet boundary condition

and anti-periodic condition is also presented.

Remark 1.1. The constant function has the interesting property of being periodic with any

period T and anti-periodic with any anti-period T for all nonzero real numbers T .

Remark 1.2. It can be easily shown that if u is anti-periodic with period T , then it is periodic

with period 2T . Hence, from the arguments of our paper, we can also obtain the existence results

of periodic solutions of the problem (1.1)− (1.2). But if u is periodic with period 2T , u may or

may not be anti-periodic with period T .

Remark 1.3. As in [34], under certain conditions, the existence result is valid for the case of

anti-periodic solutions, while there is no such a result in the periodic case. It is also noted that

in dealing with the existence of certain problems, there is an essential difference between the

periodic solutions and anti-periodic solutions (see [35] for more details).

This work is organized as follows. In Section 2, we introduce some notions, definitions,

hypotheses, and preliminary facts that are needed in the sequel. In Section 3, we present our

main results and their proofs. An example in Section 4 is given to illustrate our abstract results.

2. Preliminaries and Notations

This section is devoted to some preliminary results needed in what follows.

Throughout this paper, X is assumed to be a Banach space with norm ‖ · ‖, L (X) stands

for the Banach space of all bounded linear operators from X to X equipped with its natural

topology, C([0, T ];X) stands for the Banach space of all continuous functions from [0, T ] into

X with the uniform norm topology

|u|0 = sup{‖u(t)‖, t ∈ [0, T ]}.
Let −A : D(A) ⊆ X → X be the infinitesimal generator of a compact analytic semigroup

{S(t)}t≥0 on X and 0 ∈ ρ(A) (ρ(A) stands for the resolvent set of A), which implies that

{S(t)}t≥0 is uniformly exponentially stable, i.e., there exist constants ω > 0 and M ≥ 1 such

that

‖S(t)‖
L (X)

≤ Me−ωt for all t ≥ 0, (2.1)

and allows us to define the fractional power Aα for 0 ≤ α < 1, as a closed linear operator on its

domain D(Aα) with inverse A−α. Let Xα denote the Banach space D(Aα) endowed with the

graph norm ‖u‖α = ‖Aαu‖ for u ∈ Xα.

The following are basic properties of Aα.

Proposition 2.1. ( [36], pp. 69-75)).

(a) S(t) : X → Xα for each t > 0, and AαS(t)x = S(t)Aαx for each x ∈ Xα and t ≥ 0.

(b) AαS(t) is bounded on X for every t > 0 and there exists a Mα > 0 such that

‖AαS(t)‖
L (X)

≤ Mα

tα
e−ωt.

(c) A−α is a bounded linear operator in X with D(Aα) = Im(A−α).

(d) If 0 < α1 ≤ α2, then Xα2 →֒ Xα1 .
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We denote by Cb(R;X) the Banach space of all bounded, continuous functions from R to X

equipped with the sup norm

‖u‖
Cb(R;X)

= sup{‖u(t)‖; t ∈ R},

by L(0, T ;X) the Banach space of all Bocher integrable functions from [0, T ] to X equipped

with the norm

‖u‖
L(0,T ;X)

=

∫ T

0
‖u(t)‖dt,

and by Lloc(R;X) the set of all locally Bocher integrable functions from R to X.

A function u ∈ Cb(R;X) is said to be T−anti-periodic if

u(t+ T ) = −u(t) for all t ∈ R.

In the rest of this section, by PTA(R;X), we denote the set of all T−anti-periodic functions

from R to X. It is easy to see that PTA(R;X), equipped with the sup norm, is a Banach space.

Additionally, similar definitions as above also apply to Cb(R;Xα) and PTA(R;Xα).

Definition 2.1. A function u ∈ Cb(R;X) is said to be a mild solution of equation (1.1), if the

function τ → AS(t− τ)h(τ, u(τ)) is integrable on [s, t) for all t > s and it satisfies the following

integral equation

u(t) = S(t− s)
[

u(s) + h(s, u(s))
]

− h(t, u(t)) +

∫ t

s

AS(t− τ)h(τ, u(τ))dτ

+

∫ t

s

S(t− τ)f(τ, u(τ))dτ

for all t > s.

To prove our main results, we introduce the following assumptions. For sake of brevity, put

Br := {x ∈ X; ‖x‖ ≤ r} for some r > 0.

(H1) (i) There exists a β ∈ (0, 1) such that the function h : R×X → Xβ is continuous and

h(t+ T,−u) = −h(t, u) for all t ∈ R, u ∈ X.

(ii) There exist a constant L
h
and a nondecreasing function Ψ : R+ → R

+ such that

‖Aβh(t, u) −Aβh(t, v)‖ ≤ L
h
‖u− v‖,

‖Aβh(t, u)‖ ≤ Ψ(‖u‖)
for all t ∈ R, u, v ∈ X and

lim inf
r→+∞

Ψ(r)

r
= σ1.

(H2) The function f : R×X → X satisfies the following conditions.

(i) f(·, u) is measurable for each u ∈ X and f(t + T,−u) = −f(t, u) for all t ∈ R,

u ∈ X.

(ii) There exists a constant L
f
> 0 such that

‖f(t, u)− f(t, v)‖ ≤ L
f
‖u− v‖

for a.e. t ∈ [0, T ] and all u, v ∈ X.

(H3) (i) The function f : R × X → X is a Carathéodory function, i.e., for every u ∈ X,

f(·, u) is measurable and for a.e. t ∈ R, f(t, ·) is continuous, and f(t+T,−u) = −f(t, u)

for all t ∈ R, u ∈ X.
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(ii) There exists a function Φr(·) ∈ L(0, T ;R+) such that

‖f(t, u)‖ ≤ Φr(t)

for a.e. t ∈ [0, T ] and all u ∈ Br, and

lim inf
r→+∞

∫ T

0 Φr(s)ds

r
= σ2.

The considerations of this paper also need the following result.

Lemma 2.1 (Krasnoselskii′s Fixed Point Theorem). Let E be a Banach space and B be a

bounded closed and convex subset of E, and let F1, F2 be maps of B into E such that F1u+F2v ∈
B for every pair u, v ∈ B. If F1 is a contraction and F2 is completely continuous, then the

equation F1u+ F2u = u has a solution on B.

Lemmas 2.1 is classical, which can be found in many books.

3. Main Results

Before stating the existence theorems of mild solutions, we first prove the following lemmas.

Lemma 3.1. A set D ⊆ PTA(R;X) is relatively compact in PTA(R;X) if D is equicontinuous

and the set D(t) := {u(t);u ∈ D} is relatively compact in X for every t ∈ R.

Proof. Let {un}∞n=1 ⊆ D. One needs to show that {un}∞n=1 is relatively compact in PTA(R;X).

To begin, put, for each n ≥ 1,

un,0(t) := un(t) for t ∈ [0, T ] (the restriction of un to the interval [0, T ]).

Therefore, from our hypotheses it follows that {un,0}∞n=1 is equicontinuous in C([0, T ];X) and for

every t ∈ [0, T ], the set {un,0(t)}∞n=1 is relatively compact in X. From this, we conclude, using

Ascoli-Arzelà theorem, that there exists a subsequence, denoted by {unk ,0}∞k=1, of {un,0}∞n=1 and

u0 ∈ C([0, T ];X) such that

unk,0 → u0 in C([0, T ];X) (as k → ∞). (3.1)

Also, it is not difficult to see that u0(0) = −u0(T ).

Put

u(t) := (−1)mu0(t−mT ) for t ∈ [mT, (m+ 1)T ], m ∈ Z.

Therefore u belongs to PTA(R;X). Moreover, since unk
is T -anti-periodic, we have

unk
(t)− u(t) = (−1)m(unk

(t−mT )− u0(t−mT ))

for t ∈ [mT, (m+ 1)T ] (m ∈ Z). Consequently, from (3.1) it follows that

‖unk
− u‖

Cb(R;X)
≤ sup

m∈Z
‖unk ,0 − u0‖0 → 0 as k → ∞,

which implies that {un}∞n=1 is relatively compact in PTA(R;X). This completes the proof. �

Lemma 3.2. Let 0 ≤ µ < 1. Suppose that g1 ∈ PTA(R;Xµ), g2 ∈ Lloc(R;X), and g2(t+ T ) =

−g2(t) for a.e. t ∈ R. Define

(Φ1g1)(t) := −g1(t) +

∫ t

−∞
AS(t− τ)g1(τ)dτ, t ∈ R,

(Φ2g2)(t) :=

∫ t

−∞
S(t− τ)g2(τ)dτ, t ∈ R.
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Then Φ1g1,Φ2g2 belong to PTA(R;X).

Proof. Since g1 ∈ PTA(R;Xµ), g2 ∈ Lloc(R;X), we see, from (2.1) and Proposition 2.1 (b), that

for any t ∈ R,

‖(Φ1g1)(t)‖ ≤ ‖g1(t)‖+
∥

∥

∥

∫ t

−∞
AS(t− τ)g1(τ)dτ

∥

∥

∥

≤ ‖A−µ‖
L (X)

‖Aµg1(t)‖+
∫ t

−∞
‖A1−µS(t− τ)‖

L (X)
‖Aµg1(τ)‖dτ

≤ ‖A−µ‖
L (X)

‖g1(t)‖µ +M1−µ

∫ t

−∞
(t− τ)µ−1e−ω(t−τ)‖g1(τ)‖µdτ

≤
(

‖A−µ‖
L (X)

+M1−µω
−µΓ(µ)

)

‖g1‖PTA(R;Xµ)
,

where Γ(·) is the Gamma function, and

‖(Φ2g2)(t)‖ ≤
∫ t

−∞
‖S(t− τ)g2(τ)‖dτ

≤ M

∞
∑

k=0

e−kωT

∫ t

t−T

e−ω(t−τ)‖g2(τ)‖dτ

≤ M

1− e−ωT

∫ T

0
‖g2(τ)‖dτ,

which imply that Φ1 and Φ2 are well defined and Φ1g1 and Φ2g2 are bounded. Furthermore, we

observe that for any t, s ∈ R,

‖(Φ1g1)(t)− (Φ1g1)(s)‖ ≤ ‖g1(t)− g1(s)‖+
∫ s

−∞
‖AS(s− τ)(g1(τ + t− s)− g1(τ))‖dτ

≤ ‖A−µ‖
L (X)

‖Aµg1(t)−Aµg1(s)‖
+

∫ s

−∞
‖A1−µS(s− τ)‖

L (X)
‖Aµg1(τ + t− s)−Aµg1(τ)‖dτ

≤ ‖A−µ‖
L (X)

‖g1(t)− g1(s)‖µ
+M1−µ

∫ s

−∞
(s − τ)µ−1e−ω(s−τ)‖g1(τ + t− s)− g1(τ)‖µdτ

≤ ‖A−µ‖
L (X)

‖g1(t)− g2(s)‖µ
+M1−µω

−µΓ(µ) sup
τ∈R

‖g1(τ + t− s)− g1(τ)‖µ,

and

‖(Φ2g2)(t)− (Φ2g2)(s)‖ ≤
∫ s

−∞
‖S(t− τ)(g2(τ + t− s)− g2(τ))‖dτ

≤ M

∫ s

−∞
e−ω(s−τ)‖g2(τ + t− s)− g2(τ)‖dτ

≤ M

1− e−ωT

∫ T

0
‖g2(τ + t− s)− g2(τ)‖dτ,

where Γ(·) denotes the Gamma function. Thus,

‖(Φ1g1)(t)− (Φ1g1)(s)‖ → 0 as t− s → 0,

‖(Φ2g2)(t)− (Φ2g2)(s)‖ → 0 as t− s → 0,

which prove that Φ1g1 and Φ2g2 are continuous.
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To complete the proof of the lemma, we have to show that Φ1g1 and Φ2g2 are T -anti-periodic.

In fact, this can be seen from the observations that for any t ∈ R,

(Φ1g1)(t+ T ) = −g1(t+ T ) +

∫ t+T

−∞
AS(t+ T − τ)g1(τ)dτ

= g1(t) +

∫ t

−∞
AS(t− τ)g1(τ + T )dτ

= g1(t)−
∫ t

−∞
AS(t− τ)g1(τ)dτ

= −(Φ1g1)(t)

and

(Φ2g2)(t+ T ) =

∫ t+T

−∞
S(t+ T − τ)g2(τ)dτ

=

∫ t

−∞
S(t− τ)g2(τ + T )dτ

= −(Φ2g2)(t)

in view of the anti-periodicity of g1 and g2. Consequently, we obtain, by the arguments above,

that Φ1g1,Φ2g2 belong to PTA(R;X). The proof is complete. �

We now return to the problem (1.1)-(1.2). One of our main results in this paper is the

following theorem.

Theorem 3.1. Let (H1) and (H2) hold. Then, there exists a unique T -anti-periodic mild solu-

tion for the problem (1.1)-(1.2), provided that

L
h
‖A−β‖

L (X)
+M1−βLhω

−βΓ(β) +ML
f
ω−1 < 1. (3.2)

Proof. Set, for u ∈ PTA(R;X),

g1(·) := h(·, u(·)), g2(·) := f(·, u(·)).

Then it follows from (H1) (i) and (H2) (i) that the functions g1 and g2 satisfy the conditions of

Lemma 3.2 with µ = β. This implies that the mapping Υ defined by

(Υu)(t) = −h(t, u(t)) +

∫ t

−∞
AS(t− τ)h(τ, u(τ))dτ

+

∫ t

−∞
S(t− τ)f(τ, u(τ))dτ, u ∈ PTA(R;X)

is well defined and maps PTA(R;X) into itself.
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To prove the theorem, we first show that Υ has a unique fixed point in PTA(R;X). Let

u, v ∈ PTA(R;X). Therefore, with the help of (H1) (ii) and (H2) (ii) one has

‖(Υu)(t)− (Υv)(t)‖ ≤ ‖h(t, u(t)) − h(t, v(t)‖ +
∫ t

−∞
‖AS(t− τ)(h(τ, u(τ)) − h(τ, v(τ)))‖dτ

+

∫ t

−∞
‖S(t− τ)(f(τ, u(τ)) − f(τ, v(τ))‖dτ

≤ ‖A−β‖
L (X)

‖Aβh(t, u(t)) −A−βh(t, v(t)‖

+

∫ t

−∞
‖A1−βS(t− τ)‖

L (X)
‖Aβh(τ, u(τ)) −Aβh(τ, v(τ))‖dτ

+

∫ t

−∞
‖S(t− τ)‖

L (X)
‖f(τ, u(τ))− f(τ, v(τ))‖dτ

≤ L
h
‖A−β‖

L (X)
‖u(t)− v(t)‖ + L

h
M1−βω

−βΓ(β)‖u − v‖
PTA(R;X)

+ML
f
ω−1‖u− v‖

PTA(R;X)
,

from which it follows that

‖Υu−Υv‖
PTA(R;X)

≤
(

L
h
‖A−β‖

L (X)
+M1−βLh

ω−βΓ(β) +ML
f
ω−1

)

‖u− v‖
PTA(R;X)

,

which together with (3.2) yields that Υ is a contractive mapping on PTA(R;X). Thus, we

conclude, using the Banach contraction principle, that Υ has a unique fixed point in PTA(R;X).

In the rest of the proof, we will prove that u ∈ PTA(R;X) is a mild solution of (1.1) if and

only if it is a fixed point of Υ. To this end, we first let u ∈ PTA(R;X) be a mild solution of

(1.1), that is, the function τ → AS(t − τ)h(τ, u(τ)) is integrable on [s, t) for all t > s and u

satisfies the integral equation

u(t) = S(t− s)
[

u(s) + h(s, u(s))
]

− h(t, u(t)) +

∫ t

s

AS(t− τ)h(τ, u(τ))dτ

+

∫ t

s

S(t− τ)f(τ, u(τ))dτ

for all t > s. Letting t ∈ R be fixed and s → −∞, it follows, noticing (2.1) and Proposition 2.1

(b), that

u(t) = −h(t, u(t)) +

∫ t

−∞
AS(t− τ)h(τ, u(τ))dτ +

∫ t

−∞
S(t− τ)f(τ, u(τ))dτ, (3.3)

which yields that u is a fixed point of Υ.

Conversely, if u ∈ PTA(R;X) is a fixed point of Υ, then u satisfies the integral equations (3.3)

and

S(t− s)(u(s) + h(s, u(s))) =

∫ s

−∞
AS(t− τ)h(τ, u(τ))dτ +

∫ s

−∞
S(t− τ)f(τ, u(τ))dτ. (3.4)

for all t > s. Therefore, it is not difficult to see, subtracting (3.3) from (3.4), that u is a mild

solution of (1.1).

According to the discussion above we deduce that the problem (1.1)-(1.2) has a unique T -

anti-periodic mild solution. The proof is completed. �

Now we are in a position to prove our second existence result of anti-periodic mild solutions

for the problem (1.1)-(1.2). Below, set L′ = max{L
h
, σ1}.
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Theorem 3.2. Let (H1) and (H3) hold. Then the problem (1.1)-(1.2) has at least one T -anti-

periodic mild solution provided that

L′(‖A−β‖
L (X)

+M1−βω
−βΓ(β)) +

Mσ2

1− e−ωT
< 1. (3.5)

Proof. Assume that the mapping Υ is defined the same as in Theorem 3.1. We first notice,

thanks to assumptions (H1) (i), (H3) (i) and Lemma 3.2, that Υ is well defined and maps

PTA(R;X) into itself.

Next, by applying a Krasnoselskii’s fixed point theorem we show that Υ has at least one fixed

point in PTA(R;X). To this end, let us decompose the mapping Υ = Υh +Υf as

(Υhu)(t) = −h(t, u(t)) +

∫ t

−∞
AS(t− τ)h(τ, u(τ))dτ, u ∈ PTA(R;X), t ∈ R,

and

(Υfu)(t) =

∫ t

−∞
S(t− τ)f(τ, u(τ))dτ, u ∈ PTA(R;X), t ∈ R.

For any r > 0, write

Ωr = {u ∈ PTA(R;X); ‖u‖
Cb(R;X)

≤ r}.
From (3.5), (H1) (ii), and (H3) (ii) it is easy to see that there exists a k0 > 0 such that

(‖A−β‖+M1−βω
−βΓ(β))Ψ(k0) +

M

1− e−ωT

∫ T

0
Φk0(τ)dτ ≤ k0.

Therefore, for every pair u, v ∈ Ωk0 , a direct calculation gives that

‖(Υhu)(t) + (Υfv)(t)‖

≤ ‖h(t, u(t))‖ +
∫ t

−∞
‖A1−βS(t− τ)Aβh(τ, u(τ))‖dτ +

∫ t

−∞
‖S(t− τ)f(τ, v(τ))‖dτ

≤ ‖A−β‖Ψ(‖u(t)‖) +M1−β

∫ t

−∞
(t− τ)β−1e−ω(t−τ)Ψ(‖u(τ)‖)dτ +M

∫ t

−∞
e−ω(t−τ)Φr(τ)dτ

≤ (‖A−β‖+M1−βω
−βΓ(β))Ψ(k0) +

M

1− e−ωT

∫ T

0
Φk0(τ)dτ

≤ k0,

from which we see that Υhu+Υfv ∈ Ωk0 for every pair u, v ∈ Ωk0 .

What followed is to prove Υh and Υf satisfy the conditions of Lemma 2.1 with Υh = F1 and

Υf = F2. Taking u, v ∈ Ωk0 , one can infer, thanks to (H1) (ii), that

‖(Υhu)(t)− (Υhv)(t)‖

≤ ‖h(t, u(t)) − h(t, v(t))‖ +
∫ t

−∞
‖AS(t− τ)(h(τ, u(τ)) − h(τ, v(τ)))‖dτ

≤ ‖A−β‖
L (X)

‖Aβh(t, u(t)) −Aβh(t, v(t))‖

+

∫ t

−∞
‖A1−βS(t− τ)‖

L (X)
‖Aβh(τ, u(τ)) −Aβh(τ, v(τ))‖dτ

≤ L
h
‖A−β‖

L (X)
‖u− v‖

PTA(R;X)
+ L

h
M1−β‖u− v‖

PTA(R;X)

∫ t

−∞
(t− τ)β−1e−ω(t−τ)dτ

≤ L
h
(‖A−β‖

L (X)
+M1−βω

−βΓ(β))‖u − v‖
PTA(R;X)

.

This together with (3.5) yields that Υh is a contractive mapping on Ωk0 .

In the sequel, we show that Υf is completely continuous on Ωk0 . The proof will be divided

into two steps.
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Step 1. Υf is continuous on Ωk0 .

Take u1, u2 ∈ Ωk0 . It follows from (H3) (ii) that
∫ t

−∞
‖S(t− τ)(f(τ, u1(τ))− f(τ, u2(τ)))‖dτ

≤ 2M

∫ t

−∞
e−ω(t−τ)Φk0(τ)dτ

≤ 2M

1− e−ωT

∫ T

0
Φk0(τ)dτ.

Then the Lebesgue dominated convergence theorem gives, noticing the continuity of f with

respect to second variable, that

‖(Υfu1)(t)− (Υfu2)(t)‖

≤ M

∫ t

−∞
e−ω(t−τ)‖(f(τ, u1(τ))− f(τ, u2(τ)))‖dτ

≤ M

1− e−ωT

∫ T

0
‖f(τ, u1(τ))− f(τ, u2(τ))‖dτ

→ 0, as u1 → u2 in Ωk0 ,

which verifies the continuity of Υf .

Step 2. Υf is a compact operator on Ωk0 .

Since S(s) is compact for s > 0 in X,

{

∫ t−ǫ

−∞
S(t− τ)f(τ, u(τ))dτ ;u ∈ Ωk0

}

=
{

S(ε)

∫ t

−∞
S(t− τ)f(τ, u(τ))dτ ;u ∈ Ωk0

}

is relatively compact in X for each t ∈ R and ε > 0. Then, for every u ∈ Ωk0 , as

∥

∥

∥

∫ t

−∞
S(t− τ)f(τ, u(τ))dτ −

∫ t−ǫ

−∞
S(t− τ)f(τ, u(τ))dτ

∥

∥

∥

≤
∫ t

t−ǫ

‖S(t− τ)f(τ, u(τ))‖dτ

≤ M

∫ t

t−ǫ

e−ω(t−τ)Φk0(τ)dτ

→ 0 as ε → 0

in X, we conclude, in view of the total boundedness, that for each t ∈ R, the set {(Υfu)(t);u ∈
Ωk0} is relatively compact in X.

To prove that Υf is a compact operator, it remains to prove that the set {Υfu;u ∈ Ωk0} is

equicontinuous in view of Lemma 3.1.

Extend Φk0(t) to R by defining Φk0(t+ T ) = Φk0(t) for t ∈ R and again denote it by Φk0(t).

Note that Φk0 ∈ Lloc(R). Letting u ∈ Ωk0 , t, s ∈ R and t > s, we have

(Υfu)(t) − (Υfu)(s)

=

∫ t

s

S(t− τ)f(τ, u(τ))dτ +

∫ s

s−ǫ

(S(t− τ)− S(s− τ))f(τ, u(τ))dτ

+

∫ s−ǫ

t−K

(S(t− τ)− S(s− τ))f(τ, u(τ))dτ +

∫ t−K

−∞
(S(t− τ)− S(s− τ))f(τ, u(τ))dτ

:= J1 + J2 + J3 + J4.

where ǫ,K are positive constants yet to be determined.
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Given η > 0. We first note that there exist δ, ǫ > 0 small enough such that

‖J1‖ ≤
∫ t

s

Φk0(τ)dτ ≤ η

4
when t− s ≤ δ,

‖J2‖ ≤ 2M

∫ s

s−ǫ

Φk0(τ)dτ ≤ η

4
.

For J4, one can take a K > 0 big enough which is independent of t and s such that

‖J4‖ ≤
∫ t−K

−∞
‖S(t− τ)− S(s − τ)‖

L (X)
‖f(τ, u(τ))‖dτ

≤ M

∫ t−K

−∞

(

e−ω(t−τ) + e−ω(s−τ)
)

Φk0(τ)dτ

≤ M(1 + eωδ)e−ωK

1− e−ωT

∫ T

0
Φk0(τ)dτ

≤ η

4
.

For such ǫ,K fixed, it is easy to find that there exists a d > 0 big enough such that |ǫ−K| ≤ dT ,

which together with the fact that S(t) for t > 0 is continuous in uniform operator topology gives

that

‖J3‖ ≤
∫ s−ǫ

t−K

‖S(t− τ)− S(s− τ)‖
L (X)

‖f(τ, u(τ))‖dτ

≤
∫ s−ǫ

t−K

‖S(t− s+ ǫ)− S(ǫ)‖
L (X)

‖S(s − ǫ− τ)‖
L (X)

‖f(τ, u(τ))‖dτ

≤ M‖S(t− s+ ǫ)− S(ǫ)‖
L (X)

∫ dT

0
Φk0(τ)dτ

≤ η

4
when t− s ≤ δ.

Thus, from the arguments above one can deduce that

‖(Υfu)(t)− (Υfu)(s)‖ ≤ η,

when t − s ≤ δ and u ∈ Ωk0 , which implies that the set {Υfu;u ∈ Ωk0} is equicontinuous.

Consequently, by Lemma 3.1 we have that Υf is a compact operator on Ωk0 .

Now, applying Lemma 2.1 we deduce that Υ has at least one fixed point u ∈ PTA(R;X).

Moreover, following from the same idea as the last part of the proof in Theorem 3.1, we obtain

that u is a T -anti-periodic mild solution of the problem (1.1)-(1.2). This completes the proof of

theorem. �

The following corollary gives a generalization of Theorem 3.2.

Corollary 3.1. Let the hypotheses in Theorem 3.2 hold except that (H1) (ii) is replaced by the

following.

(ii)′ There exist constants L
h
, σ′

1 > such that

‖Aβh(t, u) −Aβh(t, v)‖ ≤ L
h
‖u− v‖,

‖Aβh(t, u)‖ ≤ σ′
1(‖u‖+ 1)

for all t ∈ R and u, v ∈ X.

Then the assertion in Theorem 3.2 remains true provided that

L′′(‖A−β‖
L (X)

+M1−βω
−βΓ(β)) +

Mσ2

1− e−ωT
< 1,

where L′′ = max{L
h
, σ′

1}.
EJQTDE, 2013 No. 16, p. 11



Remark 3.1. Theorems 3.1 and 3.2 cover recent results in [14].

Remark 3.2. Let 0 < α < 1 and let X be a separable Hilbert space. If A is a positive, self-

adjoint liner operator on X with a discrete spectrum, and for each point spectrum of A, the

corresponding eigenspace is finite dimentional, then −A generates a compact analytic semigroup

{S(t)}t≥0 on X satisfying

‖S(t)‖
L (X)

≤ e−λ1t for all t ≥ 0,

‖AαS(t)‖
L (X)

≤
((

α
t

)α
+ λα

1

)

e−λ1t for all t > 0,

where λ1 > 0 is the minimal point of the spectrum of A (see [37, 38] for more details).

By an obvious rescaling from the proof of Theorem 3.2 and Remark 3.2 we can obtain the

following existence result.

Theorem 3.3. Let X be a separable Hilbert space and A a positive, self-adjoint liner operator on

X with a discrete spectrum. Suppose in addition that the hypotheses (H1) and (H3) are satisfied.

Then the problem (1.1)-(1.2) has at least one T -anti-periodic mild solution provided that

L′(‖A−β‖
L (X)

+ (1− β)1−βΓ(β)λ1
−β + λ

−β
1 ) +

σ2

1− e−λ1T
< 1. (3.6)

Remark 3.3. We consider the following semilinear partial neutral functional differential equa-

tion with periodic condition






d

dt
[u(t) + h(t, u(t))] +Au(t) = f(t, u(t)), t ∈ R,

u(t+ T ) = u(t), t ∈ R.
(3.7)

From the arguments of Theorems 3.1 and Theorem 3.2 it is easy to see that if

(1) the hypotheses in Theorem 3.1 are satisfied except that the anti-periodic conditions on h

and f are replaced by the following

h(t+ T, u) = h(t, u), f(t+ T, u) = f(t, u) for all t ∈ R, u ∈ X, (3.8)

then there exists a unique T -periodic mild solution for the problem (3.7).

(2) the hypotheses in Theorem 3.2 are satisfied except that the anti-periodic conditions on h

and f are replaced by (3.8), then there exists at least a T -periodic mild solution for the problem

(3.7).

4. Application

In this section, we give an example to illustrate our abstract results, which does not aim at

generality but indicate how our theorems can be applied to concrete problem.

Consider the anti-periodic problem for partial differential equation in the form






∂

∂t
[u(t, x) +

∫ π

0
a(t, x, y)u(t, y)dy] − ∂2u(t, x)

∂x2
= g(t, u(t, x)), t ∈ R, x ∈ [0, π],

u(t+ T, x) = −u(t, x), t ∈ R, x ∈ [0, π],
(4.1)

under homogeneous Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0 t ∈ R,

where a : R × [0, π] × [0, π] → R and g : R × R → R are given functions to be specified below.

Here, our objective is to show the existence of T -anti-periodic solutions for the anti-periodic

problem (4.1)
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Let X = L2[0, π] with the inner product (·, ·)2 and the operator A : D(A) ⊂ X → X be

defined by

{

Aw = −∂2w(x)
∂x2 , w ∈ D(A),

D(A) = {w ∈ X;w,w′ are absolutely continuous, w′′ ∈ X, and w(0) = w(π) = 0}.

Then, A has a discrete spectrum and its eigenvalues are n2, n ∈ N, with the corresponding

normalized eigenvectors yn(x) =
√

2
π
sin(nx), n ∈ N. Also, −A generates a compact, analytic

semigroup {S(t)}t≥0 on X, and

(a) S(t)w =
∞
∑

n=1

e−n2t(w, yn)2yn, ‖S(t)‖
L (X)

≤ e−t for all t ≥ 0,

(b) A− 1
2w =

∞
∑

n=1

1

n
(w, yn)2yn for each w ∈ X. In particular, ‖A− 1

2‖
L (X)

= 1, and

(c) A
1
2w =

∞
∑

n=1

n(w, yn)2yn with the domain D(A
1
2 ) = {w ∈ X;

∞
∑

n=1

n2(w, yn)
2
2 < +∞}.

Moreover, as established in [38, Lemma 1.1 of Chapter 2], the estimate

‖A 1
2S(t)w‖ ≤

(

(

1

2

) 1
2

t−
1
2 + 1

)

e−t‖w‖

holds for all t > 0 and w ∈ X. Hence, one finds that the estimates in Remark 3.2 are satisfied

with α = 1
2 and λ1 = 1.

Define

u(t)(x) = u(t, x),

h(t, w)(x) =

∫ π

0
a(t, x, y)w(y)dy,

f(t, w)(x) = g(t, w(x)).

Assume that the following conditions are verified:

(1) (i) a : R× [0, π]× [0, π] → R is continuously differential, and

a(t+ T, x, y) = a(t, x, y) for t ∈ R, x, y ∈ [0, π].

(ii) a(t, π, y) = a(t, 0, y) = 0 for t ∈ R, y ∈ [0, π].

(iii) c0 := sup
t∈R

∫ π

0

∫ π

0

(∂a(t, x, y)

∂x

)2
dxdy < ∞.

(2) b(t+ T ) = b(t) for a.e. t ∈ R and b|[0,T ] ∈ L(0, T ;R+).

From conditions (1)(i),(ii) we obtain that for all t ∈ R and w ∈ X,

(h(t, w), yn)2 =

√

2

π

∫ π

0

∫ π

0
a(t, x, y)w(y) sin(nx)dydx

=
1

n

√

2

π

∫ π

0

∫ π

0

∂a(t, x, y)

∂x
w(y) cos(nx)dydx

=
1

n

(

∫ π

0

∂a(t, x, y)

∂x
w(y)dy,

√

2

π
cos(nx)

)

2

.
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Therefore, noticing condition (1)(iii) and applying Bessel’s inequality one has that for all t ∈ R

and w ∈ X,

‖A 1
2h(t, w)‖ =

( ∞
∑

n=1

n2(h(t, w), yn)
2
2

)
1
2

=





∞
∑

n=1

(

∫ π

0

∂a(t, x, y)

∂x
w(y)dy,

√

2

π
cos(nx)

)2

2





1
2

≤
∥

∥

∥

∥

∫ π

0

∂a(t, x, y)

∂x
w(y)dy

∥

∥

∥

∥

≤ √
c0‖w‖,

which implies that h(t, w) ∈ D(A
1
2 ) for each t ∈ R and w ∈ X. Also, from condition (1)(i)

note that h(t + T,−w) = −h(t, w) in X for all t ∈ R and w ∈ X. Furthermore, for all t ∈ R,

w1, w2 ∈ X, a direct calculation yields that

‖A 1
2h(t, w1)−A

1
2h(t, w2)‖ ≤ √

c0

(

∫ π

0
(w1(x)− w2(x))

2dx
)

1
2

=
√
c0‖w1 − w2‖.

On the other hand, taking g(t, u(t, x)) = b(t) sinu(t, x), one can find that f : R×X → X is a

Carathéodory function and f(t+T,−w) = −f(t, w) in X for all t ∈ R and w ∈ X. Furthermore,

‖f(t, w)‖ ≤
√
πb(t) for a.e. t ∈ [0, T ] and all w ∈ X.

Therefore, the anti-periodic problem (4.1) can be transformed into the abstract problem (1.1)-

(1.2) and assumptions (H1) and (H3) hold with

L
h
=

√
c0, Ψ(r) =

√
c0r, σ1 =

√
c0, Φr(t) =

√
πb(t), σ2 = 0.

Thus, when c0 <
(

2
4+

√
2π

)2
such that condition (3.6) is satisfied, the anti-periodic problem (4.1)

has at least one T -anti-periodic mild solution due to Theorem 3.3.
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