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1 Introduction

In this work, we are concerned with the existence of periodic and almost periodic
solutions for the following differential equation:

{
d

dt
x(t) = (A + B(t)) x(t) + f(t), for t ≥ s

x(s) = x0

(1)

where A : D(A) ⊂ E → E is a nondensely defined linear operator on a Banach
space E and f : R → E is continuous, p-periodic or almost periodic (f is
not identically zero). For every t ≥ 0, B(t) is a bounded linear operator on
E. Throughout this work, we suppose that A is a Hille-Yosida operator which
means that there exist M0 ≥ 1 and ω0 ∈ R such that

(ω0, +∞) ⊂ ρ(A) and |R (λ, A)
n| ≤

M0

(λ − ω0)n
, for n ∈ N and λ > ω0, (2)

where ρ(A) is the resolvent set of A and R (λ, A) = (λ − A)−1.

Differential equations with nondense domain have many applications in par-
tial differential equations. About this topic we refer to [14] where the authors
studied the well-posedness of equation (1) with B = 0 and A is a Hille-Yosida
operator. The existence of periodic and almost periodic solutions for partial
functional differential equations has been extensively studied in literature, for
the reader we refer to [5], [9], [10], [11], [12] and references therein. In [8], the
authors established the existence of periodic and almost periodic solutions of
equation (1) and they applied their results for the following partial functional
differential equation:

{
d

dt
x(t) = Ax(t) + K(t)xt + h(t), for t ≥ s,

xs = ϕ ∈ C = C ([−r, 0] ; E) ,
(3)

where C is the space of continuous functions from [−r, 0] into E endowed with
the uniform norm topology, for every t ≥ 0, the history function xt ∈ C is
defined by

xt(θ) = x(t + θ), for θ ∈ [−r, 0] . (4)

K(t) is a bounded linear operator from C to E and t → K(t)ϕ is continuous,
for every ϕ, p-periodic in t and h : R → E is continuous and p-periodic.

The famous Massera’s Theorem [9] on two dimensional periodic ordinary
differential equations explains the relationship between the boundedness of so-
lutions and periodic solutions. In this work we use Massera’s approach [9], we
give sufficient conditions such that the equivalence between the existence of a
p−periodic solution and the existence of a bounded solution holds. Note that
Massera’s approach holds for equation (1) if A generates a compact semigroup
on E. Since in this case the Poincaré map is compact for p > r. In [6], the au-
thors proved the existence of a periodic solution for nonlinear partial functional
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differential equations that are bounded and ultimate bounded, using Horn’s
fixed point theorem they proved that the Poincaré map has a fixed point which
gives a periodic solution. Recently in [10], the authors obtained a new spec-
tral criteria for the existence of bounded solutions for the following difference
equation

xn+1 = Pxn + yn+1, n ∈ Z. (5)

where (yn)n∈Z
∈ l∞(E) is given and P is a bounded linear operator on E and

they applied the criteria to show the existence of periodic and almost periodic
solutions for some partial functional differential equations with infinite delay
and some differential equations in Banach spaces.

The results obtained in this paper (together with the idea) are intimately
relates to those in [10]. Several results in [10] are extended to the equation (1)
whose linear part is nondensely defined.

The organization of this work is as follows: in section 2, we recall some
preliminary results that will be used later. In section 3, we establish a new
criteria for the existence of p-periodic and almost periodic solutions of equation
(1). Finally we propose an application to equation (3).

2 Preliminary results

In the following we assume that

(H1) A is a Hille-Yosida operator.

(H2) For every t ≥ 0, the operator B(t) is a bounded linear operator on E,
p-periodic in t and t → B(t)x is continuous, for every x in E.

Let us introduce some notions which will be used in this work.

Definition 2.1 A continuous function x : [s,∞) → E is said to be an integral
solution of equation (1) if

i)
∫ t

s
x(τ )dτ ∈ D(A), for t ≥ s

ii) x(t) = x(s) + A
∫ t

s
x(τ )dτ +

∫ t

s
B(τ )x(τ )dτ +

∫ t

s
f(τ )dτ , for t ≥ s.

Proposition 2.1 [14] For every s ∈ R and x0 ∈ D(A), equation (1) has a
unique integral solution for t ≥ s.

Theorem 2.1 (Theorem 4.1.2 in [13])Let A0 be the part of A in D(A) which
is defined by {

D(A0) =
{

x ∈ D(A) : Ax ∈ D(A)
}

A0x = Ax.
(6)

Then A0 generates a strongly continuous semigroup (T0(t))t≥0 on D(A).
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By [8], the integral solution x of equation (1) is given by,

x(t) = T0(t − s)x0 + lim
λ→∞

∫ t

s

T0(t − τ)Bλ (B(τ )x(τ ) + f(τ)) dτ . (7)

where Bλ = λR (λ, A) .

Define UB(t, s)t≥s by

UB(t, s)x0 = x(t, s, x0), for x0 ∈ D(A),

where x(., ., x0) is the integral solution of the equation (1) with f = 0.

Proposition 2.2 [8] Assume that (H1) and (H2) hold. Then (UB(t, s))t≥s is
an evolution family:
i) UB(t, t) = I, for every t ∈ R,

ii) UB(t, s)UB(s, r) = UB(t, r), for t ≥ s ≥ r,

iii) for all x0 ∈ D(A), (t, s) → UB(t, s)x0 is continuous.
Moreover the integral solution of equation (1) is given by

u(t) = UB(t, s)u(s) + lim
λ→∞

∫ t

s

UB(t, τ)Bλf(τ )dτ , t ≥ s. (8)

Definition 2.2 (UB(t, s))t≥s has an exponential dichotomy on D(A) with con-
stant β > 1 and L ≥ 1, if there exists a bounded strongly continuous family of
projection (P (t))t∈R

on D(A) such that for t ≥ s one has
i) P (t)UB(t, s) = UB(t, s)P (s).
ii) the map UB(t, s) : (Id − P (s))D(A) → (Id − P (t))D(A) is invertible.
iii) |UB(t, s)z| ≤ Le−β(t−s) |z| , for z ∈ P (s)D(A).
iv)

∣∣UB(t, s)−1z
∣∣ ≤ Le−β(t−s) |z| , for z ∈ (Id − P (t))D(A).

For the sequel, Cb(R, E) denotes the space of bounded continuous functions on
R with values in E.

Theorem 2.2 [8] Assume that (H1) and (H2) hold. Then the following propo-
sitions are equivalent:
i) UB(t, s)t≥s has an exponential dichotomy,
ii) for any f in Cb(R, E), equation (1) has a unique integral solution in Cb(R, E).

If we suppose that B(t + p) = B(t), for all t in R, then the evolution family
UB(t, s)t≥s is p-periodic:

UB(t + p, s + p) = UB(t, s), for t ≥ s.

Definition 2.3 The Carleman spectrum sp(u) of a function u in Cb(R, E), is
consisting of ξ ∈ R such that the Fourier-Carleman transform

û(λ) =

{ ∫ ∞

0
e−λtu(t)dt, Reλ > 0

−
∫ ∞

0
eλtu(−t)dt, Reλ < 0

has no holomorphic extension to a neighborhood of iξ.
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Recall that a function v ∈ Cb(R, E), is said to be almost periodic if the set
{vτ : τ ∈ R} is relatively compact in Cb(R, E), where vτ is defined by

vτ (s) = v(τ + s), for s ∈ R.

Proposition 2.3 [7] Let u ∈ Cb(R, E). Then the following statements hold
true:
i) sp(u) is closed.
ii) If un is a sequence in Cb(R, E) converging to u uniformly and sp(un) ⊂ Λ,

for any n ≥ 0, then sp(u) ⊂ Λ.

iii) sp(αu) ⊂ sp(u).
iv) If u is uniformly continuous, sp(u) is countable and E doesn’t contain a
copy of c0, then u is almost periodic.

The spectrum σ(u) of a bounded continuous function u is defined by: σ(u) =

eisp(u). Then a criteria for the existence of a p−periodic solution of equation (1)
is obtained in [8].

Theorem 2.3 (Theorem 3.7 and Corollary 3.8 in [8]) Let f be in Cb(R, E)
such that

σ(UB(p, 0) ∩ {eiηp : η ∈ sp(f)} = ∅. (9)

Then equation (1) has at most one solution in Cb(R, E). Moreover if f is almost
periodic, then equation (1) has a unique almost periodic solution.

Remark:UB(p, 0) is called the monodromy operator. Condition (9) is more
general than the exponential dichotomy condition. Indeed, if the evolution
family UB(t, s)t≥s has an exponential dichotomy, then

Γ = {z ∈ C : |z| = 1} ⊂ ρ(UB(p, 0)),

where ρ(UB(p, 0)) denotes the resolvent set of UB(p, 0). Moreover, it’s well-
known that f is p-periodic if and only if sp(f) ⊂ 2π

p
Z. Consequently if 1 ∈

ρ(UB(p, 0)), then equation (1) has a unique p-periodic solution. In the following,
we give an extension of Theorem 2.3 and we prove the existence of a p-periodic
solution of equation (1) if (1) has a bounded solution on the whole line and 1 is
isolated in σ(UB(p, 0).

Define l∞(E) =

{
(αn)n∈Z ⊂ E : sup

n∈Z

|αn| < ∞

}
. For any α = (αn)n∈Z ∈ l∞(E)

and any p ∈ Z, we define S(p)α by

S(p)α = (αn+p)n∈Z.

Definition 2.4 [10] Let (αn)n∈Z be a sequence in l∞(E). Then the subset of
all λ on the unit circle Γ = {z ∈ C : |z| = 1} at which

α̂(λ) =

{ ∑∞

n=0 λn−1S(n)α, |λ| > 1

−
∑∞

n=1 λn−1S(−n)α, |λ| < 1

has non holomorphic extension, is said to be the spectrum σ(α) of the sequence
(αn)n∈Z.
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Let α ∈ l∞(E). Then α is said to be almost periodic if
{
(αn+k)n∈Z

: k ∈ Z
}

is
relatively compact in l∞(E).

Lemma 2.1 (Corollary 2.5 in [10]) Let α be an element of l∞(E). Then
αn = αn+1 6= 0, for all n ∈ Z if and only if σ(α) = {1}. Similarly, αn =
−αn+1 6= 0 for all n ∈ Z if and only if σ(α) = {−1} .

Proposition 2.4 [10] Let q be an almost periodic function. Then

σ(q(n)n∈Z) ⊂ σ(q).

Theorem 2.4 [10] (Theorem 3.4 and Corollary 3.6 in [10]). Assume that
equation (5) has a bounded solution and the following condition holds

σΓ(P )\σ(y) is closed,

where σΓ(P ) = σ(P ) ∩ Γ. Then there exists a bounded solution x of equation
(5) such that σ(x) = σ(y). Moreover if σ(y) is countable and E doesn’t contain
a copy of c0, then there is an almost periodic solution of equation (5).

3 Main results

3.1 Periodic solutions

Theorem 3.1 Assume that (H1) and (H2) hold. If equation (1) has a bounded
integral solution on the whole line and

σΓ(UB(p, 0))\ {1} is closed, (10)

where σΓ(UB(p, 0)) = σ(UB(p, 0)) ∩ Γ, then equation (1) has a p−periodic inte-
gral solution.

Proof. Let u be a bounded integral solution of equation (1) on the whole line.
Then

u(t) = UB(t, t − p)u(t − p) + lim
λ→∞

∫ t

t−p

UB(t, τ)Bλf(τ )dτ , t ∈ R,

which implies that

u(t) = UB(t, t − p)u(t − p) + g(t), t ∈ R,

where g is defined by

g(t) = lim
λ→∞

∫ t

t−p

UB(t, τ )Bλf(τ )dτ , t ∈ R.

Periodicity of f and UB(t, s)t≥s imply that g is p−periodic. Let (xn)n∈Z and
(gn)n∈Z be defined by

xn = u(np) and gn = g(np), for n ∈ Z.
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Then periodic integral solutions of equation (1) correspond to constant solutions
of the following discrete equation

xn+1 = UB(p, 0)xn + gn+1, n ∈ Z. (11)

Since f is not identically zero, then gn+1 = gn 6= 0 and σ((gn)n∈Z) = {1} .

By Theorem 2.4, we deduce that equation (11) has a bounded solution (xn)n∈Z

such that σ((xn)n∈Z
) = σ((gn)n∈Z) = {1} . By Lemma (2.1), we conclude that

xn+1 = xn for every n ∈ Z and by uniqueness of solutions with initial data we
get that the integral solution of equation (1) starting from x0 is p−periodic.

Remark 3.1 Condition 10 means that if 1 is in σΓ(UB(p, 0)), then 1 is an
isolated point in σΓ(UB(p, 0)).

Theorem 3.2 Assume that (H1), (H2) hold and f is anti-periodic which means
that f(t + p) = −f(t), for all t ∈ R. If

σΓ(UB(p, 0))\ {−1} is closed,

then equation (1) has an anti p−periodic integral solution if and only if it has
a bounded integral solution on the whole line.

Proof. Arguing as above, we get that equation (11) has a bounded solution
(xn)n∈Z

such that σ((xn)n∈Z
) = σ((gn)n∈Z) = {−1} and by Lemma (2.1), we

obtain that xn+1 = −xn, which gives an anti p−periodic integral solution of
equation (1).

3.2 Almost periodic solutions

Let g be defined by

g(t) = lim
λ→∞

∫ t

t−1

UB(t, τ )Bλf(τ )dτ , t ∈ R.

Theorem 3.3 Assume that (H1) and (H2) hold. Furthermore we assume that
B is 1−periodic, f is almost periodic and

σΓ(UB(1, 0))\σ(g(n)n∈Z) is closed. (12)

If σ(g(n)n∈Z) is countable and E doesn’t contain a copy of c0, then equation (1)
has an almost periodic integral solution if and only if it has a bounded integral
solution on the whole line.

We start by the following fundamental Lemma which plays an important role
in the proof of Theorem 3.3, its proof is similar to the one given in [10].

Lemma 3.1 Assume that UB(t, s)t≥s is a 1−periodic evolution family. Let w

be a solution on the whole line of

w(t) = UB(t, s)w(s) + lim
λ→∞

∫ t

s

UB(t, τ )Bλθ(τ )dτ , t ≥ s, (13)
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where θ is an almost periodic function with values in E. Then w is almost
periodic if and only if the sequence (w(n))n∈Z

is almost periodic.

Proof of Theorem 3.3. Theorem 2.4 implies that equation (11) has an almost
periodic solution (vn)n∈Z

. Let v be defined by

v(t) = UB(t, n)vn + lim
λ→∞

∫ t

n

UB(t, τ )Bλf(τ )dτ , t ∈ [n, n + 1) .

Then v is well defined, continuous and by Lemma 3.1 v is an almost periodic
integral solution of equation (1).
In the sequel we give some sufficient conditions for which condition (12) is
satisfied.

Corollary 3.1 Assume that (H1) and (H2) hold. Furthermore we assume that
B is 1−periodic and f is almost periodic. If T0(t) is compact for t > 0, σ(f) is
countable and E doesn’t contain a copy of c0, then equation (1) has an almost
periodic integral solution if and only if it has a bounded integral solution on the
whole line.

Proof. We claim that UB(1, 0) is compact if T0(t) is compact for t > 0. In fact,
let D be a bounded set in D(A), by formula (7), we have for any x0 ∈ D,

UB(1, 0)x0 = T0(1)x0 + lim
λ→∞

∫ 1

0

T0(1 − τ )Bλ (B(τ )UB(τ , 0)x0) dτ .

Let ε > 0 such that 1 − ε > 0. Then

lim
λ→∞

∫ 1

0 T0(1 − τ )Bλ (B(τ )UB(τ , 0)x0) dτ =

T0(ε) lim
λ→∞

∫ 1−ε

0
T0(1 − ε − τ)Bλ (B(τ )UB(τ , 0)x0) dτ + lim

λ→∞

∫ 1

1−ε
T0(1 − τ)Bλ (B(τ )UB(τ , 0)x0) dτ .

Let χ denote the measure of noncompactness of sets which is defined for any
bounded set B in E by
χ(B) = inf {d > 0 : B has a finite cover of diameter < d}. Then it’s well known
that
χ(B) = 0 if and only if B is relatively compact,
χ(B1 + B2) ≤ χ(B1) + χ(B2), for any bounded sets B1 and B2.

Using the above properties, we can that

χ {UB(1, 0)x0 : x0 ∈ D} ≤ aε, for some a > 0.

Letting ε → 0, we get χ {UB(1, 0)x0 : x0 ∈ D} = 0 and UB(1, 0) is compact.
Consequently condition (12) is satisfied. To end the proof, we will show that
σ(g(n)n∈Z) is countable.

Lemma 3.2 [8] Let ξ : R → E be uniformly continuous such that its range is
relatively compact in E. Then for any s > 0, the limit

lim
λ→∞

∫ t

t−s

UB(t, τ )Bλξ(τ )dτ

exists uniformly for t in R.
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Let gλ be defined by

gλ(t) =

∫ t

t−1

UB(t, τ )Bλf(τ )dτ , t ∈ R.

Then gλ is almost periodic and by Lemma 3.2 gλ converges to g uniformly in
t ∈ R as λ → ∞, consequently g is almost periodic. Since Lemma 4.6 in [8]
implies that σ(gλ) ⊂ σ(f) and σ(g) ⊂ σ(f). Moreover Lemma 2.4 gives that
σ(g(n)n∈Z) ⊂ σ(g) ⊂ σ(f) and σ(g(n)n∈Z) is also countable, by Theorem 3.3
we deduce that equation (1) has an almost periodic integral solution.

4 Partial functional differential equation with fi-

nite delay

In this section, we apply the previous results for equation (3).

Definition 4.1 A continuous function u : [s − r,∞) → E is said to be an
integral solution of equation (3) if and only if

i)
∫ t

s
u(τ)dτ ∈ D(A), for t ≥ s,

ii) u(t) = u(s) + A
∫ t

s
u(τ)dτ +

∫ t

s
(K(τ)uτ + h(τ )) dτ , for t ≥ s,

iii) us = ϕ.

Proposition 4.1 [2] For t ≥ s and ϕ ∈ C such that ϕ(0) ∈ D(A), equation (3)
has a unique integral solution which is defined for t ≥ s.

By [2], the integral solution of equation (3) is given by

u(t) = T0(t − s)ϕ(0) + lim
λ→∞

∫ t

s

T0(t − τ)Bλ (K(τ )uτ + h(τ )) dτ, for t ≥ s.

Note that the phase space C0 of equation (3) is given by

C0 =
{
ϕ ∈ C : ϕ(0) ∈ D(A)

}
.

Theorem 4.1 [1] Let U(t) be defined for every t ≥ 0, on C0 by

(U(t)ϕ) (θ) =

{
T0(t + θ)ϕ(0) if t + θ ≥ 0
ϕ(t + θ) if t + θ ≤ 0.

Then (U(t) t≥0 is a strongly continuous semigroup on C0, its generator is given
by





D(AU ) =

{
ϕ ∈ C1 ([−r, 0] ; E) : ϕ(0) ∈ D(A), ϕ′(0) ∈ D(A) and
ϕ′(0) = Aϕ(0)

}

AUϕ = ϕ′.
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Define the space 〈Xo〉 by

〈Xo〉 = {Xoc : c ∈ E} ,

where the function Xoc is defined by

(Xoc) (θ) =

{
0 if θ ∈ [−r, 0[
c if θ = 0.

The space C ⊕ 〈Xo〉 is provided with the following norm

|ϕ + X0c| = |ϕ| + |c| .

Theorem 4.2 [1] The continuous extension ÃU of the operator AU defined on
C ⊕ 〈Xo〉 by

{
D(ÃU ) =

{
ϕ ∈ C1 ([−r, 0] , E) : ϕ(0) ∈ D(A) and ϕ′(0) ∈ D(A)

}

ÃUϕ = ϕ′ + X0(Aϕ(0) − ϕ′(0)),

is a Hille-Yosida operator. If u is an integral solution of equation (3), then
x(t) = ut is an integral solution of

{
d

dt
x(t) =

(
ÃU + B̃(t)

)
x(t) + h̃(t), for t ≥ s

x(s) = ϕ
(14)

where B̃(t)(ϕ + X0c) = X0K(t)ϕ and h̃(t) = X0h(t), ϕ ∈ C, c ∈ E and t ∈ R.

Conversely if x is an integral solution of equation (14), then

u(t) =

{
x(t)(0) if t ≥ s

ϕ(t) if s − r ≤ t ≤ s

is an integral solution of equation (3).

Let (V (t, s))t≥s be the evolution family defined on C0 by

V (t, s)ϕ = xt(., s, ϕ), for t ≥ s,

where x(., s, ϕ) is the integral solution of equation (3) with h = 0. Then by
Theorem 3.1, we obtain

Proposition 4.2 Suppose that equation (3) has a bounded integral solution on
the whole line. If h is p−periodic and 1 is an isolated point in σΓ(V (p, 0)),
then equation (3) has a p−periodic integral solution. Moreover if h is anti
p−periodic and −1 is an isolated point in σΓ(V (p, 0)), then equation (3) has an
anti p−periodic integral solution.

Corollary 4.1 Assume that T0(t) is compact whenever t > 0 and f is p-
periodic. Then the existence of a bounded integral solution of (3) on the whole
line implies the existence of a p-periodic integral solution of (3).
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Proof. Recall that if T0(t) is compact whenever t > 0 , then the monodromy
operator is compact for p > r, for more details we refer to [1] . Consequently
condition (10) is satisfied. If p ≤ r, then equation has a mp-periodic integral
solution, for some m such that mp > r. Let z be the mp-periodic integral solution
and K = co {znp : n ∈ N} , then K is a convex compact set. Define the Poincaré
map P0 on K by P0φ = xp(., 0, φ, h), where x.(., 0, φ, h) is the integral solution
of equation (3). Then P0K ⊂ K and by Schauder’s fixed point theorem, we get
that P0 has a fixed point which gives that equation (3) has a p-periodic integral
solution.

We remark that Corollary 4.1 is extendable for a partial functional differential
equation with infinite delay in which linear part is nondensely defined and the
phase space is a uniform fading memory space. For more details we refer to [5,
Theorem 6].
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