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Abstract

We consider a relativistic particle under the action of a time-periodic

central force field in the plane. Assuming an attractive type condition on

some neighborhood of infinity there are many subharmonic and quasiperi-

odic motions. Moreover, the obtained information allows to give applica-

tions for many scalar problems involving the relativistic operator.
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1 Introduction and main results

The motion of a particle subjected to the influence of an (autonomous) cen-
tral force field in the plane may be mathematically modelled as a system of
differential equations

ẍ = f(|x|) x|x| x ∈ R
2 \ {0},

and it has had a great importance in Mechanics from the very beginning of this
discipline in the seventeenth century. The central force field is determined by
the function f and, from a physical point of view, we can have:
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1. Attractive force fields: f is called an attractive force field whenever
f(r) < 0 for all r > 0. For instance, letting f(r) = c/r2 for some negative
constant c < 0, the gravitational force created by a point mass fixed at the
origin is attractive. This is the case of the well-known Kepler problem.

2. Repulsive force fields: f is called a repulsive force field whenever f(r) >
0 for all r > 0. For example considering f(r) = c/r2 for some positive
constant c > 0 gives the Coulombian force field created by an electrical
charged particle fixed at the origin which works with another one with the
same charge.

3. Mixed force fields: In this case f is considered positive at some levels
and negative in others. The central force field can model the force field
created by a charged particle which changes the sign depending on the
position with respect to the origin.

These force fields are autonomous, i.e., they depend on the position but not
directly on the time. However, Newton [18], in his study about Kepler’s 2nd law
had already considered the motion of a particle subjected to a periodic sequence
of discrete time impulses. On the other hand, many problems involve particles
which vary depending on the time they have been considered.

For example, the Gylden-Meshcherskii problem

ẍ = M(t)
x

|x|3 x ∈ R
2 \ {0},

even though it was originally proposed to explain the secular acceleration ob-
served in the Moon’s longitude, nowadays has many physical interpretations.
Amongst others, it can be regarded as a Kepler problem with variable masses
(M(t) = −G · m1(t) · m2(t), G is the gravitational constant and m1(t),m2(t)
are the masses of the bodies) or a Coulombian problem with charged particles
changing of sign (M(t) = κ·q1(t)·q2(t), κ is the Coulomb constant and q1(t), q2(t)
are the charges of the particles). Mainly, the Gylden-Meshcherskii problem is
used in the framework of the Kepler problem to describe a variety of phenomena
including the evolution of binary stars, dynamics of particles around pulsating
stars and many others (see [3, 10, 19, 20] and the references there); but also
it could be used as a Coulombian problem to study phenomenons such as: the
stabilization of matter-wave breather in Bose-Einstein condensates, the propa-
gation of guided waves in planar optical fibers, the electromagnetic trapping of
a neutral atom near a charged wire (see [7] for the scalar versions).

When dealing with particles moving at speed close to that of light it may
be important to take into account the relativistic effects. Relativistic Dynamics
is theoretically founded in the context of Special Relativity (see for instance
[12, Chapter 33]), and the relativistic Kepler or Coulomb problem has been
considered in previous works [1, 6, 17]. However, it seems that for the most
general non-autonomous center field force is still very unexplored, in this line
we can cite the recent paper [22]. When the mass of our particle at rest and the
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speed of light are normalized to one, we are led to consider the following family
of second-order systems in the plane:

d

dt

(
ẋ√

1 − |ẋ|2

)
= f(t, |x|) x|x| , x ∈ R

2 \ {0}. (1)

Here, f : R × (0,∞) → R, f = f(t, r) is assumed to be Caratheodory and T -
periodic in the time variable t (i.e. f(t, ·) : (0,∞) → R is continuous for almost
every t ∈ R, f(·, r) : R → R is T−periodic and medible for every r > 0 and
for every fixed positive numbers a, b the function maxr∈[a,b] |f(t, r)| is locally
integrable on R). Notice however that it may be singular at r = 0. Solutions
of (1) are understood in a classical sense, i.e., a C1 function x : R → R2 is a
solution provided that

x(t) 6= 0, |ẋ(t)| < 1 , t ∈ R,

and the equality (1) holds on almost everywhere.
In this paper we are interested in finding a certain class of functions which

include the T−periodic ones but also some subharmonic and quasi-periodic
solutions. To introduce this class of functions it will be convenient to use the
polar coordinates and rewrite in complex notation each continuous function
x : R → R2\{0} ≡ C\{0} as x(t) = r(t)eiθ(t), where r(t) = |x(t)| and θ : R → R

is some continuous determination of the argument along of the function x. We
say that x is T−radially periodic whenever r(t) is T−periodic and there exists
a real number ω such that θ(t)−ωt is T−periodic. This number was introduced
in [22] as the rotational (or angular velocity) of x and denoted as rot(x).

For instance, the T -radially periodic function x : R → R2 \{0} is T - periodic
if and only if rotx is an integer multiple of 2π/T . If rotx = (m/n) (2π/T ) for
some relatively prime integers m 6= 0 6= n then x will be subharmonic with
minimal period nT .

Finally, if rot x
2π/T is irrational (and |x| is not constant) then x will not be

periodic of any period and instead it will be quasi-periodic with two frequen-
cies ω1 = 2π

T ; ω2 = rotx. This is easy to check, since x(t) = r(t)eiθ(t) can

be decomposed on the product of the T -periodic r(t)ei(θ(t)−rot(x)t) and the
2π/ rotx−periodic ei rot(x)t.

Some illustrative examples in order to understand better the above con-
cepts may be seen in [11] and [22], especially in this last one there is a graphic
representation with the meaning of the concept (see [22, Figure 1]).

It is well-known that if our force field is globally repulsive, i.e.,

f(t, r) > 0 for (t, r) ∈ R × (0,∞),

then (1) has no T−radially periodic solutions. This fact is easily checkable
multiplying in (1) by x and integrating on [0, T ]. However, when our force field
is attractive at some level r∗ > 0 and autonomous (it does not depend on t),
i.e.,

f(r∗) < 0,

EJQTDE, 2013 No. 31, p. 3



then an easy computation proves that there are T−radially periodic solutions
of (1) with constant angular velocity equal to

|ω| =

√
2

r∗

√

1 +

√
1 +

(
2

r∗f(r∗)

)2

.

In addition to the above trivial results, recently we have proven that if we
consider an attractive continuous (non-autonomous) force field at some level
then there exists many infinitely T−radially periodic solutions of (1).

The above-mentioned results applied to the relativistic Gylden-Meshcherskii
problem

d

dt

(
ẋ√

1 − |ẋ|2

)
= M(t)

x

|x|3 , x ∈ R
2 \ {0}, (2)

imply that M must be negative in all R, which is too much restrictive for some
type of physical problems above considered. The main objective in this paper
is overcoming this restriction. For that we will prove the following statement.

Theorem 1 Assume the existence of r∗ > 0 such that

∫ T

0

max
r∈[λ,λ+T/2]

f(t, r)dt < 0 ∀ λ ≥ r∗.

Then either
{

min
t∈R

|x(t)| : x is a T−rad. periodic solution of (1)

}
= (0,∞)

or there exist T−rad. periodic solutions of (1) with angular velocity equal to 0.

Now, according to Theorem 1 it can be proven that M :=
∫ T

0 M(s)ds < 0

implies the existence of T−rad. periodic solutions of (2). In fact, M < 0 is
a necessary and sufficient condition for the existence of non-constant T−rad.
periodic solutions of (2).

Immediately the following questions arise from Theorem 1: what type of
solutions are obtained in Theorem 1?, do T−periodic solutions of (1) exist?
The following theorem gives such answers.

Theorem 2 Under the assumption of Theorem 1 there exists ω∗ > 0 with the
following property: for every ω ∈ (−ω∗, ω∗) \ {0} there is a T−rad. periodic
solution xω = xω(t) of (1) such that rot(xω) = ω.

In particular, taking ω = (2π)/(nT ) for some natural number large enough
we can find the existence of sub-harmonic solutions having as minimal period
a multiple of T . On the other hand, putting ω = (2π/T )s for some irrational
number s we obtain the existence of infinitely many quasi-periodic orbits of (1).
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At this moment, we would like to analyze the advantages and disadvantages
of our results with respect to the known ones in the actual literature, not only
in the relativistic case but also in the classical one. The only analytical result
known for us assuming relativistic effects is [22, Theorem 1.1]. Obviously, both
results are independent and complementary. In both results, the singularity does
not play any role, and the T−rad. periodic solutions are from the same nature,
they rotate around the origin with very small angular velocity. Moreover, in both
results an attractiveness condition is required on f . In the actual Theorems 1-
2 we need something less than attractiveness on f , but, in contrast with the
result proved in [22], such condition must be assumed not only at some fixed
level but, at some neighborhood at infinity. However, the obtained information
here is major and it will allow, since it will be seen, to get consequences even
for scalar equations. With regard to the result in the classical case, we can find
important differences. For example, on no account can be obtained analogous
Theorems 1-2 for this case, because f must fulfil some sub-linear requirement
in order to avoid the resonance phenomenon.

Finally, we point out that Theorems 1-2 also can become false if our particle
is restricted to be on a line instead of on the plane. In this case problem (1) is
reduced to

d

dt

(
ṙ√

1 − ṙ2

)
= f(t, r), r > 0. (3)

Now T−rad. periodic solutions of (1) are reduced to T−periodic solutions of (3)
(understanding by T−periodic solution, in the scalar case, a positive T−periodic
function r in C1); for that, obviously, if our force field is globally attractive, by
contradiction, integrating in (3) on the period of some possible T−periodic
solution r, it is proven that (3) cannot have any T−periodic solution. This
implies, according to Theorem 1, that under the global attractiveness of f , for
every positive number r there exists a T−rad. periodic solution of (1) xr such
that mint∈R |xr(t)| = r. On the contrary, if one would know that there exists
some level r0 > 0 such that (1) has no any T−rad. periodic solutions then
Theorem 1 provides the existence of T−periodic solutions of (3). On this idea
is based our next theorem:

Theorem 3 Under the assumption of Theorem 1. If there exists at level r0 > 0
such that ∫ T

0

min
r∈[r0,r0+T/2]

f(t, r)dt > 0,

then (3) has at least one (positive) T−periodic solution.

Intuitively, in order to get some efficient conditions guaranteeing the exis-
tence of (positive) T−periodic solutions of (3), it is necessary that f is attractive
in some neighborhood of infinity. Therefore, Theorem 3 can be applied to many
equations, for example to

d

dt

(
ṙ√

1 − ṙ2

)
=
q1(t)

rγ
− q2(t)

rδ
+ e(t), r > 0,
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where q1, q2 are non-negative locally integrable and periodic functions, e is only
locally integrable and periodic and γ, δ are positive constants. This type of
equations can be important from the physical point of view for the studying
process as trapless 3D Bose-Einstein condensate taking into account relativistic
effects (see for the classical case [16, Section 5]). In addition, we do not know
any analytical result from literature on them. As a particular case it can be
considered the classic equation of Lazer and Solimini (case q2 ≡ 0) with a weak
type singularity (i.e. γ ∈ (0, 1)). In [4] it proved that, in this particular case, in

addition of the necessary assumption
∫ T

0 e(s)ds < 0, more requirements must
be assumed, but it was not possible to find them. Since it does not require
any difficulty to apply Theorem 3 to study this type of equations, it will be
convenient only to indicate that the above method works in order to avoid too
many trivial arguments.

As a short and concrete application of Theorem 3, we will study the well-
known Mathieu-Duffing equations with relativistic effects. The obtained re-
sults can be compared with [5], where we got independent conditions using a
variational approach; but the solutions could be non-positive (for more results
about Mathieu-Duffing equations in the classical case see [21] and the references
therein).

Actually, it will be important to recall some basic concepts on the equation
(1). Let x = reiθ(t) be written in polar coordinates, it is a T−rad. periodic
solution of (1) if and only if there exist a real number µ ∈ R (the relativistic
angular moment) and (r, p) a T−periodic solution of

ṙ =
rp√

µ2 + r2 + r2p2
, ṗ =

µ2

r2
√
µ2 + r2 + r2p2

+ f(t, r) , (HS)

here p = ṙ/
√

1 − ṙ2 − r2θ̇2 is called the relativistic linear momentum. Moreover,
the rotational of any T−rad. periodic solution of (1) can be computed in terms
of r, p and µ:

rot(r, p;µ) :=
µ

T

∫ T

0

dt

r(t)
√
µ2 + r2(t) + r2(t)p2(t)

. (4)

The above process is reversible, i.e., if (r, p;µ) is a T−periodic solution of
(HS) then x = reiθ , where θ is any primitive of µ/(r(t)

√
µ2 + r2(t) + r2(t)p2(t)),

is a T−rad. periodic solution of (1). Taking into account this property we will
equivalently use the system (HS) in order to study the equation (1) (see [22] for
more details).

The paper is structured as follows: In section 2 some a priori bounds for
the T−periodic solutions of (HS) are obtained. In Section 3, by using the
continuation arguments of Leray-Schauder degree, our main Theorems 1-2 will
be proven. In the last section, Section 4, we will apply Theorem 1 to study the
existence of periodic solutions in the scalar case. An important example will
illustrate our results.
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2 A priori bounds

It is well-known that the fundamental principle on which is based the Relativistic
Mechanic is: the particles cannot travel faster than light (which in our model is
assumed to be 1). This basic principle implies the existence of bounds on the
variation of T−rad. periodic solutions of (1), both in the angular and the radial
components. More precisely:

Lemma 1 Let (r, p;µ) a T−periodic solution of (HS). Then,

(a) maxt∈R r(t) − mint∈R r(t) < T/2.

(b) | rot(r, p;µ)| ≤ 1
mint∈R r(t) .

Proof. The first part of the proof is obtained using that the oscillation of any
T−periodic and continuously differentiable function r is bounded by ‖ṙ‖∞T/2,
i.e., it fulfils maxt∈R r(t) − mint∈R r(t) ≤ ‖ṙ‖∞T/2 (see [4, Lemma 6]). This
elementary estimation will be frequently used in the presented paper. On the
other hand, the definition (4) implies (b).

The main hypothesis of Theorems 1-2 is the attractiveness (in average) of
the force field at someplace far from the origin, i.e., there exists r∗ > 0 such
that ∫ T

0

max
r∈[λ,λ+T/2]

f(t, r)dt < 0 ∀ λ ≥ r∗. (5)

Under this assumption one easily checks that any T−periodic solution (r, p;µ)
with mint∈R r(t) ≥ r∗ has (relativistic) angular momentum µ 6= 0.

Lemma 2 Assume (5). Then rot(r, p;µ) 6= 0 for any T−periodic solution
(r, p;µ) of (HS) with mint∈R r(t) ≥ r∗.

Proof. We use an argument by contradiction, we assume that there is (r, p;µ)
a T−periodic solution of (HS) with mint∈R r(t) ≥ r∗ and µ = 0 (in view of (4)
it is equivalent to assume that rot(r, p;µ) = 0). In particular, from (HS) we
deduce that the T−periodic function r fulfils the equation (3). By integrating
on the period of r and using (5) we get a contradiction.

The next goal will be to find some a priori estimates on the (relativistic)
linear and angular momentum (p and µ) for every T−periodic solution (r, p;µ)
of (HS) contained on some annular region.

Lemma 3 For every a > 0 there exist P > 0 and M > 0 (depending only on a
and f) such that

‖p‖∞ ≤ P, |µ| < M,

for any T−periodic solution (r, p;µ) of (HS) such that r(t) ∈ [a, a+ T ].
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Proof. Let (r, p;µ) be any T−periodic solution of (HS) with r(t) ∈ [a, a+ T ].
We define t∗ ∈ [0, T ], t∗ ∈ [t∗, t∗ + T ] the points where p attains its global

maximum and minimum respectively. Therefore, by integrating on [t∗, t∗] the
second equation of (HS) we can prove the first part of the statement, i.e.,

max
t∈R

p(t) − min
t∈R

p(t) ≤
∫ T

0

max
r∈[a,a+T ]

|f(t, r)|dt =: P.

In order to proof the second part we integrate on the period of p the second
equation of (HS) obtaining

µ2 = − 1
∫ T

0
dt

r2(t)
√

µ2+r2(t)+r2(t)p2(t)

∫ T

0

f(t, r(t))dt.

Assuming that |µ| ≥ 1 (on otherwise the proof is completed), the above identity
allows to check

|µ| < (1+a)3+
(a+ T )2

√
1 + (a+ T )2 + (a+ T )2P 2

T

∫ T

0

max
r∈[a,a+T ]

|f(t, r)|dt =: M.

Fixed any positive number a, according to Lemma 3 we can define P (a) :=∫ T

0 maxr∈[a,a+T ] |f(t, r)|dt and the function

M(a) := (1+a)3+
(a+ T )2

√
1 + (a+ T )2 + (a+ T )2P 2(a)

T

∫ T

0

max
r∈[a,a+T ]

|f(t, r)|dt

in the way that ‖p‖∞ ≤ P (a) and |µ| < M(a) for any T−periodic solution
(r, p;µ) of (HS) with r(t) ∈ [a, a + T ]. Moreover, there exists λ2 > 0 large
enough such that

M(a)

(a+ T/2)2
√

2
+

1

T

∫ T

0

f(t, a+ T/2)dt > 0 ∀ a ≥ λ2. (6)

This inequality will be used in the next section, so that it will be convenient to
recall it.

3 Continuation of solutions with nonzero degree

Theorems 1-2 were formulated with respect to system (1). However, in view of
the equivalence between finding T−rad. periodic solutions of (1) and finding
T−periodic solutions of (HS), we can equivalently state:

Theorem 1bis. Assume (5). Then, either

{
min
t∈R

r(t) : (r, p;µ) is a T−periodic solution of (HS)

}
= (0,∞),
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or there are T−periodic solutions (r, p;µ) of (HS) with µ = 0.

Theorem 2bis. Under the assumption of Theorem 1bis., there exists ω∗ >
0 with the following property: for every ω ∈ (−ω∗, ω∗) \ {0} there is some
T−periodic solution (r, p;µ) of (HS) with rot(r, p;µ) = ω.

This section will be destined to prove these results. For that, it will be useful
to consider the following change of variable:

r(t) = λ(1 + r̃(t)), p(t) = λp̃(t) (λ ∈ (0,∞)). (7)

Here r̃, p̃ belong to the Banach spaces C0(R/TZ) := {r̃ ∈ C(R/TZ) : r̃(0) = 0},
C(R/TZ) (is the set of the continuous T−periodic functions on R) respectively.
To simplify the notation, we will write Y := C0(R/TZ) × C(R/TZ) × R, the
Banach space induced by the classical norm, i.e., if y = (r̃, p̃;µ) ∈ Y we will
write ‖y‖ = ‖r̃‖∞ + ‖p̃‖∞ + |µ|.

With regard to the new variables (r̃, p̃ and µ), (HS) can be rewritten as

˙̃r = N1[λ, r̃, p̃;µ] , ˙̃p = N2[λ, r̃, p̃;µ] , (H̃S)

where Ni : Ω ⊂ R×Y → C(R/TZ) (i = 1, 2) are the Nemitskii operators defined
by

N1[λ, r̃, p̃;µ] :=
λ(1 + r̃)p̃√

µ2 + λ2(1 + r̃)2 + λ4(1 + r̃)2p̃2
,

N2[λ, r̃, p̃;µ] :=
µ2

λ3(1 + r̃)2
√
µ2 + λ2(1 + r̃)2 + λ4(1 + r̃)2p̃2

+
f(t, λ(1 + r̃))

λ
,

and Ω is the natural open subset of R × Y for which everything is well-defined,
in this case Ω := {(λ, r̃, p̃;µ) ∈ R × Y : λ > 0, mint∈R r̃(t) > −1}.

We point out that whenever (r, p;µ) is a T−periodic solution of (HS) then,
taking λ = r(0) and defining r̃, p̃ by (7), (r̃, p̃;µ) will be a T−periodic solution

of (H̃S); and vice versa, if there exist λ > 0 and (r̃, p̃;µ) a T−periodic solution

of (H̃S) then (r, p;µ) defined by (7) will be a T−periodic solution of (HS) with
r(0) = λ.

The key to prove Theorems 1bis-2bis will be the next result.

Proposition 1 Assume (5). Then there exists a connected subset C of the

T−periodic solutions of (H̃S) verifying

(i) {λ : (λ, r̃, p̃;µ) ∈ C)} ⊃ [r∗ + T/2,∞)

and one of the following conditions:

(ia) {λ(1 + mint∈R r̃(t)) : (λ, r̃, p̃;µ) ∈ C} = (0,∞)

(ib) C ∩ [R × C0(R/TZ) × C(R/TZ) × {0}] 6= ∅.
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The connection of C refers to the topology of R × Y .
We postpone the proof of Proposition 1 to the end of the section; at this

moment let us see how it can be used in order to obtain Theorems 1bis-2bis.
Let C be the connected set given by Proposition 1. Notice that the set

C1 := {(λ(1 + r̃), λp̃;µ) : (λ, r̃, p̃;µ) ∈ C} is a subset of the T−periodic solutions
of (HS) when λ > 0, because of the change of variable done in (7). Moreover,
C1 is a connected subset on C(R/TZ) × C(R/TZ) × R.

Proof of Theorem 1bis. The proof is concluded rewriting Proposition 1 using
the change of variable (7) and the connected set C1.

It is clear from (HS) that whenever (r, p;µ) is a T−periodic solution of this
system, (r, p;−µ) is another one; furthermore rot(r, p;µ) = − rot(r, p;−µ). This
fact has the following consequence: for studying Theorem 2bis is sufficient to
check that there exists ω∗ > 0 with the property that for any ω ∈ (0, ω∗) there
is a T−periodic solution (r, p;µ) of (HS) with rot(r, p;µ) = ω. This will be our
next goal.

Proof of Theorem 2bis. We pick up an element (r1, p1;µ1) of C1 such that
mint∈R r1(t) ≥ r∗. Since (r1, p1;µ1) is a T−periodic solution of (HS), Lemma 2
implies that ω∗ = rot(r1, p1;µ1) > 0 (the positiveness of ω∗ can be assumed by
the previous discussion). Let ω ∈ (0, ω∗) be, we chose other element (r2, p2;µ2)
of C1 such that mint∈R r2(t) > 1/ω. According to Lemma 1(b), | rot(r2, p2;µ2)| <
ω. From the connectedness of C1 follows the existence of (r, p;µ) ∈ C1 such that
rot(r, p;µ) = ω.

At this moment it only remains to show Proposition 1. With this aim we
rewrite (H̃S) in an abstract way. The 1-dimensional subspace of C(R/TZ) com-
posed by the constant functions will be identified with R; we use this identifi-
cation in order to define the projections on this subspace Π, Q : C(R/TZ) →
C(R/TZ):

Πx := x(0) = x(T ), Qx :=
1

T

∫ T

0

x(s)ds.

For any x ∈ KerQ we denote by Kx to the primitive of x vanishing at t = 0, T ,
and the linear operator K : KerQ → KerΠ defined in this way is compact.
Taking into account the definitions of Nemitskii operator we can rewrite (H̃S)
as a fixed point problem (depending on a parameter) defined on suitable open
set of Y

y = F [λ; y],

the (non-linear) operator F : Ω → Y is given by

F [λ; y] := (K(I−Q)N1[λ; y],Πp̃+QN1[λ; y]+K(I−Q)N2[λ; y], µ+QN2[λ; y]),

(we denote I to the identity operator of C(R/TZ)). We point out that F is
completely continuous, i.e., it is continuous and maps bounded sets of R × Y
whose closure is contained in Ω into relatively compact subsets of Y .
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Let us define λ2 > r∗ in such a way that (6) holds and let consider the family
of bounded open subset of Y

Uλ :=

{
y ∈ Y : ‖r̃‖∞ <

T

2λ
, ‖p̃‖∞ <

P (λ− T/2) + 1

λ
, 0 < µ < M(λ− T/2)

}
.

Before we prove Proposition 1, we compute the Leray-Schauder degree of F [λ; ·]
on Uλ when λ− T/2 ≥ λ2.

Lemma 4 Assume the conditions of Proposition 1 and Uλ an open set chosen
before. Then F [λ, ·] has no fixed point on ∂Uλ and

dLS(I − F [λ; ·], Uλ, 0) = 1.

Proof. First, we check that F [λ; y] 6= y for any y ∈ ∂Uλ. Indeed, this set can
be divided in three parts non-disjoints: the set of the elements (r̃, p̃;µ) ∈ Y
such that ‖r̃‖∞ = T/(2λ), the set of elements (r̃, p̃, µ) ∈ Y such that ‖p̃‖∞ =
(P (λ − T/2) + 1)/λ or the set of elements (r̃, p̃;µ) such that either µ = 0 or
µ = M(λ−T/2). Recalling that whenever we define r, p as in (7), then F [λ; y] =
y implies that (r, p;µ) is a T−periodic solution of (HS) with r(0) = λ ≥ λ2.
According to Lemma 1(a), Lemma 3 (with a = λ−T/2), neither ‖r̃‖∞ = T/(2λ)
nor ‖p̃‖∞ = (P (λ − T/2) + 1)/λ can be happened. Moreover, Lemma 2 and
Lemma 3 (with a = λ− T/2) prevent that µ = 0 and µ = M(λ− T/2).

In order to prove the result we consider a homotopy to some fixed point
problem whose associated operator has degree known and different from zero.
Let us define H : [0, 1]× Uλ → Y as

H [s; y] := (sK(I−Q)Ns
1 [λ; y],Πp̃+QNs

1 [λ, y]+sK(I−Q)Ns
2 [λ, y], µ+QNs

2 [λ, y]),

where Ns
1 [λ, y] = N1[λ, sr̃, p̃, sµ] and Ns

2 [λ, y] = N2[λ, sr̃, sp̃, µ]. Notice that H
is completely continuous and H [1; y] = F [λ; y]. In addition, H [s; y] = y if and
only if QNs

1 [λ; y] = 0, QNs
2 [λ; y] = 0 and

ṙ =
sα(s, r)p√

s2µ2 + α2(s, r) + α2(s, r)p2
,

ṗ = s

[
µ2

α2(s, r)
√
µ2 + α2(s, r) + s2α2(s, r)p2

+ f(t, α(s, r))

]
,

where r, p are defined by (7) and α(s, r) := λ(1 − s) + sr. Taking into account
that Lemma 1(a) implies that |α(s, r)| < λ + T/2, a similar argument to the
one already used to show that F [λ; ·] does not have fixed points on ∂U proves
now that H [s; y] 6= y for any s ∈ [0, 1) and y ∈ ∂U . When s = 0, r and p
must be a constants. Since QN1[λ; 0, p̃; 0] = 0 then p̃ = 0. Moreover, since
QN2[λ; 0, 0;µ] = 0, in a similar way like in Lemma 2 and Lemma 3 it follows
that 0 < |µ| < M(λ − T/2). Therefore the homotopy H is admissible, this
means that

degLS(I − F [λ; ·], Uλ, 0) = degLS(I −H [1; ·], Uλ, 0) = degLS(I −H [0; ·], Uλ, 0).
(8)
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Since the image of Uλ by H [0; ·] is contained on R3. By linking of (8) with
Theorem 8.7 in the page 59 of [9] we see that

degLS(I − F [λ; ·], Uλ, 0) = degB(IR3 −H [0; ·]
∣∣
R3
, Uλ ∩ R

3, 0),

where degB denotes the Brouwer degree. Observe that Uλ ∩ R3 = [−a1, a1] ×
[−a2, a2] × [0,M(λ− T/2)] for some suitable positive numbers a1, a2, and

IR3 −H [0; ·]
∣∣
R3

(r̃, p̃;µ) = (r̃,−QN1[λ; 0, p̃, 0],−QN2[λ; 0, 0;µ]).

We are led to consider the functions ϕ : [−a2, a2] → R, ψ : [0,M(λ−T/2)] → R

defined by

ϕ(p̃) :=
p̃√

1 + λ2p̃2
, ψ(µ) :=

µ2

λ3
√
µ2 + λ2

+
1

T

∫ T

0

f(t, λ)

λ
dt ,

and their cartesian product

ϕ× ψ : [−a2, a2] × [0,M(λ− T/2)] → R
2, (p̃, µ) 7→ (ϕ(p̃), ψ(µ)) .

The usual properties of the degree imply

degB

(
IR3 −H [0; ·]

∣∣
R3
, U ∩ R

3, 0
)

= degB

(
ϕ× ψ, (−a2, a2) × (0,M), 0

)

= degB

(
ϕ, (−a2, a2), 0

)
degB

(
ψ, (0,M), 0

)

= 1.

since ϕ and ψ change from negative to positive on their domain (see (6) with
a = λ− T/2). It concludes the proof.

Proof of Proposition 1. We choose λ∗ a fixed number such that the bounded
open set Uλ∗

⊂ Y is well define and is possible to apply Lemma 4, i.e., the
degree is well defined and it fulfils degLS(I − F [λ∗, ·], Uλ∗

, 0) 6= 0.
Under these assumptions the classical Leray-Schauder continuation theorem

([13], see also [2, 8, 14, 15]) provides the existence of a connected set C composed
by the elements (λ, r̃, p̃;µ) ∈ R × Y such that (r̃, p̃;µ) is a T−periodic solution

of (H̃S) for that λ. Using the change of variable (7), Lemmas 1, 2 and 3 imply
(i) and one of the following conditions:

1. {λ : (λ, r̃, p̃;µ) ∈ C} = (0,∞).

2. inf{mint∈R r̃ : (λ, r̃, p̃;µ) ∈ C, λ ∈ (0, r∗ + T/2)} = −1.

3. {(r̃, p̃;µ) : (λ; r̃, p̃;µ) ∈ C, λ ∈ (0, r∗ + T/2)} is not bounded.

4. C ∩ (R × C0(R/TZ)× C(R/TZ) × {0}) 6= ∅.
In order to finish the proof we will see that if (ia) does not happen then (ib) hap-
pens. Indeed, that (ia) does not happen implies the existence of some constant
k > 0 such that mint∈R r(t) ≥ k for any (r, p;µ) ∈ C1; in particular

λ = r(0) ≥ min
t∈R

r(t) ≥ k ∀ (r, p;µ) ∈ C1,
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contradicting 1.. Other consequence of the before one is

r̃ ≥ k

λ
− 1 >

k

r∗ + T/2
− 1 > −1 ∀ (λ, r̃, p̃;µ) ∈ C,

thus 2. cannot be fulfilled. On the other hand, 3. do not hold. Indeed, r̃ is
clearly bounded; in addition, since k ≤ mint∈R r(t) < r∗ + T/2, with the same
argument of Lemma 3 is proven that p = λp̃ and |µ| are uniformly bounded
(they depend only on k and r∗ + T/2), so that 3. cannot be fulfilled. The only
possibility is 4., but it is exactly the same that (ib).

4 Applications to the existence of periodic solu-

tions for the scalar case

In this section, we will see how our Theorem 1 can be used in order to guarantee
the existence of at least one T−periodic solution for the equation (3).

Since it has been mentioned in the introduction, our hypothesis (5) is not
sufficient to guarantee the T−periodic solvability of (3). This is explained if
one considers a global attractive function f , it fulfils hypothesis (5) but (3) has
no periodic solutions. Therefore, in order to study the T−periodic solvability
of (3) will be necessary, in some sense, that f is repulsive on somewhere, i.e.,
we will assume that there exists r0 > 0 such that

∫ T

0

min
r∈[r0,r0+T/2]

f(t, r)dt > 0. (9)

Now, under the hypothesis (5) and (9) we can guarantee the existence of at least
one T−periodic solution for (3) (see Theorem 3).

Proof of Theorem 3 Let us consider the system equation (1). Under hypoth-
esis (5), Theorem 1 provides of two possibilities:

1) {mint∈R |x(t)| : x is a T−rad. periodic solution of (1)} = (0,∞)

2) there exist T−rad. periodic solutions of (1) with angular momentum equal
to 0.

Notice that if 2) happens, such solutions are T−periodic solutions of (HS) with
the form (r, p;µ = 0), in particular r will be a T−periodic solution of (3). On the
contrary, if (1) happens, we can choose a T−rad. periodic solution of (1) with
mint∈R |x(t)| = r0. According to Cauchy-Schwartz inequality and integrating
by parts, one can easily check

∫ T

0

<
d

dt

(
ẋ√

1 − |ẋ|2

)
,
x

|x| > dt ≤ 0,

(<,> denotes the scalar product on R
2). Since x fulfils (1), from the previous

inequality we arrive to contradiction with (9).
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In order to prove the applicability of Theorem 3 we could consider many
types of equations, even equations whose solvability is still unknown. In order
to compare the results we will only concern the Mathieu-Duffing type equations,
i.e., the equations like

d

dt

(
ṙ√

1 − ṙ2

)
= q(t)r − p(t)r3, (10)

where q, p are locally integrable functions, with positive range for p, and both
are T−periodic ones.

It will be convenient to introduce a new notation which will be only used for
this part. We denote

P :=

∫ T

0

p(s)ds, Q+ :=

∫ T

0

q+(s)ds, Q− =

∫ T

0

q−(s)ds,

and Q := Q+ −Q−; here q+(s) := max{q(s), 0}, q−(s) = min{−q(s), 0}. With
the previous notation we present the following results.

Corollary 1 Assume q :=
∫ T

0
q > 0. If

Q+ <
4

T
√
P

(
Q

3

) 3

2

, (11)

there exists at least one (positive) T−periodic solution of (10). Moreover, by
symmetry of (10) there is another (negative) T−periodic solution.

Proof. From (11) we can define r0 =
√
Q/(3P )− T/2 > 0. Indeed,

4√
P

(
Q

3

) 3

2

− TQ+ = 2

(
Q

3P

) 1

2

[
Q+ −Q− − Q

3

]
− TQ+

= 2

(
r0Q+ −Q−

(
Q

3P

) 1

2

−
(

Q

3P
1

3

) 3

2

)
;

since (11) implies that the left side is positive, the right side implies that r0 > 0.
Let us define f(t, r) = q(t)r − p(t)r3. Because of P > 0 we can prove (5). On
the other hand

∫ T

0

min
r∈[r0,r0+T/2]

f(t, r)dt ≥ r0Q−
(
r0 +

T

2

)3

P − TQ−

2
.

Notice that the function ξ(r) = rQ − (r + T
2 )3P − TQ−

2 will attain its global
maximum at r0, so that r0 is the best election. Moreover, due to (11) it follows
that ξ(r0) > 0, i.e., (9) holds. Now, the results is proven applying Theorem 3.
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In most of the cases, in literature is considered a particular case of (10),
usually the considered equation is

d

dt

(
ṙ

1 − ṙ2

)
= (b1 + b2 cos t)r + cr3, (12)

where b1, b2 and c are real numbers; i.e., the particular case of (10) when q(t) =
b1 + b2 cos t and p(t) = c. In this type of problems is usual to find 2π−periodic
solutions (i.e. T = 2π). This will be done as example of applicableness of
Corollary 1 (see [5, 21]).

Example 1 Assume b1 > 0 and c > 0. If

πb1 + b2 <

(
b1

3c
1

3

) 3

2

,

the equation (12) has at least one (positive) 2π−periodic solution. Obviously,
by symmetry, it has another solution with different sign.
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[18] I. Newton, Principes Mathématiques de la Philosophie Naturelle, Livre
Premier, Seconde Section, Paris, 1759.

[19] W. C. Saslaw, Motion around a source whose luminosity changes, The
Astrophysical Journal 226 (1978), 240-252.

[20] D. Selaru, V. Mioc, C. Cucu-Dumitrescu, The periodic Gyldén-type prob-
lem in Astrophysics, AIP Conf. Proc. 895 (2007), pp. 163-170.

[21] P. J. Torres, Existence of one-signed periodic solutions of some second-order
differential equations via a Krasnoselskii fixed point theorem, J. Differential
Equations 190 (2003) 643-662.

[22] P. J. Torres, A. J. Ureña, M. Zamora, Periodic and quasi-periodic motions
of a relativistic particle under a central force field, Bulletin of the London
Mathematical Society (1) 45 (2013), 140-152.

(Received November 28, 2012)

EJQTDE, 2013 No. 31, p. 16


