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§1 Introduction

In this paper we are concerned with the following Dirichlet-type differential inclusion prob-

lems  −div

(
(1 + |∇u|p(x)√

1+|∇u|2p(x)
)|∇u|p(x)−2∇u

)
∈ λ∂F (x, u), a.e. in Ω,

u = 0, on ∂Ω,
(P )

where Ω ⊆ RN is a bounded domain, λ > 0 is a real number, p(x) ∈ C(Ω), 1 < p− ≤ p(x) < +∞
and F : Ω× R→ R is a locally Lipschitz with respect to the second variable (in general it can

be nonsmooth), and ∂F (x, t) is the subdifferential with respect to the t-variable in the sense of

Clarke [1].

Parabolic and elliptic problems with variable exponents have attracted in recent years a

lot of interest of mathematicians around the world. For example, [2–14] and the references

therein. The wide study of such kind of problems is motivated by various applications related

∗Email address: zhouqingmei2008@163.com

Supported by the Fundamental Research Funds for the Central Universities (nos. DL12BC10, 2014), the

New Century Higher Education Teaching Reform Project of Heilongjiang Province in 2012 (no. JG2012010012),

Humanities and Social Science Project in Heilongjiang Province Department of Education: Empirical Analysis

and Construction of the Evaluation on Complex Resources service performance of Hybrid Library Based on

Comprehensive Weight, the National Science Found of China (nos. 11126286, 11201095), China Postdoctoral

Science Foundation Funded Project (no. 20110491032), China Postdoctoral Science (Special) Foundation (no.

2012T50303).

EJQTDE, 2013 No. 63, p. 1



to electrorheological fluids (an important class of non-Newtonian fluids) [2, 15, 16], image

processing [17], elasticity [18], and also mathematical biology [19].

In a recent paper [20], by using the nonsmooth three critical points theorem and assuming

suitable conditions for nonsmooth potential F , we proved the existence of three solutions of

(P ). In this paper our goal is to prove the existence of at least two solutions for the problem

(P ) as the parameter λ > λ0 for some constant λ0.

Next, we assume that F (x, t) satisfies the following general conditions:

(f1) |w| ≤ c1 + c2|t|α(x)−1, for almost all x ∈ Ω, all t ∈ R and w ∈ ∂F (x, t);

(f2) There exist γ ∈ C(Ω) with p+ < γ(x) < p∗(x) and µ ∈ L∞(Ω), such that

lim sup
t→0

〈w, t〉
|t|γ(x)

< µ(x),

uniformly for almost all x ∈ Ω and all w ∈ ∂F (x, t);

(f3) There exist t0 > r0 > 0 and x0 ∈ Ω such that

F (x, t0) > δ0 > 0, a.e. x ∈ Br0(x0),

where Br0(x0) := {x ∈ Ω : |x− x0| ≤ r0} ⊂ Ω.

The paper is organized as follows. We first introduce some basic preliminary results and a

well-known lemma in Section 2, including the variable exponent Lebesgue and Sobolev spaces.

In Section 3, we give the main result and its proof. In Section 4, we give the summary of this

paper.

§2 Preliminaries

In this part, we introduce some definitions and results which will be used in the next section.

Firstly, we introduce some theories of Lebesgue–Sobolev space with variable exponent. The

detailed description can be found in [21–24].

Write
C+(Ω) = {h ∈ C(Ω) : h(x) > 1 for any x ∈ Ω},

h− = min
x∈Ω

h(x), h+ = max
x∈Ω

p(x) for any h ∈ C+(Ω).

Obviously, 1 < h− ≤ h+ < +∞.

Denote by U (Ω) the set of all measurable real functions defined on Ω. Two functions in

U(Ω) are considered to be one element of U(Ω), when they are equal almost everywhere.

For p ∈ C+(Ω), define

Lp(x)(Ω) = {u ∈ U(Ω) :

∫
Ω

|u(x)|p(x)dx < +∞},

with the norm |u|Lp(x)(Ω) = |u|p(x) =inf{λ > 0 :
∫

Ω
|u(x)
λ |

p(x)dx ≤ 1}, and

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}
with the norm ‖u‖ = ‖u‖W 1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

Denote W
1,p(x)
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(x)(Ω).
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Hereafter, let

p∗(x) =


Np(x)

N − p(x)
, p(x) < N,

+∞, p(x) ≥ N.
We remember that the variable exponent Lebesgue spaces are separable and reflexive Banach

spaces. Denote by Lq(x)(Ω) the conjugate Lebesgue space of Lp(x)(Ω) with 1
p(x) + 1

q(x) = 1, then

the Hölder type inequality∫
Ω
|uv|dx ≤ ( 1

p− + 1
q− )|u|Lp(x)(Ω)|v|Lq(x)(Ω), u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω)

holds. Furthermore, define mapping ρ : Lp(x)(Ω)→ R by

ρ(u) =

∫
Ω

|u(x)|p(x)dx,

then the following relations hold

| u |p(x)> 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x),

| u |p(x)< 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

Proposition 2.1 [21] If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then the embedding

from W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous.

Consider the following function:

J(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx, u ∈W 1,p(x)

0 (Ω).

We know that (see [1]), J ∈ C1(W
1,p(x)
0 (Ω),R). If we denoteA= J ′ : W

1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗,

then

〈A(u), v〉 =

∫
Ω

(
|∇u|p(x)−2 +

|∇u|2p(x)−2√
1 + |∇u|2p(x)

)
(∇u,∇v)RNdx,

for all u, v ∈W 1,p(x)
0 (Ω).

Proposition 2.2 [24] Set X = W
1,p(x)
0 (Ω), A is as above, then

(1) A : X → X∗ is a convex, bounded and strictly monotone operator;

(2) A : X → X∗ is a mapping of type (S)+, i.e., un
w→ u in X and lim sup

n→∞
〈A(un), un−u〉 ≤ 0,

implies un → u in X;

(3) A : X → X∗ is a homeomorphism.

Let X be a Banach space and X∗ be its topological dual space and we denote 〈·, ·〉 as the

duality bracket for pair (X∗, X). A function ϕ : X → R is said to be locally Lipschitz, if for

every x ∈ X, we can find a neighbourhood U of x and a constant k > 0 (depending on U), such

that |ϕ(y)− ϕ(z)| ≤ k‖y − z‖, ∀y, z ∈ U.
For a locally Lipschitz function ϕ : X → R, we define

ϕ0(x;h) = lim sup
x′→x;λ↓0

ϕ(x′ + λh)− ϕ(x′)

λ
.

It is obvious that the function h 7→ ϕ0(x;h) is sublinear, continuous and so is the support

function of a nonempty, convex and w∗-compact set ∂ϕ(x) ⊆ X∗, defined by

∂ϕ(x) = {x∗ ∈ X∗; 〈x∗, h〉 ≤ ϕ0(x;h), ∀h ∈ X}.
The multifunction ∂ϕ : X → 2X

∗
is called the generalized subdifferential of ϕ.
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If ϕ is also convex, then ∂ϕ(x) coincides with subdifferential in the sense of convex analysis,

defined by

∂Cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x+ h)− ϕ(x) in h ∈ X}.
If ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)}.
A point x ∈ X is a critical point of ϕ, if 0 ∈ ∂ϕ(x). It is easily seen that, if x ∈ X is a local

minimum of ϕ, then 0 ∈ ∂ϕ(x).

A locally Lipschitz function ϕ : X → R satisfies the nonsmooth C-condition at level c ∈
R(the nonsmooth C-condition for short), if for every sequence {xn}n≥1 ⊆ X, such that ϕ(xn)→
c and (1 + ‖xn‖)m(xn) → 0, as n → +∞, there is a strongly convergent subsequence, where

m(xn) = {‖x∗‖∗ : x∗ ∈ ∂ϕ(xn)}. If this condition is satisfied at every level c ∈ R, then we say

that ϕ satisfies the nonsmooth C-condition.

Finally, in order to prove our result in the next section, we introduce the following lemma:

Lemma 2.1 [25] Let ϕ : X → R be locally Lipschitz function and x0, x1 ∈ X. If there

exists a bounded open neighbourhood U of x0, such that x1 ∈ X\U , max{ϕ(x0), ϕ(x1)} < inf
∂U

ϕ

and ϕ satisfies the nonsmooth C-condition at level c, where c = inf
γ∈T

max
t∈[0,1]

ϕ(γ(t)), T = {γ ∈

C([0, 1];X) : γ(0) = x0, γ(1) = x1}, then c is a critical value of ϕ and c ≥ inf
∂U

ϕ.

§3 The main results and proof of the theorem

In this part, we will prove that for (P ) there also exist two weak solutions for the general

case.

Our hypotheses on nonsmooth potential F (x, t) are as follows.

H(F): F : Ω × R → R is a function such that F (x, 0) = 0 a.e. on Ω and satisfies the following

facts:

(1) for all t ∈ R, x 7→ F (x, t) is measurable;

(2) for almost all x ∈ Ω, t 7→ F (x, t) is locally Lipschitz.

We consider the energy function ϕ : W
1,p(x)
0 (Ω)→ R for the problem (P ), defined by

ϕ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx− λ

∫
Ω

F (x, u(x))dx, ∀u ∈W 1,p(x)
0 (Ω).

Lemma 3.1. Assume H(F) and (f1). Then ϕ is locally Lipschitz in W
1,p(x)
0 (Ω).

Proof: By J ∈ C1(W
1,p(x)
0 (Ω), R), we have

J(u1)− J(u2) = J
′
(u) · (u1 − u2),

where u = tu1 + (1− t)u2, t ∈ (0, 1).

Let Br = {x ∈ X : ‖u− u0‖W 1,p(x)
0

≤ r}.
Note that Br is w-compact. Then we obtain that there exists a positive constant M , such

that ‖J ′(u)‖W−1,q(x)(Ω) ≤M , for sufficiently small r.

Therefore, for any u1, u2 ∈ Br, we have

|J(u1)− J(u2)| =|J
′
(u) · (u1 − u2)|

≤‖J
′
(u)‖W−1,q(x)(Ω)‖u1 − u2‖W 1,p(x)

0

≤M‖u1 − u2‖W 1,p(x)
0

.
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On the other hand, by (f1) and Lebourg’s mean value theorem we have

|F (x, u1)− F (x, u2)| ≤ c1|u1 − u2|+ c2|u|α(x)−1|u1 − u2|.
Hence, ∣∣∣∣∫

Ω

F (x, u1)dx−
∫

Ω

F (x, u2)dx

∣∣∣∣
≤c1

∫
Ω

|u1 − u2|dx+ c2

∫
Ω

|u|α(x)−1|u1 − u2|dx

≤c2|u1 − u2|α(x) + c4||u|α(x)−1|α′(x)|u1 − u2|α(x),

where 1
α′(x) + 1

α(x) = 1.

It is immediate that∫
Ω

(|u|α(x)−1)α
′(x) =

∫
Ω

|u|α(x)dx ≤

{
|u|α+

α(x) ≤ c‖u‖
α+

, |u|α(x) > 1,

|u|α+

α(x) ≤ c‖u‖
α− , |u|α(x) < 1.

is bounded.

So, ∣∣∣∣∫
Ω

F (x, u1)dx−
∫

Ω

F (x, u2)dx

∣∣∣∣ ≤ c5|u1 − u2|α(x) ≤ c‖u1 − u2‖,

since W
1,p(x)
0 (Ω) ↪→ Lα(x)(Ω) is a compact embedding.

Therefore, ϕ is locally Lipschitz.

Theorem 3.1. If H(j), (f1), (f2), (f3) hold and α+ < p−, then there exists λ0 > 0 such

that for each λ > λ0, problem (P ) has at least two nontrivial solutions.

Proof: The proof is divided into five steps as follows.

Step 1. We will show that ϕ is coercive in the step.

Firstly, on account of (f1), we have

|F (x, t)| ≤ c1|t|+ c2|t|α(x), (1)

for almost all x ∈ Ω and t ∈ R.

Since 1 < α(x) ≤ α+ < p− < p∗(x), W
1,p(x)
0 (Ω) ↪→ Lα(x)(Ω), then there exists c6 > 0 such

that

|u|α(x) ≤ c6‖u‖, u ∈W 1,p(x)
0 (Ω).

Therefore, for any |u|α(x) > 1 and ‖u‖ > 1, we have∫
Ω

|u|α(x)dx ≤ |u|α
+

α(x) ≤ c
α+

6 ‖u‖α
+

. (2)

In view of (1), (2), the Hölder inequality and the Sobolev embedding theorem, we have

ϕ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx− λ

∫
Ω

F (x, u)dx

≥ 2

p+

∫
Ω

|∇u|p(x)dx− λc1
∫

Ω

|u|dx− λc2cα
+

6 ‖u‖α
+

≥ 2

p+
‖u‖p

−
− 2λc1|1|α′(x)|u|α(x) − λc2cα

+

6 ‖u‖α
+

≥ 2

p+
‖u‖p

−
− 2λc1c6|1|α′(x)‖u‖ − λc2cα

+

6 ‖u‖α
+

→∞, as ‖u‖ → ∞.

Step 2. We will show that the ϕ is weakly lower semi-continuous.
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Let un ⇀ u weakly in W
1,p(x)
0 (Ω), by Proposition 2.1, we obtain the following results:

W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω);

un → u in Lp(x)(Ω);

un → u for a.e. x ∈ Ω;

F (x, un(x))→ F (x, u(x)) for a.e. x ∈ Ω.

Applying the Fatou Lemma, we have

lim sup
n→∞

∫
Ω

F (x, un(x))dx ≤
∫

Ω

F (x, u(x))dx.

Thus,

lim inf
n→∞

ϕ(un) =

∫
Ω

1

p(x)

(
|∇un|p(x) +

√
1 + |∇un|2p(x)

)
dx− λ lim sup

n→∞

∫
Ω

F (x, un)dx

≥
∫

Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx− λ

∫
Ω

F (x, u)dx = ϕ(u).

Hence, by the Weierstrass Theorem, we deduce that there exists a global minimizer u0 ∈
W

1,p(x)
0 (Ω) such that

ϕ(u0) = min
u∈W 1,p(x)

0 (Ω)

ϕ(u).

Step 3. We will show that there exists λ0 > 0 such that for each λ > λ0, ϕ(u0) < 0.

In view of condition (f3), there exists t0 ∈ R such that F (x, t0) > δ0 > 0, a.e. x ∈ Br0(x0).

It is clear that
0 < M1 := max

|t|≤|ξ0|
{c1|t|+ c2|t|α

+

, c1|t|+ c2|t|α
−
} < +∞.

Now we denote

t0 =

(
M1

δ0 +M1

) 1
N

, K(t) :=

(
t0

r0(1− t)

)p+
and

λ0 = max
t∈[t1,t2]

3K(t)(1− tN )

δ0tN −M1(1− tN )
,

where t0 < t1 < t2 < 1 and δ0 is given in the condition (f3). A direct calculation shows that

the function t 7→ δ0t
N −M1(1 − tN ) is positive whenever t > t0 and δ0t

N
0 −M1(1 − tN0 ) = 0.

Thus λ0 is well defined and λ0 > 0.

Next, we will show that for each λ > λ0, the problem (P ) has two nontrivial solutions. In

order to do this, for t ∈ [t1, t2], we define

ξt(x) =


0, if x ∈ Ω\Br0(x0),

t0, if x ∈ Btr0(x0),

t0
r0(1− t)

(r0 − |x− x0|), if x ∈ Br0(x0)\Btr0(x0).

Hypotheses (f1) and (f3) imply that∫
Ω

F (x, ξt(x))dx =

∫
Btr0 (x0)

F (x, ξt(x))dx+

∫
Br0 (x0)\Btr0 (x0)

F (x, ξt(x))dx

≥wNrN0 tNδ0 −M1(1− tN )wNr
N
0

=wNr
N
0 (δ0t

N −M1(1− tN )).
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Thus, for t ∈ [t1, t2],

ϕ(ξt) =

∫
Ω

1

p(x)

(
|∇ξt|p(x) +

√
1 + |∇ξt|2p(x)

)
dx− λ

∫
Ω

F (x, ξt(x))dx

≤ 3

p−

∫
Br0 (x0)\Btr0 (x0)

|∇ξt|p(x)dx− λwNrN0 (δ0t
N −M1(1− tN ))

≤3[
t0

r0(1− t)
]p

+

wNr
N
0 (1− tN )− λwNrN0 (δ0t

N −M1(1− tN ))

=wNr
N
0 [3K(t)(1− tN )− λ(δ0t

N −M1(1− tN ))],

which implies that ϕ(ηt) < 0 whenever λ > λ0.

Step 4. We will check the C-condition in the following.

Let {un}n≥1 ⊆ W
1,p(x)
0 (Ω) be a sequence such that ϕ(un) → c and (1 + ‖un‖)m(un) → 0

as n→∞.

Moreover, since ϕ is coercive, it follows that {un}n≥1 is bounded in W
1,p(x)
0 (Ω). Hence by

passing to a subsequence if necessary, we may assume that un ⇀ u weakly in W
1,p(x)
0 (Ω). Next

we will prove that un → u in W
1,p(x)
0 (Ω) as n→∞.

Since W
1,p(x)
0 (Ω) is embedded compactly in Lp(x)(Ω), we obtain that un → u in Lp(x)(Ω).

Moreover, since ‖u∗n‖∗ → 0, we get |〈u∗n, un〉| ≤ εn .

Note that u∗n = A(un)− wn, we have

〈A(un), un − u〉 −
∫

Ω
wn(un − u)dx ≤ εn,∀n ≥ 1.

Moreover,
∫

Ω
wn(un − u)dx → 0 , since un → u in Lp(x)(Ω) and {wn}n≥1 in Lp

′(x)(Ω) are

bounded, where 1
p(x) + 1

p′(x) = 1. Therefore,

lim sup
n→∞

〈A(un), un − u〉 ≤ 0.

So using Proposition 2.2, we have un → u as n → ∞. Thus ϕ satisfies the nonsmooth C-

condition.

Step 5. We will show that there exists another nontrivial weak solution of problem (P ).

From Lebourg’s Mean Value Theorem, we obtain

F (x, t)− F (x, 0) = 〈w, t〉
for some w ∈ ∂F (x, ϑt) and 0 < ϑ < 1. Thus, hypothesis (f2) implies that there exists β ∈ (0, 1)

such that

|F (x, t)| ≤ |〈w, t〉| ≤ µ(x)|t|γ(x), ∀|t| < β and a.e. x ∈ Ω. (3)

It follows from the conditions (f1) and 1 < α− ≤ α+ < p− ≤ p+ < γ(x) < p∗(x) that for all

|t| > β and a.e. x ∈ Ω,

|F (x, t)| ≤c1|t|+
c2
α(x)

|t|α(x)

≤c1|t|+ c2|t|α(x)

≤
(

c1
βγ(x)−1

+
c2

βγ(x)−α(x)

)
|t|γ(x)

≤
(

c1
βγ+−1

+
c2

βγ+−α−

)
|t|γ(x),
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this together with (3) yields that for all t ∈ R and a.e. x ∈ Ω,

|F (x, t)| ≤
(
µ(x) +

c1
βγ+−1

+
c2

βγ+−α−

)
|t|γ(x) ≤ c3|t|γ(x),

for some positive constant c3.

Note that p+ < γ(x) < p∗(x), then by Proposition 2.1 we have the continuous embeddings

W
1,p(x)
0 (Ω) ↪→ Lγ(x)(Ω). That is, there exists c4 such that

|u|γ(x) ≤ c4‖u‖,∀u ∈W
1,p(x)
0 (Ω).

For all λ > λ0, ‖u‖ < 1 and |u|γ(x) < 1, we have

ϕ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx− λ

∫
Ω

F (x, u(x))dx

≥
∫

Ω

1

p(x)
|∇u|p(x)dx− λc3

∫
Ω

|u(x)|γ(x)dx

≥ 1

p+
‖u‖p

+

− c3cγ
−

4 ‖u‖γ
−
.

Therefore, for ρ > 0 small enough, there exists a ν > 0 such that

ϕ(u) > ν, for ‖u‖ = ρ

and ‖u0‖ > ρ. So by the Nonsmooth Mountain Pass Theorem (cf. Lemma 2.1), we can get

u1 ∈W 1,p(x)
0 (Ω) satisfies

ϕ(u1) = c > 0 and m(u1) = 0.

So, u1 is another nontrivial critical point of ϕ.

Remark 3.1. The result in this paper is different from the one in [20] since the assumption

on the nonsmooth potential function F is different. In fact, our conditions (f1)–(f3) are weaker

than conditions (h1)–(h3) in [20]. For example, we can find a nonsmooth potential function

satisfying the hypothesis of our Theorem 3.1. But the function does not satisfy conditions

Theorem 3.1 of Zhou and Ge [20]. For more details, please see (2) in the Summary.

So far the results involved potential functions exhibiting p(x)-sublinearity. The next theorem

concerns problems where the potential function is p(x)-superlinear.

Theorem 3.2. Let us suppose that H(F), (f1), (f2), (f3) hold α− > p+ and the following

condition (f4) hold,

(f4) For almost all x ∈ Ω and all t ∈ R, we have

F (x, t) ≤ ν(x) with ν ∈ Lβ(x)(Ω), 1 ≤ β(x) < p−.

Then there exists a λ0 > 0 such that for each λ > λ0, the problem (P ) has at least two

nontrivial solutions.

Proof: The steps are similar to those of Theorem 3.1. In fact, we only need to modify Step

1 and Step 4 as follows: (1′) Show that ϕ is coercive under the condition (f4); (4′) Show that

there exists a second nontrivial solution under the conditions (f1) and (f2). Then from Steps

(1′), 2, 3 and (4′) above, the problem (P ) has at least two nontrivial solutions.
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Step 1′. Due to the assumption (f4), for all u ∈W 1,p(x)
0 (Ω), ‖u‖ > 1, we have

ϕ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx− λ

∫
Ω

F (x, u(x))dx

≥ 1

p+
‖u‖p

−
− λ

∫
Ω

ν(x)dx→∞, as ‖u‖ → ∞.

Step 4′. By hypothesis (f1) and the mean value theorem for locally Lipschitz functions, we

have
F (x, t) ≤c1|t|+ c2|t|α(x)

≤c1|
t

β
|α(x)−1|t|+ c2|t|α(x)

=c1|
1

β
|α

+−1|t|α(x) + c2|t|α(x)

=c5|t|α(x)

(4)

for a.e. x ∈ Ω, all |t| ≥ β with c5 > 0.

Combining (3) and (4), it follows that

|F (x, t)| ≤ µ(x)|t|γ(x) + c5|t|α(x)

for a.e. x ∈ Ω and all t ∈ R.

Thus, for all λ > λ0, ‖u‖ < 1, |u|γ(x) < 1 and |u|α(x) < 1, we have

ϕ(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx− λ

∫
Ω

F (x, u(x))dx

≥ 1

p+
‖u‖p

+

− λ
∫

Ω

µ(x)|u|γ(x)dx− λc5
∫

Ω

|u|α(x)dx

≥ 1

p+
‖u‖p

+

− λc6‖u‖γ
−
− λc7‖u‖α

−

So, for ρ > 0 small enough, there exists a ν > 0 such that

ϕ(u) > ν, for ‖u‖ = ρ

and ‖u0‖ > ρ. Arguing as in proof of Step 4 of Theorem 3.1, we conclude that ϕ satisfies the

nonsmooth C-condition. Furthermore, by the Nonsmooth Mountain Pass Theorem (cf. Lemma

2.1), we can conclude that u1 ∈W 1,p(x)
0 (Ω) satisfies

ϕ(u1) = c > 0 and m(u1) = 0.

So, u1 is second nontrivial critical point of ϕ.

Remark 3.2. We shall give an example in (3) in the Summary.

§4 Summary

(1) If F : Ω × R → R satisfies the Carathéodory condition, then ∂F (x, t) = {f(x, t)}.
Therefore by Theorem 3.1 we can show the existence of two weak solutions of the following

Dirichlet problem involving the p(x)-Laplacian-like
− div

(
(1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)|∇u|p(x)−2∇u

)
= λf(x, u), in Ω,

u = 0, on ∂Ω.

(P2)
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In [24], Manuela Rodrigues was able to prove that, under suitable conditions, the problem (P2)

might have at least one solution, or have infinite number of solutions.

(2) We give an example in the following to illustate our viewpoint in Remark 3.1. Let

p− >max {α+, θ+} and consider the following nonsmooth locally Lipschitz function:

F (x, t) =



tγ(x), 0 ≤ t < 1,

− (−t)γ(x), 0 ≥ t > −1,

max{|t− 1|θ(x), |t− 1|α(x)}+ 1, t ≥ 1,

max{|t+ 1|θ(x), |t+ 1|α(x)} − 1, t ≤ −1,

where inf
x∈Ω

(α(x)− θ(x)) > 0, θ− > 1 and θ+ < α−.

We can choose q(x) = γ(x), then lim sup
t↑0

F (x, t)

|t|q(x)
= −1 and lim sup

t↓0

F (x, t)

|t|q(x)
= 1 uniformly

a.e. x ∈ Ω.

Obviously, t 7→ F (x, t) is locally Lipschitz. Then

∂F (x, t) =



γ(x)tγ(x)−1, 0 ≤ t < 1,

γ(x)(−t)γ(x)−1, − 1 < t ≤ 0,

θ(x)(t− 1)θ(x)−1, 1 < t < 2,

− θ(x)(−t− 1)θ(x)−1, − 1− 1 < t < −1,

α(x)(t− 1)α(x)−1, t > 2,

− α(x)(−t− 1)α(x)−1, t < −2,

[0, γ(x)], t = ±1,

[θ(x), α(x)], t = 2,

[−α(x),−θ(x)], t = −2,

Hence, for any w ∈ ∂F (x, t), we have

|w| ≤



γ(x)tα(x)−1tγ(x)−α(x) ≤ γ+|t|α(x)−1, 0 ≤ t < 1,

γ(x)(−t)α(x)−1(−t)γ(x)−α(x) ≤ γ+|t|α(x)−1, − 1 < t ≤ 0,

θ(x)(t− 1)θ(x)−1 < θ+ < θ+|t|α(x)−1, 1 < t < 2,

θ(x)(−t− 1)θ(x)−1 < θ+ < θ+|t|α(x)−1, − 2 < t < −1,

α(x)(t− 1)α(x)−1 ≤ α+|t|α(x)−1, t > 2,

α(x)(−t− 1)α(x)−1 ≤ α+|t|α(x)−1, t < −2,

[0, γ(x)] ≤ γ+, t = ±1,

[θ(x), α(x)] ≤ α+, t = ±2.

Therefore,

|w| ≤ (γ+ + α+) + (γ+ + α+ + θ+)|t|α(x)−1, ∀w ∈ ∂F (x, t),

lim sup
t↓0

<w,t>
|t|γ(x) = lim

t↓0
γ(x)tγ(x)

tγ(x)
= γ(x) and

lim sup
t↑0

γ(x)(−t)γ(x)−1t
(−t)γ(x) = lim

t↑0
−γ(x)(−t)γ(x)

(−t)γ(x) = −γ(x),
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uniformly for almost all x ∈ Ω and all w ∈ ∂j(x, t).
(3) We can find the following nonsmooth, locally Lipschitz function satisfying the conditions

stated in Theorem 3.2:

F (x, t) =


− sin(π4 |t|

γ(x)), |t| ≤ 1,

1√
2|t|

, |t| > 1,

It is clear that F (x, 0) = 0 for a.e. x ∈ Ω, thus hypotheses H(F) is satisfied. A direct

verification shows that conditions (f3) and (f4) are satisfied. Note that

∂F (x, t) =



{−π4 γ(x)tγ(x)−1cos(π4 t
γ(x))}, 0 ≤ t < 1,

{π4 γ(x)(−t)γ(x)−1cos(π4 (−t)γ(x))}, − 1 < t ≤ 0,

[−2−
3
2 , 0], t = 1,

[0, 2−
3
2 ], t = −1,

{−(2t)−
3
2 }, t > 1,

{(−2t)−
3
2 }, t < −1,

So, for any w ∈ ∂F (x, t), we have

|w| ≤ (
π

2
γ(x) +

1

2
)|t|γ(x)−1,

lim
t↓0

−π4 γ(x)tγ(x)−1tcos(π4 t
γ(x))

tγ(x)
= −π

4
γ(x),

lim
t↓0

π
4 γ(x)(−t)γ(x)−1tcos(π4 (−t)γ(x))

(−t)γ(x)
= −π

4
γ(x),

which shows that assumptions (f1) and (f2) are fulfilled.

References

[1] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1993.

[2] E. Acerbi, G. Mingione, G. A. Seregin, Regularity results for parabolic systems related to a class of

non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 25–60.

[3] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,

Springer-Verlag, Berlin, Heidelberg, 2011.

[4] C. Zhang, S. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable

exponents and L1 data, J. Differential Equations. 248 (2010) 1376–1400.

[5] J. Simsen, M. S. Simsen, PDE and ODE limit problems for p(x)-Laplacian parabolic equations, J. Math.

Anal. Appl., 383 (2011) 71–81.
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[16] K. Rajagopal, M. Růžička, Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn.

13 (2001) 59–78.

[17] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J.

Appl. Math., 66 (2006), 1383–1406.

[18] V. V. Zhikov, On the density of smooth functions in Sobolev–Orlicz spaces, Zap. Nauchn. Sem. S.-

Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), 67–81.

[19] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal.

Appl., 367 (2010), 204–228.

[20] Q. M. Zhou, B. Ge, Three solutions for inequalities Dirichlet problem Driven by p(x)-Laplacian-Like,

Abstr. Appl. Anal., 2013 (2013) 6. Article ID 575328.

[21] X. L. Fan, Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal.,

(52) 2003, 1843–1852.

[22] X. L. Fan, D. Zhao, On the generalized Orlicz–Sobolev spaces Wk,p(x)(Ω). J. Gansu Educ. College, (12)

1998, 1–6.

[23] X. L. Fan, D. Zhao, On the spaces Lp(x) and Wm,p(x). J. Math. Anal. Appl., (263) 2001, 424–446.

[24] M. M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like oper-

ators, Mediterr. J. Math., (9) 2012, 211–222.

[25] N. Kourogenic, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at

resonance, J. Aust. Math. Soc., 69 (A) (2000), 245–271.

(Received July 7, 2013)

EJQTDE, 2013 No. 63, p. 12


