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1 Introduction

In this paper we study the following quasilinear parabolic inequality with variable
exponent growth conditions

∂u

∂t
− div

(
a(x, t,∇u)|∇u|p(x,t)−2∇u

)
+ f(x, t, u) ≥ g(x, t). (1.1)

Let Ω ⊂ RN(N ≥ 2) be a bounded open domain with smooth boundary, 0 < T < ∞
be given and QT = Ω × (0, T ). We denote K = {w ∈ X(QT ) ∩ C(0, T ;L2(Ω)), ∂w

∂t
∈

X ′(QT ) : 0 ≤ w(x, 0) = u0(x) ∈ L2(Ω), w(x, t) ≥ 0 a.e. (x, t) ∈ QT}, where X(QT )
is a variable exponent space (see Definition 2.3 below) and X ′(QT ) is the dual space of
X(QT ). A function u(x, t) ∈ K is called a weak solution of parabolic inequality (1.1), if
for any 0 ≤ v ∈ X(QT ) there holds∫ T

0

∫
Ω

∂u

∂t
(v − u) + a(x, t,∇u)|∇u|p(x,t)−2∇u∇(v − u) + f(x, t, u)(v − u)dxdt

≥
∫ T

0

∫
Ω

g(v − u)dxdt.

We assume that
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(H1) p(x, t), q(x, t) are two bounded globally log-Hölder continuous functions in QT sat-
isfying the following conditions:

2N

N + 2
< p− = inf

QT

p(x, t) ≤ p(x, t) ≤ sup
QT

p(x, t) = p+ <∞,

1 < q− = inf
QT

q(x, t) ≤ q(x, t) ≤ sup
QT

q(x, t) = q+ <∞.

(H2) a(x, t, ξ) : Ω × R+ × RN → R and f(x, t, η) : Ω × R+ × R are two Carathéodory
functions, i.e. a(x, t, ξ) is continuous with respect to ξ and measurable for almost
every (x, t), f(x, t, η) is continuous with respect to η and measurable for almost
every (x, t), and satisfy

0 < a0 ≤ a(x, t, ξ) ≤ a1 <∞,
|f(x, t, η)| ≤ b1(x, t)|η|q(x,t)−1 + h1(x, t),

f(x, t, η)η ≥ b2(x, t)|η|q(x,t),

where a0, a1 are constants, b1(x, t), b2(x, t) are two bounded measurable functions
on QT with 0 < b0

1 ≤ b1(x, t) ≤ b1
1 < ∞, 0 < b0

2 ≤ b2(x, t) ≤ b1
2 < ∞ and h1(x, t) ∈

L
q(x,t)
q(x,t)−1 (QT ).

(H3) g(x, t) ∈ Lq′(x,t)(QT ), where q′(x, t) = q(x,t)
q(x,t)−1

.

In recent years, the research on various mathematical problems with variable exponent
growth conditions is an interesting topic. p(·)-growth problems can be regarded as a kind
of nonstandard growth problems, and these problems possess very complicated nonlinear-
ities, for instance, the p(x, t)-Laplacian operator −div(|∇u|p(x,t)−2∇u) is inhomogeneous.
These problems are interesting in applications and raise many difficult mathematical prob-
lems, they appear in nonlinear elastic, electrorheological fluids, imaging processing and
other physics phenomena (see [1–6]). Many results have been obtained on this kind of
problems, see [7–12]. Especially, in [13–15], the authors studied the existence and unique-
ness of weak solutions for anisotropy parabolic equations under the framework of variable
exponent Sobolev spaces. Motivated by the works of [13–15], we shall study the existence
and long-time behavior of weak solutions to problem (1.1). When the variable exponent
depends only on the space variable x, evolution variational inequality without initial con-
ditions has been studied in [16–18]. For the fundamental theory about variable exponent
Lebesgue and Sobolev spaces, we refer to [19–20].

Variational inequalities as the development and extension of classic variational prob-
lems, are a very useful tool to research PDEs, optimal control and other fields. In the case
p ≡ const, many papers are devoted to the solvability of the different kinds of parabolic
variational inequalities, see [21–25]. The method is based on a time discretion and the
semigroup property of the corresponding differential quotient. Another approach is avail-
able via a suitable penalization method. In these works, a crucial assumption on the
obstacles is monotonicity or regularity condition. A new method can be found in [26],
where the obstacles are only continuous.

The asymptotic behavior of equations without uniqueness received attention in re-
cent years. Several results concerning the existence of global attractors in the case of
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nonuniqueness have been proved for parabolic equations. However most of them have
been devoted to nondegenerate semilinear parabolic equations. To the best of our knowl-
edge, there are no papers devoted to the existence of global attractors for variable exponent
parabolic variational inequalities without uniqueness. In the last years, there have been
some theories that can be used to deal with multi-valued semiflows, such as Ball’s gener-
alized semiflows theory (see [27, 28]), Melnik and Valero’s Multi-valued semiflow theory
see [29, 30].

This article is organized as follows. In Section 2, we will give some necessary definitions
and properties of variable exponent Lebesgue spaces and Sobolev spaces. Moreover, we
introduce the space X(QT ) and prove some necessary properties, which provide a basic
framework to solve our problem. In Section 3, using the result of existence of weak
solutions for parabolic equation with penalty term, through a priori estimates, we obtain
the existence of weak solutions of parabolic inequality (1.1). In Section 4, under some
conditions, we obtain that the solutions of parabolic inequality vanish in a finite time. In
Section 5, first we recall the basic theories of multi-valued semiflows, then we study the
existence of global attractors in L2(Ω) to problem (1.1).

2 Preliminaries

In this section, we first recall some important properties of variable exponent Lebesgue
spaces and Sobolev spaces, see [11, 19–20] for the details. A measurable function p :
QT → [1,∞) is called a variable exponent and we define p− = ess infz∈QT p(z) and p+ =
ess supz∈QT p(z). If p+ is finite, then the exponent p is said to be bounded. The variable
exponent Lebesgue space is

Lp(·)(QT ) = {u : QT → R is a measurable function; ρp(·)(u) =

∫
QT

|u(z)|p(z)dz <∞}

with the norm
‖u‖Lp(·)(QT ) = inf{λ > 0 : ρp(z)(λ

−1u) ≤ 1},

then Lp(·)(QT ) is a Banach space, and when p is bounded, we have the following relations

min
{
‖u‖p

−

Lp(·)(QT )
, ‖u‖p

+

Lp(·)(QT )

}
≤ ρp(·)(u) ≤ max

{
‖u‖p

−

Lp(·)(QT )
, ‖u‖p

+

Lp(·)(QT )

}
.

That is, if p is bounded, then norm convergence is equivalent to convergence with respect
to the modular ρp(·). For bounded exponent the dual space (Lp(·)(QT ))′ can be identified

with Lp
′(·)(QT ), where p′(·) = p(·)

p(·)−1
is the conjugate exponent of p(·). If 1 < p− ≤ p+ <∞,

then the variable exponent Lebesgue space Lp(·)(QT ) is separable and reflexive.
In the variable exponent Lebesgue space, Hölder’s inequality is still valid. For all

u ∈ Lp(·)(QT ), v ∈ Lp′(·)(QT ) with p(·) ∈ (1,∞) the following inequality holds∫
QT

|uv|dz ≤
(

1

p−
+

1

(p′)−

)
‖u‖Lp(·)(QT )‖v‖Lp′(·)(QT ) ≤ 2‖u‖Lp(·)(QT )‖v‖Lp′(·)(QT ).

Definition 2.1. [11, 13] We say that a bounded exponent p : QT → R is globally log-Hölder
continuous if p satisfies the following two conditions
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(1) there is a constant c1 > 0 such that

|p(y)− p(z)| ≤ c1

log(e+ 1/|y − z|)
,

for all points y, z ∈ QT ;

(2) there exist two constants c2 > 0 and p∞ ∈ R, such that

|p(y)− p∞| ≤
c2

log(e+ |y|)

for all y ∈ QT .

Definition 2.2. [13, 15] Given two bounded globally log-Hölder continuous exponent p, q
on QT , let (H1) be valid. For any fixed τ ∈ (0, T ), we define

Vτ (Ω) = {u ∈ W 1,1
0 (Ω) : u ∈ Lp(·,τ)(Ω), |∇u| ∈ Lp(·,τ)(Ω)},

and equip Vτ (Ω) with the norm

‖u‖Vτ (Ω) = ‖u‖Lq(·,τ)(Ω) + ‖∇u‖(Lp(·,τ)(Ω))N .

Remark 2.1. From a similar discussion to that in [13], for every τ ∈ (0, T ), the space
Vτ (Ω) is a separable and reflexive Banach space.

Definition 2.3. [13, 15] Let (H1) be valid, we set

X(QT ) =
{
u ∈ Lq(x,t)(QT ) : |∇u| ∈ Lp(x,t)(QT ), u(·, τ) ∈ Vτ (Ω) for a.e. τ ∈ (0, T )

}
,

with the norm
‖u‖ = ‖u‖Lq(x,t)(QT ) + ‖∇u‖Lp(x,t)(QT ).

Remark 2.2. Following the standard proof for Sobolev spaces, we can prove that X(QT )
is a Banach space, and it’s easy to check that X(QT ) can be continuously embedded into

the space Lr(0, T ;W 1,p−

0 (Ω) ∩ Lq−(Ω)), where r = min{p−, q−}.

By using the same method as in [13], the following theorem can be proved.

Theorem 2.1. ([13]) The space C∞0 (QT ) is dense in X(QT ).

Since C∞0 (QT ) ⊂ C∞(0, T ;C∞0 (Ω)), we have

Lemma 2.1. The space C∞(0, T ;C∞0 ) is dense in X(QT ).

Let X ′(QT ) denote the dual space of X(QT ), then we have

Theorem 2.2. A function g ∈ X ′(QT ) if and only if there exist ḡ ∈ Lq
′(x,t)(QT ) and

Ḡ ∈ (Lp
′(x,t)(QT ))N such that∫

QT

gϕdxdt =

∫
QT

ḡϕdxdt+

∫
QT

Ḡ∇ϕdxdt. (2.1)
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Proof. We define a mapping Γ : X(QT ) → Lq(x,t)(QT ) × (Lp(x,t)(QT ))N by Γ(u) =
(u,∇u) for all u ∈ X(QT ). Clearly, Γ is an isometric isomorphism from X(QT ) onto
the closed subspace Γ(QT ) ⊂ Lq(x,t)(QT )× (Lp(x,t)(QT ))N . So, we can define a continuous
linear functional on Γ(X(QT ))

F : Γ(X(QT ))→ R, F (Γu) = g(u) for all u ∈ X(QT ).

For all u1, u2 ∈ X(QT ) and α, β ∈ R, we have

F (αΓu1 + βΓu2) = F (Γ(αu1 + βu2))

= g(αu1 + βu2)

= αg(u1) + βg(u2)

= αF (Γu1) + βF (Γu2),

and for all u ∈ X(QT ), there holds

|F (Γ(u))| = |g(u)| ≤ ‖g‖X′(QT )‖u‖X(QT ) = ‖g‖X′(QT )‖Γu‖.

Thus F is a continuous linear functional on Γ(X(QT )). By the Hahn–Banach theorem,
there exists a linear functional F̃ ∈ (Lq(x,t)(QT )× (Lp(x,t)(QT ))N)′ satisfying

F̃ (Γu) = F (Γu), and ‖F̃‖ = ‖F‖.

According to the fact that (Lq(x,t)(QT )× (Lp(x,t)(QT ))N)′ = Lq
′(x,t)(QT )× (Lp

′(x,t)(QT ))N ,
there exist f0 ∈ Lq

′(x,t)(QT ), f1, . . . , fN ∈ Lp
′(x,t)(QT ), such that for all (u0, u1, . . . , uN) ∈

Lq(x,t)(QT )× (Lp(x,t)(QT ))N , there holds

F̃ (u0, u1, . . . , uN) =

∫
QT

f0u0 + f1u1 + · · ·+ fNuNdxdt.

Especially, we have

F̃ (u0, u1, . . . , uN) = F (u0, u1, . . . , uN) = g(u), ∀u ∈ X(QT ),

where u0 = u, ui = ∂u
∂xi
, i = 1, . . . , N. Letting ḡ = f0, Ḡ = (f1, f2, . . . , fN), we immediately

obtain that (2.1) holds. Conversely, if 〈g, ϕ〉 =
∫
QT
gϕdxdt =

∫
QT
ḡϕdxdt+

∫
QT
Ḡ∇ϕdxdt

for all ϕ ∈ X(QT ), then by the Hölder inequality we have

|〈g, ϕ〉| ≤ C(‖ḡ‖Lq′(x,t)(QT ) + ‖Ḡ‖(Lp
′(x,t))N (QT ))‖ϕ‖X(QT ).

Thus, we have g ∈ X ′(QT ). ut

Remark 2.3. It follows from the proof of Theorem 2.2 that X(QT ) is reflexive and

X ′(QT ) ↪→ Ls
′
(0, T ;W−1,(p+)′(Ω) + L(q+)′(Ω)),

where s = max{p+, q+}. Similar results have been obtained by O. M. Buhrii in the sta-
tionary case, see [19].

Similar to [13], we give the following definition.
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Definition 2.4. We define the space W (QT ) = {u ∈ X(QT ) : ∂u
∂t
∈ X ′(QT )} with the

norm

‖u‖W (QT ) = ‖u‖X(QT ) +
∥∥∂u
∂t

∥∥
X′(QT )

where ∂u
∂t

is the distribution derivative of u with respect to the time variable t defined by∫
QT

∂u

∂t
ϕdxdt = −

∫
QT

u
∂ϕ

∂t
dxdt, for all ϕ ∈ C∞0 (QT ).

Lemma 2.2. [13] The space W (QT ) is a Banach space.

Similarly, we have

Theorem 2.3. [13] The space C∞(0, T ;C∞0 (Ω)) is dense in W (QT ).

Theorem 2.4. [21] Let B0 ⊂ B ⊂ B1 be three Banach spaces, where B0, B1 are reflexive,
and the embedding B0 ⊂ B1 is compact. Denote by W = {v : v ∈ Lp0(0, T ;B0), ∂v

∂t
∈

Lp1(0, T ;B1)}, where T is a fixed positive number, 1 < pi < ∞, i = 0, 1, then W can be
compactly embedded into Lp0(0, T ;B).

As p− > 2N
N+2

, N ≥ 2, the following theorem can be proved similarly to that in [13],
thus we omit its proof.

Theorem 2.5. [13] W (QT ) can be continuously embedded into C(0, T ;L2(Ω)). Further-
more, for all u, v ∈ W (QT ) and s, t ∈ [0, T ] the following rule for integration by parts is
valid ∫ t

s

∫
Ω

∂u

∂t
vdxdτ =

∫
Ω

u(x, t)v(x, t)dx−
∫

Ω

u(x, s)v(x, s)dx−
∫ t

s

∫
Ω

u
∂v

∂t
dxdτ.

The following theorem gives a relation between almost everywhere convergence and
weak convergence.

Theorem 2.6. [9] Let p(x, t) : QT −→ R be a bounded globally log-Hölder continuous
function, with p− > 1. If {un}∞n=1 is bounded in Lp(x,t)(QT ) and un → u for a.e. (x, t) ∈
QT , then there exists a subsequence of {un}∞n=1 (relabeled by {un}∞n=1) such that un → u
weakly in Lp(x,t)(QT ).

Using penalty method, we transform the problem (1.1) into the following problem

∂u

∂t
− a(x, t,∇u)(div|∇u|p(x,t)−2∇u) + f(x, t, u)−

∣∣∣∣u−ε
∣∣∣∣q(x,t)−2

u−

ε
= g(x, t), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω, (2.2)

where u− = max{−u, 0}. The weak solutions of equation (2.2) can be constructed as
the limit of a sequence of Galerkin’s approximation. The proof relies on Theorem 2.4,
Theorem 2.5 and the monotonicity of elliptic part of equation (2.2), we refer the reader
to [21–23] for the details.
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Definition 2.5. [13, 14] A function uε ∈ X(QT ) with ∂uε
∂t
∈ X ′(QT ) is called a weak

solution of (2.2), if for all ϕ ∈ X(QT ), there holds∫
QT

∂uε
∂t

ϕdxdt+

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇ϕ+ f(x, t, uε)ϕ

−
∣∣∣∣u−εε

∣∣∣∣q(x,t)−2
u−ε
ε
ϕdxdt =

∫
QT

g(x, t)ϕdxdt,

Theorem 2.7. [13, 14] Let (H1)–(H3) hold, then for each ε ∈ (0, 1), there exists a weak
solution of problem (2.2).

3 Global existence of solutions

In this section, we prove the global existence of weak solutions of problem (1.1).

Theorem 3.1. Let (H1)–(H3) hold, then there exists a function u(x, t) ∈ K such that for
all v ∈ X(QT ) with v(x, t) ≥ 0 for a.e. (x, t) ∈ QT , the following inequality holds∫

QT

∂u

∂t
(v − u)dxdt+

∫
QT

a(x, t,∇u)|∇u|p(x,t)−2∇u∇(v − u) + f(x, t, u)(v − u)dxdt

≥
∫ T

0

∫
Ω

g(v − u)dxdt,

Proof. By Theorem 2.7, for every ε ∈ (0, 1), there exists a weak solution of equation (2.2)
satisfying Definition 2.5. In Definition 2.5, we take ϕ = uε ·χ(0,t) as a test function, where
χ(0,t) is defined as the characteristic function of (0, t), t ∈ (0, T ], then∫

Qt

∂uε
∂t

uεdxdt+

∫
Qt

a(x, t,∇uε)|∇uε|p(x,t) + f(x, t, uε)uε

−
∣∣∣∣u−ε

∣∣∣∣q(x,t)−2
u−

ε
uεdxdt =

∫
Qt

g(x, t)uεdxdt,

where Qt = Ω× (0, t).
Using integration by parts (see Theorem 2.5) and Young’s inequality, we have

1

2

∫
Ω

|uε(x, t)|2dx−
1

2

∫
Ω

|uε(x, 0)|2dx+

∫
Qt

a(x, t,∇uε)|∇uε|p(x,t)

+ f(x, t, uε)uε + (
1

ε
)p(x,t)−1|u−ε |q(x,t)dxdt

≤C
∫
Qt

|g(x, t)|q′(x,t)dxdt+
b0

2

2

∫
Qt

|uε|q(x,t)dxdt.

By (H2) and (H3), there holds∫
Ω

|uε(x, t)|2dx+

∫
Qt

|∇uε|p(x,t) + |uε|q(x,t) + (
1

ε
)q(x,t)−1|u−ε |q(x,t)dxdt ≤ C, (3.1)
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where C is a constant independent of ε and t. Taking ϕ = −u−ε
ε

as a test function in
Definition 2.5, by Young’s inequality, we have

1

ε

∫
QT

∂uε
∂t

(−u−ε )dxdt+
1

ε

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε(−∇u−ε ) + f(x, t, uε)(−u−ε )

+

∣∣∣∣u−εε
∣∣∣∣q(x,t) dxdt

=

∫
QT

g(x, t)(−u
−
ε

ε
)dxdt ≤ 1

2

∫
QT

|g(x, t)|q′(x,t)dxdt+
1

2

∫
QT

∣∣∣∣u−εε
∣∣∣∣q(x,t) dxdt. (3.2)

Since
∫
QT

∂uε
∂t

(−u−ε )dxdt = 1
2

∫
Ω
|u−ε (x, T )|2dx ≥ 0 and∫

QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε(−∇u−ε ) + f(x, t, uε)(−u−ε )dxdt

=

∫
QT

a(x, t,∇uε)|∇u−ε |p(x,t) + f(x, t,−u−ε )(−u−ε )dxdt ≥ 0,

by (3.2), we obtain
∫
QT
|u
−
ε

ε
|q(x,t)dxdt ≤ C. Thus

‖uε‖L∞(0,T ;L2(Ω)) + ‖∇uε‖Lp(x,t)(QT ) + ‖uε‖Lq(x,t)(QT ) +

∥∥∥∥u−εε
∥∥∥∥
Lq(x,t)(QT )

≤ C. (3.3)

Since ∫
QT

∣∣a(x, t,∇uε)|∇uε|p(x,t)−2∇uε
∣∣p′(x,t) dxdt

≤C
∫
QT

|∇uε|p(x,t)dxdt

≤C max
{
‖∇uε‖p−Lp(x,t)(QT )

, ‖∇uε‖p+Lp(x,t)(QT )

}
≤ C,

we have ∥∥ |a(x, t,∇uε)|∇uε|p(x,t)−2∇uε|
∥∥
Lp
′(x,t)(QT )

≤ C. (3.4)

Similarly,

‖f(x, t, uε)‖Lq′(x,t)(QT ) ≤ C and

∥∥∥∥ ∣∣∣∣u−εε
∣∣∣∣q(x,t)−2

u−ε
ε

∥∥∥∥
Lq
′(x,t)(QT )

≤ C. (3.5)

For all ϕ ∈ X(QT ), from Definition 2.5 we have∣∣∣∣∫
QT

uεϕdxdt

∣∣∣∣ =

∣∣∣∣− ∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇ϕ+ f(x, t, uε)ϕ

−
∣∣∣∣u−εε

∣∣∣∣q(x,t)−2
u−ε
ε
ϕdxdt+

∫
QT

g(x, t)ϕdxdt

∣∣∣∣
≤ C ‖ϕ‖X(QT ) . (3.6)
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By (3.6), we get ∥∥∥∥∂uε∂t
∥∥∥∥
X′(QT )

= sup
‖ϕ‖X(QT )≤1

∣∣∣∣∫
QT

∂uε
∂t

ϕdxdt

∣∣∣∣ ≤ C. (3.7)

From (3.3)–(3.5) and (3.7), there exists a subsequence of {uε}ε>0, still denoted by
{uε}ε>0, such that

uε
∗
⇀ u weakly * in L∞(0, T ;L2(Ω)),

uε ⇀ u weakly in X(QT ),

a(x, t,∇uε) |∇uε|p(x,t)−2∇uε ⇀ ξ weakly in (Lp
′(x,t)(QT ))N ,

f(x, t, uε) ⇀ η weakly in Lq
′(x,t)(QT ),

∂uε
∂t

⇀ β weakly in X ′(QT ),

u−ε −→ 0 strongly in Lq(x,t)(QT ).

(3.8)

First, we will prove

η = f(x, t, u), β =
∂u

∂t
and u ≥ 0 for a.e. (x, t) ∈ QT .

For all ϕ ∈ C∞0 (QT ), there holds
∫
QT

∂uε
∂t
ϕdxdt = −

∫
QT
uε

∂ϕ
∂t
dxdt. Due to (3.8), the left-

hand side of this equality converges to
∫
QT
βϕdxdt, while the right-hand side converges

to −
∫
QT
u∂ϕ
∂t
dxdt, thus we have β = ∂u

∂t
.

Since

X(QT ) ↪→ Lr(0, T ;W 1,p−

0 (Ω) ∩ Lq−(Ω)), where r = min{p−, q−},
X ′(QT ) ↪→ Ls

′
(0, T ;W−1,(p+)′(Ω) + L(q+)′(Ω)), where s = max{p+, q+}.

and

W 1,p−

0 (Ω) ∩ Lq−(Ω) ↪→↪→ L2(Ω) ↪→ W−1,λ(Ω),

where λ = min{2, (p+)′, (q+)′}, by Theorem 2.4, there exists a subsequence of uε (still de-
noted by uε) such that uε → u in Lr(0, T ;L2(Ω)) and uε → u for a.e. (x, t) ∈ QT . Thus, we
obtain that f(x, t, uε)→ f(x, t, u) for a.e. (x, t) ∈ QT and u−ε → u− for a.e. (x, t) ∈ QT .
By Theorem 2.6, we get η = f(x, t, u). Moreover, from (3.8) we have u− = 0 for a.e. (x, t) ∈
QT , that is u(x, t) ≥ 0 for a.e. (x, t) ∈ QT .

Second, we prove that u(x, 0) = u0(x) and ξ = a(x, t,∇u) |∇u|p(x,t)−2∇u. By (3.1), up
to a subsequence of {uε}ε>0, we have uε(x, T )→ ũ weakly in L2(Ω). For all η(t) ∈ C1[0, T ]
and ϕ ∈ C∞0 (Ω), there holds∫ T

0

∫
Ω

∂uε
∂t

η(t)ϕ(x)dxdt =

∫
Ω

uε(x, T )η(T )ϕ(x)− u0(x)η(0)ϕ(x)dx−
∫ T

0

∫
Ω

uε
∂η

∂t
ϕdxdt,

Letting ε→ 0 and using integration by parts, we obtain∫
Ω

(ũ− u(x, T ))η(T )ϕ(x)− (u(x, 0)− u0(x))η(0)ϕ(x)dx = 0.
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Choosing η(T ) = 1 and η(0) = 0, or η(T ) = 0 and η(0) = 1, then by the density of C∞0 (Ω)
in L2(Ω), we obtain that ũ = u(x, T ) and u(x, 0) = u0(x).

Taking ϕ = u − uε as a test function in Definition 2.5 , then using Theorem 2.5 and
uε(x, 0) = u0(x), we get∫

QT

∂u

∂t
(u− uε) + a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇(u− uε) + f(x, t, uε)(u− uε)

− g(u− uε)dxdt

=

∫
QT

∂uε
∂t

(u− uε) + a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇(u− uε) + f(x, t, uε)(u− uε)

− g(u− uε)dxdt+

∫
QT

∂(u− uε)
∂t

(u− uε)dxdt

=

∫
QT

∣∣∣∣u−εε
∣∣∣∣q(x,t)−2

u−ε
ε

(u− uε)dxdt+

∫
QT

∂(u− uε)
∂t

(u− uε)dxdt

≥
∫
QT

∂(u− uε)
∂t

(u− uε)dxdt

=
1

2

∫
Ω

|u(x, T )− uε(x, T )|2dx

≥0,

and further∫
QT

a(x, t,∇uε)|∇uε|p(x,t)dxdt

≤
∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇udxdt+

∫
QT

∂u

∂t
(u− uε)− g(u− uε)dxdt

+

∫
QT

f(x, t, uε)udxdt−
∫
QT

f(x, t, uε)uεdxdt.

Thus, by Fatou’s lemma, we obtain

lim sup
ε→0

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)dxdt ≤
∫
QT

ξ∇udxdt

= lim
ε→0

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇udxdt,

that is

lim sup
ε→0

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇(uε − u)dxdt ≤ 0. (3.9)

As {a(x, t,∇uε)} is uniformly bounded and equi-integrable in L1(QT ), there exists a
subsequence of {uε} (for convenience still relabeled by {uε}) and a∗ such that

a(x, t,∇uε)→ a∗ for almost every (x, t) ∈ QT and
∣∣(a(x, t,∇uε)−a∗)|∇u|p(x,t)−2∇u

∣∣p′(x,t) ≤
C|∇u|p(x,t) ∈ L1(QT ), by Lebesgue’s dominated convergence theorem, we get

a(x, t,∇uε)|∇u|p(x,t)−2∇u −→ a∗|∇u|p(x,t)−2∇u strongly in Lp
′(x,t)(QT ).
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Since

0 ≤
∫
QT

a(x, t,∇uε)(|∇uε|p(x,t)−2∇uε − |∇u|p(x,t)−2∇u)(∇uε −∇u)

=

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇(uε − u)−a(x, t,∇uε)|∇u|p(x,t)−2∇u∇(uε − u)dxdt,

we have

lim inf
ε→0

∫
QT

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇(uε − u)dxdt ≥ 0. (3.10)

From (3.9)–(3.10) and ∇uε ⇀ ∇u in (Lp(x,t)(QT ))N , there holds

lim
ε→0

∫
QT

a(x, t,∇uε)(|∇uε|p(x,t)−2∇uε − |∇u|p(x,t)−2∇u)∇(uε − u)dxdt = 0. (3.11)

Similar to the partition in [32], we set Q1 = {(x, t) ∈ QT : p(x, t) ≥ 2} and Q2 = {(x, t) ∈
QT : 2N

N+2
< p(x, t) < 2}, by (3.11), then as n→∞,∫

Q1

|∇uε −∇u|p(x,t)dxdt

≤C
∫
Q1

a(x, t,∇uε)(|∇uε|p(x,t)−2∇uε − |∇u|p(x,t)−2∇u)(∇uε −∇u)dxdt

−→ 0 (3.12)

and ∫
Q2

|∇uε −∇u|p(x,t)dxdt

≤C
∥∥∥∥[a(x, t,∇uε)(|∇uε|p(x,t)−2∇uε − |∇u|p(x,t)−2∇u)(∇uε −∇u)

] p(x,t)
2

∥∥∥∥
L

2
p(x,t) (QT )

·
∥∥∥(|∇uε|p(x,t) + |∇u|p(x,t))

2−p(x,t)
2

∥∥∥
L

2
2−p(x,t) (QT )

−→ 0. (3.13)

Combining (3.12) with (3.13), we have ∇uε → ∇u in (Lp(x,t)(QT ))N . Thus there exists
a subsequence of {uε}, still labeled by {uε}, such that ∇uε → ∇u a.e. (x, t) ∈ QT ,
furthermore, there holds

a(x, t,∇uε)|∇uε|p(x,t)−2∇uε → a(x, t,∇u)|∇u|p(x,t)−2∇u,

for a.e. (x, t) ∈ QT . By Theorem 2.6, we obtain that ξ = a(x, t,∇u)|∇u|p(x,t)−2∇u.
By Fatou’s Lemma, we have

lim inf
ε→0

∫ T

0

∫
Ω

a(x, t,∇uε)|∇uε|p(x,t) + f(x, t, uε)uεdxdt

≥
∫ T

0

∫
Ω

a(x, t,∇u)|∇u|p(x,t) + f(x, t, u)udxdt.
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Since uε(x, T ) ⇀ u(x, T ) weakly in L2(Ω), we obtain

lim inf
ε→0

∫
Ω

|uε(x, T )|2dx ≥
∫

Ω

|u(x, T )|2dx.

For all v ∈ X(QT ) with v ≥ 0 for a.e. (x, t) ∈ QT , we take ϕ = v − uε as a test
function in Definition 2.5, then∫ T

0

∫
Ω

∂uε
∂t

v + a(x, t,∇uε) |∇uε|p(x,t)−2∇uε∇(v − uε) + f(x, t, uε)(v − uε)

− g(v − uε)dxdt

=

∫ T

0

∫
Ω

∂uε
∂t

uεdxdt+

∫ T

0

∫
Ω

∣∣∣∣u−εε
∣∣∣∣q(x,t)−2

u−ε
ε

(v − uε)dxdt

≥1

2

∫
Ω

|uε(x, T )|2 dx− 1

2

∫
Ω

|uε(x, 0)|2 dx,

and moreover

lim inf
ε→0

∫ T

0

∫
Ω

∂uε
∂t

v + a(x, t,∇uε)|∇uε|p(x,t)−2∇uε∇v + f(x, t, uε)v − g(v − uε)dxdt

≥ lim inf
ε→0

∫ T

0

∫
Ω

a(x, t,∇uε)|∇uε|p(x,t) + f(x, t, uε)uεdxdt

+
1

2

∫
Ω

|u(x, T )|2dx− 1

2

∫
Ω

|u0(x)|2dx,

Thus, we obtain∫ T

0

∫
Ω

∂u

∂t
(v − u)dxdt

+

∫ T

0

∫
Ω

a(x, t,∇u)|∇u|p(x,t)−2∇u∇(v − u) + f(x, t, u)(v − u)dxdt

≥
∫ T

0

∫
Ω

g(v − u)dxdt,

Since u ∈ X(QT ) and ∂u
∂t
∈ X ′(QT ), by Theorem 2.5, we know that u ∈ C(0, T ;L2(Ω)).

Thus u ∈ K. ut

4 Extinction property of weak solutions

In this section, we study the extinction properties of weak solutions of the parabolic
inequality (1.1). We say that the weak solutions of problem (1.1) vanish in a finite time,
if there exists a time T0 > 0 such that ‖u(x, t)‖L2(Ω) = 0 as t ≥ T0.

Lemma 4.1. We assume that g = 0. Then the weak solutions of the parabolic inequality
(1.1) satisfy the following equality

1

2

d

dt

∫
Ω

u2(x, t)dx+

∫
Ω

a(x, t,∇u)|∇u|p(x,t) + f(x, t, u)udx = 0, for a.e. t ∈ (0, T ).
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Proof. For every fixed t ∈ (0, T ), ∆t small enough such that t + ∆t ∈ (0, T ), we take
v = u(x, t)±u(x, t)χ(0,t) and v = u(x, t)±u(x, t)χ(0,t+∆t) as the test functions in Theorem
3.1, respectively, then there holds∫ t+∆t

t

∫
Ω

∂u

∂τ
u+ a(x, τ, u)|∇u|p(x,τ) + f(x, τ, u)udxdτ = 0, (4.1)

dividing (4.1) by |∆t|, then

1

|∆t|

∫ t+∆t

t

∫
Ω

∂u

∂τ
u+ a(x, τ, u)|∇u|p(x,τ) + f(x, τ, u)udxdτ = 0. (4.2)

Since∫ T

0

∫
Ω

a(x, t, u)|∇u|p(x,t)dxdt <∞,
∫ T

0

∫
Ω

f(x, t, u)udxdt <∞,
∫ T

0

∫
Ω

∂u

∂t
udxdt <∞,

we have ∫
Ω

a(x, t, u)|∇u|p(x,t)dx,
∫

Ω

f(x, t, u)udx,

∫
Ω

∂u

∂t
udx ∈ L1(0, T ),

then for a.e. t ∈ (0, T ) the left-hand side of (4.2) has a limit as ∆t→ 0. Thus, by (4.2),
as ∆t→ 0 we have ∫

Ω

∂u

∂t
u+ a(x, t, u)|∇u|p(x,t) + f(x, t, u)udx = 0. (4.3)

By Theorem 2.5, we get
∫

Ω
u2(x, t)dx = 2

∫ t
o

∫
Ω
∂u
∂τ
udxdτ +

∫
Ω
u2

0(x)dx. Thus
∫

Ω
u2(x, t)dx

is a differentiable function with respect to the time variable t for almost every t ∈ (0, T )
and d

dt

∫
Ω
u2(x, t)dx = 2

∫
Ω
∂u
∂t
udx. From (4.3), this lemma is proved. ut

Theorem 4.1. We assume that p(x, t) ≡ p(x), q(x, t) ≡ q(x),
∫

Ω
u2

0(x)dx > 0 and p(x) :

Ω → R is Lipschitz continuous, q(x) : Ω → R is global log-Hölder continuous. Let

1 ≤ q′(x) ≤ p∗(x) = Np(x)
N−p(x)

and 1
p+

+ 1
q+

> 1 hold, then the weak solutions of evolution

variational inequality (1.1) vanish in a finite time.

Proof. Since 1 ≤ q′(x) ≤ p∗(x) = Np(x)
N−p(x)

, there exists a continuous embedding W
1,p(x)
0 (Ω)

↪→ Lq(x)(Ω) (see [20]). For each fixed t ∈ (0, T ), by Hölder’s inequality, we have∫
Ω

u2(x, t)dx ≤ 2 ‖u‖Lq′(x)(Ω) ‖u‖Lq(x)(Ω) ≤ C ‖∇u‖Lp(x)(Ω) ‖u‖Lq(x)(Ω)

≤ C max

{(∫
Ω

|∇u|p(x) + |u|q(x)dx

) 1
p−+ 1

q−

,

(∫
Ω

|∇u|p(x) + |u|q(x)dx

) 1
p+

+ 1
q+

}
.

It follows that∫
Ω

|∇u|p(x) + |u|q(x)dx ≥ min

{(
1

C

∫
Ω

u2(x, t)dx

)µ−
,

(
1

C

∫
Ω

u2(x, t)dx

)µ+}
,

EJQTDE, 2013 No. 72, p. 13



where µ− = ( 1
p−

+ 1
q−

)−1, µ+ = ( 1
p+

+ 1
q+

)−1. By Lemma 4.1, we obtain

d

dt

∫
Ω

u2(x, t)dx+ 2 min{a0, b0}min

{(
1

C

∫
Ω

u2(x, t)dx

)µ−
,

(
1

C

∫
Ω

u2(x, t)dx

)µ+}
≤0, a.e. t ∈ (0, T ), (4.4)

If 0 <
∫

Ω
u2

0(x)dx ≤ C, then
∫

Ω
u2(x, t)dx ≤ C. From (4.4), we get

d

dt

∫
Ω

u2(x, t)dx+ 2 min{a0, b0}
(

1

C

∫
Ω

u2(x, t)dx

)µ+
≤ 0, for a.e. t ∈ (0, T ).

Denote C1 = 2 min{a0, b0}( 1
C

)µ+ and T ∗ = sup{t : 0 <
∫

Ω
|u|2dx ≤ C}. Integrating the

above inequality, we obtain

∫
Ω

u2(x, t)dx ≤

[(∫
Ω

|u0|2dx
)1−µ+

− C1(1− µ+)t

] 1
1−µ+

, for t ∈ (0, T ∗).

Thus we get that T ∗ = 1
C1(1−µ+)

(
∫

Ω
|u0|2dx)1−µ+ and

∫
Ω
u2(x, t)dx ≡ 0 as t ≥ T ∗.

If
∫

Ω
u2

0(x)dx > C, denote T1 = sup{t :
∫

Ω
u2(x, t)dx > C}, then by (4.4), we have

d

dt

∫
Ω

u2(x, t)dx+ 2 min{a0, b0}
(

1

C

∫
Ω

u2(x, t)dx

)µ−
≤ 0, for a.e. t ∈ (0, T1).

We set C2 = 2 min{a0, b0}( 1
C

)µ− . By the above differential inequality, we get

∫
Ω

u2(x, t)dx ≤

[(∫
Ω

u2
0dx

)1−µ−
− C2(1− µ−)t

] 1
1−µ−

, for t ∈ (0, T1).

Thus T1 <∞ and
∫

Ω
u2(x, T1) ≤ C. From (4.4), we obtain

d

dt

∫
Ω

u2(x, t)dx+ 2 min{a0, b0}
(

1

C

∫
Ω

u2(x, t)dx

)µ+
≤ 0, for a.e. t ∈ [T1, T ).

Similar to the case
∫

Ω
u2

0(x)dx ≤ C, there exists a T2 ≥ T1 such that
∫

Ω
u2(x, t)dx = 0 for

t ≥ T2 ut

5 Existence of global attractors

In this section, we prove the existence of global attractors for the multi-valued semiflow.
For the convenience of the reader, we recall some basic concepts and results related to the
theory of global attractors for multi-valued semiflow, see [25, 29] for details.

Definition 5.1. [27, 31] Let X be a Banach space, the mapping Φ : [0,∞)→ 2X is called
an m-semiflow if the following conditions are satisfied

(1) Φ(0, ω) = ω for arbitrary ω ∈ X;
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(2) Φ(t1 + t2, ω) ⊂ Φ(t1,Φ(t2, ω)) for all ω ∈ X, t1, t2 ≥ 0.

It is called a strict semiflow if Φ(t1 +t2, ω) = Φ(t1,Φ(t2, ω)), for all ω ∈ X, t1, t2 ∈ R+.

Definition 5.2. [27, 31] The set A is said to be a global attractor of the m-semiflow Φ if
the following conditions hold

(1) A is negatively semi-invariant, i.e. A ⊂ φ(t,A) for arbitrary t ≥ 0;

(2) A is an absorbing set of Φ, i.e. dist(Φ(t, B),A)→ 0 as t→∞ for all bounded subset
B ⊂ X, where dist(·, ·) is defined by

dist(A,B) = sup
a∈A

inf
b∈B

dX(a, b) for A,B ⊂ X;

(3) If B is an absorbing set of Φ, then A ⊂ B.

The following theorem gives a sufficient condition for the existence of a global attractor
for the m-semiflow Φ.

Theorem 5.1. [27, 31] Suppose that the m-semiflow Φ has the following properties

(1) Φ is pointwise dissipative, i.e. there exists K > 0 such that for u0 ∈ X, u(t) ∈ Φ(t, u0)
there holds ‖u(t)‖X ≤ K, for all t ≥ t0(‖u0‖X);

(2) Φ(t, ·) is a closed map for any t ≥ 0, i.e. if ξn ∈ Φ(t, ηn), ξn → ξ, ηn → η then
ξ ∈ Φ(t, η);

(3) Φ is asymptotically upper semicompact, i.e. if B is a bounded set in X such that
for some T (B), γ+

T (B) is bounded, for any sequence ξn ∈ Φ(tn, B) with tn → ∞ is

precompact in X. Here γ+
T (B) is the orbits after the time T (B).

Then Φ has a compact global attractor A in X. Moreover, if Φ is a strict m-semiflow
then A is invariant, i.e. Φ(t,A) = A for any t ≥ 0.

By Theorem 3.1, we construct the multi-valued mapping as follows

Φ(t, u0) = {u(t) : u(·) is the solution of (1.1) corresponding to u(0) = u0}.

By using the same method in [31], we can check that Φ is a strict m-semiflow in the sense
of Definition 5.1.

Lemma 5.1. Suppose that for each T > 0, g(x, t) ∈ Lq′(x,t)(QT ) with

sup
t≥0

∫ t+1

t

∫
Ω

|g(x, t)|q′(x,t)dxdt ≤ µ,

where µ is a positive constant and p− ≥ 2, q− ≥ 2, then the m-semiflow generated by
parabolic inequality (1.1) is pointwise dissipative.
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Proof. Similar to Lemma 4.1, we have

1

2

d

dt

∫
Ω

u2(x, t)dx+

∫
Ω

a(x, t,∇u)|∇u|p(x,t) + f(x, t, u)udx

≤C
∫

Ω

|g(x, t)|q′(x,t)dx+
b0

2

2

∫
Ω

|u(x, t)|q(x,t)dx, a.e. t > 0.

Since q− ≥ 2, we have

d

dt

∫
Ω

u2(x, t)dx+ b0
2

∫
Ω

u2dx ≤ C + C

∫
Ω

|g(x, t)|q′(x,t)dx, a.e. t > 0.

By Gronwall’s inequality, for t sufficiently large, we obtain∫
Ω

u2(x, t)dx ≤ e−b0t
∫

Ω

u2
0(x)dx+ C(1− e−b0t) + C

∫ t

0

∫
Ω

|g(x, τ)|q′(x,τ)eb0τdxdτe−b0t

≤ e−b0t
∫

Ω

u2
0(x)dx+ C(1− e−b0t) + C

(∫ t

t−1

∫
Ω

|g(x, τ)|q′(x,τ)dxdτ

+

∫ t−1

t−2

∫
Ω

|g(x, τ)|q′(x,τ)eb0τdxdτ + . . .

)
e−b0t

≤ e−b0t
∫

Ω

u2
0(x)dx+ C(1− e−b0t)

+ C(1 + e−b0 + e−2b0 + . . . ) sup
t≥0

∫ t+1

t

∫
Ω

|g(x, τ)|q′(x,τ)dxdτ.

Thus there exist constants K > 0 and T0 = T0(‖u0‖L2(Ω)) such that ‖u(t)‖L2(Ω) ≤ K for
all t ≥ T0. ut

Lemma 5.2. Suppose that p− ≥ 2, q− ≥ 2, then Φ(t̄, ·) : L2(Ω) → L2(Ω) is a compact
mapping for each t̄ ∈ (0, T ].

Proof. Assume that B is a bounded set in L2(Ω) and ξn ∈ Φ(t̄, B), t̄ ∈ (0, T ]. By the
definition of Φ, there exists a sequence {un} such that un is the solution of (1.1) with
the initial data belongs to B and un(t̄) = ξn. Since un ∈ X(QT ), ∂un

∂t
∈ X ′(QT ) and

p− ≥ 2, q− ≥ 2, similarly to Section 2, there exist a subsequence of {un} still labeled by
{un} and a function u such that un → u strongly in L2(QT ). Since un, u ∈ C(0, T ;L2(Ω)),
we have un(t̄)→ u(t̄) in L2(Ω). ut

Theorem 5.2. Suppose that for each T > 0, g(x, t) ∈ Lq′(x,t)(QT ) with

sup
t≥0

∫ t+1

t

∫
Ω

|g(x, t)|q′(x,t)dxdt ≤ µ,

where µ is a positive constant. Let p(x, t), q(x, t) : Ω×(0,∞)→ R be two bounded globally
log-Hölder continuous functions satisfying 2 ≤ p− = infΩ×(0,∞) p(x, t) ≤ p(x, t) ≤ p+ =
supΩ×(0,∞) p(x, t) < ∞, 2 ≤ q− = infΩ×(0,∞) q(x, t) ≤ q(x, t) ≤ q+ = supΩ×(0,∞) q(x, t) <
∞, a(x, t, ξ), f(x, t, η) are two Carathéodory functions in assumption (H2), then the m-
semiflow Φ generated by parabolic inequality (1.1) has an invariant global attractor in
L2(Ω).
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Proof. By Theorem 5.1, we only need to check the hypotheses (2) and (3) in Theorem 5.1.
Suppose that ξn ∈ Φ(t, ηn), ξn → ξ, ηn → η, then there exists a sequence {un} satisfying
un(t) = ξn, un(0) = ηn. Using equation (2.2), we can construct a approximation sequence
of un, it follows from the same proof as Theorem 3.1 that

un(t) ⇀ u(t) weakly in L2(Ω), for arbitrary t ∈ [0, T ],

u(0) = η,
∂un
∂t

⇀ ∂u
∂t

weakly in X ′(QT ),

∇un → ∇u, un → u a.e. (x, t) ∈ QT ,

a(x, t,∇un)|∇un|p(x,t)−2∇un ⇀ a(x, t,∇u)|∇u|p(x,t)−2∇u weakly in Lp
′(x,t)(QT ),

f(x, t, un) ⇀ f(x, t, u) weakly in Lq
′(x,t)(QT ).

Similar to Section 2, we obtain that u(t) is a solution of the parabolic inequality (1.1)
with the initial data u(0) = η. Thus ξ ∈ Φ(t, η), that is, Φ(t, ·) is a closed map for any
t ≥ 0.

Suppose that tn →∞ and tn > t for some t > 0. Since Φ(tn, B) = Φ(t+ tn − t, B) ⊂
Φ(t,Φ(tn − t, B)) ⊂ Φ(t, B), where B is a bounded set in L2(Ω), for ξn ∈ Φ(tn, B), we
have {ξn} ∈ Φ(t, B). By Lemma 5.2, {ξn} is precompact in L2(Ω). ut
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