Electronic Journal of Qualitative Theory of Differential Equations
2007, No. 23, 1-11; http://www.math.u-szeged.hu/ejqtde/

Sufficient condition for existence of solutions for higher-order
resonance boundary value problem

with one-dimensional p-Laplacian !

Liu Yang! Chunfang Shen! Xiping Liu?
(1 Department of Mathematics, Hefei, Teacher’s College, Hefei Anhui Province, 236032, PR China
2 College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, PR China)

Abstract:By using coincidence degree theory of Mawhin, existence results for some higher order resonance multi-

point boundary value problems with one dimensional p-Laplacian operator are obtained.

Keywords: boundary value problem; one-dimensional p-Laplacian; resonance; coincidence degree.
1. Introduction

In this paper we consider higher-order multi-point boundary value problem with one-dimensional p-Laplacian

(D))" = ft,2(t), 2 (b), - &V (1)) +e(t),t € (0,1), (1.1)

subject to one of the following boundary conditions:

m—2

2(1) = Y aja(§),2"(0) = --- = 207V(0) =2V (0) = - = 2"7V(0) = 0,207V (1) = 20V (€), 20 (1) = 2 (),
" (1.2)
where p > 1isa constant; ¢, : R — R, p,(u) = |u|P~2u; f : [0,1]x R" — R is a continuous function and 1 < i < n—1
is a fixed integer, e(t) € LY[0,1],;(1 < j<m—2) € R,n,&,& € (0,1),5 =1, ,m—20<& <+ <&noa < 1.
We notice that the operator ¢,(u) = |u[P~2u is called the (one-dimensional) p-Laplacian and it appears in
many contexts. For example, it is used extensively in non-Newtonian fluids, in some reaction-diffusion problems,
in flow through porous media, in nonlinear elasticity, glaceology and petroleum extraction.
The boundary value problem (1.1), (1.2) is said to be at resonance in the sense that the associate homogeneous

problem

(pp(@D ()" =0,0<t < 1

subject to boundary condition (1.2) has nontrival solutions.
The study on multi-point nonlocal boundary value problems for linear second-order ordinary differential equa-

tions was initiated by Il'in and Moiseev [1,2]. Since then some existence results have been obtained for general
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nonlinear boundary value problems by several authors. We refer the reader to some recent results, such as [3-7]
at non-resonance and [8-12] at resonance. For resonance case, by using Leray-Schauder continuation theorem,
nonlinear-alternative of Leray-Schauder and coincidence degree theorem, the main technique of these works is to
convert, the problem into the abstract form Lz = Nz, where L is a non-invertible linear operator. For problem
(1.1) with some resonance conditions , if p = 2, some existence results are established by [10-12].

But as far as we know, the existence results for high order resonance problems with p-Laplacian operator such
as (1.1), (1.2) with p # 2 have never been studied before. This is mainly due to the facts that in this situation,
above methods are not applicable directly since the p-Laplacian operator (cpp(zi(t)))(”*i) is not linear with respect
to x. Inspired by [13,14], the goal of this paper is to fill the gap in this area. By using Mawhin continuation

theorem the existence results for above problem are established.
2.Preliminaries

First we recall briefly some notations and an abstract existence results.

Let X,Y be real Banach spaces and let L : domL C X — Y be a Fredholm operator with index zero, here dom
L denotes the domain of L. This means that ImL is closed in Y and dim KerL = dim(Y/ImL) < 4+oco. Consider
the supplementary subspaces X7 and Y7 such that X = KerL® X; and Y = ImL®Y; and let P: X — KerL and
@ : Y — Y7 be the natural projections. Clearly, KerL N (domLNX;) = {0}, thus the restrictions L, := L|gomLnx,
is invertible. Denote by K the inverse of L.

Let © be an open bounded subset of X with domL NQ # (. A map N : Q — Y is said to be L-compact
in Q if QN(Q) is bounded and the operator K (I — Q)N :  — X is compact. We first give the famous Mawhin
continuation theorem.

Lemma 2.1(Mawhin [15]). Suppose that X and Y are Banach spaces, and L : domL C X — Y is a Fredholm
operator with index zero. Furthermore, Q C X is an open bounded set and N : @ — Y is L-compact on Q.If
(1)Lx # ANz, Vz € 9QNdomL, X € (0,1);

(2)Nx & ImL,Vx € 0Q N KerlL;

(3)deg{JQN, QN KerL,0} # 0, where J : KerL — Im( is an isomorphism,

then the equation Lz = Nz has a solution in Q N dom.L.

3.Existence results for problem (1.1), (1.2)

EJQTDE, 2007 No. 23, p. 2



In order to eliminate the dilemma that L isn’t linear for the case p # 2, we set

1 (t) = a(t)
(3.1)
2a(t) = @p(a® (1))
then problem (1.1), (1.2) is equivalent to system
() () —
27 (1) = pq(x2)
(3.2)
2S) = f(t w2l gg(@a), o (g (22) D) +e(t)
with boundary conditions
D)= ajai(§),27(0) = - =l (0) = 25(0) = -+ = 25" 7V(0) = 0,2V (1) = 2TV (€), 22(1) = 2(n)

where ¢, is the inverse function of ¢, p,(u) = |u|?7"?u, where 1/p + 1/q = 1.Clearly if z(t) = (x1(t),22(t)) is a
solution for system (3.2), then z; () must be a solution for problem (1.1),(1.2).

Define

X = {u(t) = (u1(t),u2(t))| ui(t) € C*0, 1uz(t) € C*~¢[0,1}m} with the norm

ull = max{[ut]oo, [1uoos -+ [u8 ™ oo [@g(2)|oos -+ |0g (uz) D]},

Y = {v(t) = (vi(t),v2(¢))| vi(t) € L[0,1],i = 1,2} with the norm |v|| = max{|v1|1, |¢4(v2)]1},

0<t<L1

Wn=9(0,1) defined as

where |u|oo = max |u(t)],|uls = / |u(t)|dt.Clearly X and Y are Banach spaces. We will use the Sobolev space

WE=0(0,1) = {u = (u1,uz2) : (0,1) — R : u1,us are absolutely continuous on [0,1] and ugz),ug" )¢ L'0,1]}.
Define L : dom L C X — Y by
La = (2" (1), 25"V (1)
where dom L = {x € WE=0(0,1) : 2, (1) = mij a;z1(&5),
H0) = -+ = af7D(0) = ah0) = - = () = 0,04 (1) = o D©), 2(1) = a2}

and N: X — Y by

Na = (pg(w2), ftan, oy ™ pg(wa), (pq(22)) " 77D) + e(t)).

Then system (3.2) can be written as Lx = Nz, here L is a linear operator.

m—2 m—2
In this section we shall prove existence results for system (3.2) under the case > o; =1, > «a;& # L
j=1 j=1
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Lemma311fz a; =1, Z a;&; # 1, then

(1) ImL ={(y1,y2) €Y : /y1 dt—O// / ya(s1)dsy - - - dsp—; = 0}.

(2) L:domL C X —Y is a Fredholm operator with index zero,

(3) Define projector operator P : X — KerlL as

Pz = (21(0), 22(0)),

then the generalized inverse of operator L, Kp : ImL — domL N KerP can be written as

KP(y) =
2 n—i S2
(——— / / / y1(s1)dsy - - - ds; —|—/ / y1(s1)dsy - dsl,/ / / y2(s1)dsy -+ - dsp—;)
1_ 0
1

Z o[ (1 = &)
satisfying || Kp(y(2))]| < Ay, where A =1+ FT is a constant.

1= a;§]

i=1
Proof: (1):First we show
1 1 Sn—i S2
ImL = {(y1,y2) €Y : / y1(t)dt = 05/ / / y2(s1)dsy - - ds,—; = 0}.
13 n JO 0

First suppose y(t) = (y1(t),y2(t)) € ImL, then there exists z(t) =

(z1(t), 22

t Si S2 )
t) :/ / / yi(s1)dsy -« -dsi + a1t +
0 Jo 0

is

(t)) € domL such that Lz = y. That

~~+a1t+a0

t psn_i s
t) = / / . / ’ Yo(s1)dsy -+ dsp_i 4+ bp_i1t" " 4 £ bt + by
o Jo 0

Then boundary condition

m—2

ajer(§), 2 (0) = - = 2y "V (0) = 25(0) = - = 2" 7V(0) = 0,2V (1) = &V (€),e2(1) = wa(n)

j=1

imply that

/ ya(t
3
€{(y1,92) €
x2(t)), where

Next we suppose y(t)

Let x(t) = (x1(t),

SCl(t) = —
1_ -,

el

/ / / ya(s1)dsy - -dsp—; = 0.
Y:/ yl(t)dt:O,/ / / ya(s1)dsy - -+
13 n JO 0

/ yl 51 dSl -ds; + / / y1(51)d51"'d5i7

dSn,i == 0}
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t Sn—i S2
1'2(t) — / / / y2(51)d51"'d5n7i
0 JoO 0

then Lz = (zgi) (1), zg"_i) () = (y1(t),y2(t)). Furthermore consider

1 1 Sn—i S2
/ yl(ﬁ)dt = O,/ / s / y2(81)d81 tee dSn_i = O,
13 n JO 0

by a simple computation,
1) =" (&), 27(0) =+ =i V(0) = 2 (0) = -+ = 2l V(0) = 0,27V (1) = 21"V (€), 22(1) = w2 (n)

Then x(t) € domL, thus y(t) € ImL. Sum up all above we obtain that

1 1 Sp—i S2
ImL = {(y1,y2) GY:/ yl(t)dt:(),/ / / ya(s1)dsy - - - dsp—; = 0}.
3 n JO 0

(2):Following we claim that L is a Fredholm operator with index zero. It’s easy to see that KerL = (a,b),a,b € R.

Suppose y(t) € Y, define the projector operator Q as

1-¢

yl(t)dt 1 Sn—i So
Q(y)z<Q<y1<t>>,c2<y2<t>>>=</f A [ s ds),

Let y* = y(t) — Qy(t)) = (y1 — Qy1),y2 — Q(y=2)), it’s easy to see that y* € ImL. Hence Y = ImL + KerlL,
furthermore considering ImL N KerL = {0}, we have Y = ImL @ KerL. Thus

dim KerL = co dim ImL,

which means L is a Fredholm operator with index zero.

(3):Define the projector operator P : X — KerL as
Pz = (21(0), 22(0)),

for y(t) € ImL, we have
(LEP)(y(t) = y(?),

and for z(t) € domL N KerP, following facts
1—

/5/ / )(s1)dsy - - d8i+/()t"'/()szzgi)(sl)dsl"'dsil'l(t)xl(())zl(t),
/ / / (n 1) (s1)ds1ds,_; = xo(t) — 12(0) = 22(2).
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show that Kp = (Liomrnierp)'. Furthermore from the definition of the norms in the X,Y, we have

IKP(y@) < Allyll-

The above arguments complete the proof of Lemma 3.1.

Theorem 3.1: Let f : [0,1] Xx R™ — R be a continuous function. Assume there exists m; € 1,2,--- ,m — 3 such
that a; > 0 for 1 < j <m; and a; < 0 for m; +1 < j <m — 2, furthermore following conditions are satisfied:
(C1) There exist functions ax(t) € L1[0,1],k =1,2,--- ,n and constant § € [0, 1) such that for all (21,22, -+ ,2,) €

R"™,t € [0, 1],0ne of following conditions is satisfied:

n

[t wr,a,- ) +e()] < O ar(t)]ar] + b()|zal” +r(1)P~ 1, (3.3)
k=1

|f(ta L1, L2, " ,:L'n> + e(t>| < (Z ak(t>|zk| + b(t>|1‘n*1|0 + T(t>)p717 (34)
k=1

[f(tzn,wa, - wn) +e()] < O an(®)ar] +b(t)|z1]° +r(1)P 7, (3.5)
k=1

(C3) There exists a constant M > 0 such that for « € dom L, if |x1(¢)] > M,

/: @q(/t /Osni e /Osz(f(sl,xl, s Ty) +e(s1))dsy - - dsp—;)dt # 0; (3.6)
for all z9,--+ 2, € R" 1,0 € (0,1),t € (0,1)\{o}.
(C5) There exist M* > 0 such that for any ¢; € R, if |e1| > M™*, for all ¢ € R, then either
ca X /1/0 .--/052(f(51,c1,0,~~ 10,00(¢2),0, -+ ,0) + e(s1))dsy -+ dsp_; < 0 (3.7)
n
or else

1 Sn—i S2
02></ / / (f(s1,¢1,0,--+,0,04(c2),0,---,0) +e(s1))ds1 - - dsp—; >0 (3.8)
n J0O 0

m—2 m—2
Then for each e € L'[0,1], the resonance problem (1.1), (1.2) with > a; = 1, 3 ;& # 1 has at least one
j=1 j=1

solution in C™~1[0, 1] provided that

i |ak|1 < ! .
P 1+ A
Proof : We divide the proof into the following steps.
Step 1.Let
Q ={z €dom L\ KerL : Lv = ANz} for some X € [0,1].

Then 7 is bounded.
Suppose that z € Qy, Lx = ANz, thus A # 0, Nz € ImL = Ker@, hence

1 1 Sn—i S2 . .
/5 Pq(z2(t))dt = 0,/ / / (flsroan, 2™ g(@a), -, (0g(22)) D) + e(s1))ds - - dsp—i = 0.
n J0 0
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For xgi_l)(l) = zﬁi‘”(g), there exist o1 € (£, 1) such that zgi) (01) = 0. Integrate both sides of (1.1), we have

x2(t) :/ /OS“ -.,/Osz(f(thl’”. LT g (2), - (g (@2)) TTY) 4 e(s1))dsy - dsu—; =0, (3.9)

Thus

1 t Sn—i S2 . .
/g%/,n/o / (Flst,ar, 2™ pg(@a), -, (g (22) "7 D) + e(s1))dsy - - dsn—i)dt = 0. (3.10)

Then (3.10) together with condition (Cy) imply that there exists to € [0, 1] such that |z1(¢o)| < M. In view of

t

z1(t) = z1(to) —|—/ 7 (s)ds, we obtain that
to

lz(t)| < M + |z} |1. (3.11)

m—2
Furthermore, for o; > 0,1 <j<mjand a; <0,m;+1<j<m-—2and z:1(1) = > ojz1(§), we have
=1

m—2

AOEEDY ajxl(gj):Zajxl(gj),

j=mi1+1
then there exists t1 € [£m,+1, 1], t2 € [0, &n, | such that

m—2 mi

(1) = > aza(§) > ojz1(§5)
Jj=mi+1 j=1

y71(t2) = ——

may
>
j=1

SCl(t1>: 2
1-— Z Oéj

mi+1

m—2
thus in view of ) «a; = 1,we obtain that z1(¢1) = x1(t2), and t1 # to. This implies that there exists t3 € (t1,%2)

j=1
t
such that z} (¢t3) = 0. Then from 2 (t) = z (t3) + / 2 (s)ds, we obtain
t3
21| < |71 (3.12)
Consider the boundary condition
z/(0) =2/ (0)=--- = zgi_l)(O) =z4(0)=--- = zg"_i_l)(()) = 0 together with z3(01) = 0, it’s easy to get
2|0 < [2']oc < |71 o0 = g (@2) oo -+ < |2 (@2) ") (3.13)
Consider (3.11),(3.12),(3.13) we have
[ P]| < max{|z1(0)], [¢q(22(0))[}
< max{M + [ig (w2) 1, |9g (F(t. 1.+ 28T q2), -+ (g (22)) ")+ elt) 1} (3.14)

Again for x € Oy,2 € domL \ KerL, then (I — P)x € domL N KerP, LPx = 0, thus from Lemma 3.1, we have

(I = P)z|| = |[KpL(I — P)x|| < A||L(I = P)z|ly = Al|La| < ANz
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< Amax{|gq(x2)|1, log(F(E 21,2l gg(@a), -+ (9g(22) ™77V +et))]1 ). (3.15)

From (3.14),(3.15) we have

2]l < 1Pl + [[(1 = P)all < M+ (1+ A)|eg(F(t . ai ™ 0g(w2), 5 (g(22) " 77D) + e()1 (3.16)

If assumption (3.3) holds,we obtain that
ol < M+ (1+ D) @g(f(t, w1, ™, pg(@s), -+, (g (x2) D)+ e(t))y

< (14 A)(Jahl1loo + -+ lash 2PV oo + aiz1 |1 @q (@)oo + - -
Hlan|1)(9q (2) ™V oo + Bl1] (g (2) V)% + C)

M
where C' = |r|1 + |e]1 + T A

From |21 |0 < ||z||,we obtain

1+ A , i i
< - 1= cotla; (n—i-1) b (n=i=1)16 4
|71 |00 < 1_ (1+A)|a1|1[|a2|1|x1|00+ Flait1|1leq(@2)|oot - +anl1](@q(z2)) oo tb]1] (g (22)) |5 tCl

From |z}| < ||z||,we obtain

1+ A "
.T/ 00 S a T OO+
| 1| 1— (1+A)(|a1|1+|a2|1)[| 3|1| 1|

Hair1 1@ (@2)loo + -+ lanl1](9q (£2) "7V ]o + b1l (pq (22) "7 VIE + .

(alea)® Vg < —— 2 [ (00 (22)) "D e + [bl1 (g (2)) D, + €,
1= (1+24)) laxh
k=1
then
(o)D) <« — LHEW o pynmicnpe o 2C
17(1+A)Z|ak|1 1*22|ak|1
k=1 k=1

n

1

Consider 6 € [0, 1) together with Z lak|1 < T A e claim that there exists constant M; > 0 such that
k=1

(g (22)) " Voo < My (3.17)

Then there exist constants My, > 0,k =2,--- ,4,M; > 0,7 =4+ 1,--- ,n such that

k n—jq
12 o0 < Mi, |(0g(22)) 9|0 < Mj,
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thus there exists N > 0 such that ||z|| < N,therefor we show that Q is bounded.
Step 2.The set Qy = {x € KerL : Nz € ImL} is bounded.

The fact « € Qy implies that = (¢1, c2) and

N(‘T) = ((pq(CQ)’f(taclaOa T ,0,(,0,1(02), e ’0) +€(ﬁ))

From QNx = 0,we have

1 1 Sp—i S2
/ <pq(02)dt:0,/ / / (f(s1,¢1,0,--+,0,94(c2), - ,0) +e(s1))dsy -~ dsp_i =0,
3 n JO 0

which implies co = 0 and

1 Sn—i 82
/ / / (f(s1,¢1,0,---,0) +e(s1))dsy -+ - dsp—; = 0.
n 0 0

Consider condition (C3), we obtain that |c1| < M*, then the set 5 is bounded.
Step 3. If the first part of condition (C3) is satisfied,there exists M* > 0 such that for any ¢ € R, if ¢; > M*,

then
CQ/ / / 51,01, P ,O,CPq(CQ),"',0>+€(81))d51"'d8n71‘<0.

Let Q3 = {z € KerL: = x4+ (1 = A\)JQNz =0, € [0,1],here J : ImQ — KerL is the linear isomorphism given
by J(c1,c2) = (1, c2),we obtain

Acr = (1 — N)pg(c2)
(n —1)
)\02:(1—)\ / / / (s1,¢1,0,- -+ ,q(c2),0,-+-,0) +e(s1))dsy - - - dSp—;-

If X = 1,it’s easy to see ¢1 = cg = 0.If A = 0, p,(c2) = 0 implies ¢o = 0, then

// / (s1,¢1,0,--+,0) +e(s1))dsy -+ - dsp—; = 0.

Considering condition C3,|c;| < M*.
For A # 0, # 1, if |¢1| > M*,we obtain that

/\c§:c2(17)\ (n—1) // / (s1,¢1,0, -+ ,q(c2),0,---,0) +e(s1))dst -+ - dsp—; <0,

which contradicts toA ¢z > 0.Thus |e1| < M*.From Ae; = (1 — A)g,(c2) and X # 0,\ # 1, |ea| < (%]\4*)17_1
Thus the set Q3 is bounded.

Step 4.If the second part of condition (C3) is satisfied, similar with above argument, the set Q4 = {z € KerL :
A+ (1 =XN)JQNz =0, € [0,1]} is bounded too.

Now we show all the conditions of Lemma 2.1 are satisfied.

Let Q be a bounded open set of Y such that U?:1 Q; C Q. By the Ascoli-Arezela theorem, we can show that
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Kp(I — Q)N :Q — Y is compact, thus N is L-compact on Q. Then by the above arguments, we have
(i) Lz # Nz, for every (x,A) € [(domL\KerL)(09] x (0,1);

(i) No # ImL, for every x € KerL () 0%;

(iii)If the first part of condition (C3) holds, we let

H(z,\)=-Xx+ (1-))JQNz.

According to the above argument, we know that H(z,\) # 0, for z € KerL ()99, by the homotopy property of
degree, we get
deg(JQN|kerr, 2N KerL,0) =deg(H (x,0),Q2N KerL,0)
=deg(H (z,1),2N KerL,0)
=deg(—1,QN KerL,0) # 0.

If the second part of condition C3 holds, we let
H(z,A)=Xx+ (1—\)JQNz,

Similar to argument above, we have deg(JQN|kerr, 2N KerL,0)=deg(I,Q2 N KerL,0) # 0.
Then by Lemma 2.1, Lz = Nz has at least one solution in domL N, so that problem (1.1), (1.2) has at least one

solution in C™~1[0,1]. The proof of Theorem 3.1 is completed.

References

1 V.A.Il'in and E.I.Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator.

Differential Equation, 1987, 23(8):979-987.

2 V.A.Il'in and E.I.Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator

in its differential and finite difference aspects. Differential Equation, 1987, 23(7):803-810

3 R.Y.Ma, Positive solutions for a nonlinear three-point boundary value problem, Electronic Journal of Differ-

ential Equations. 34(1999), 1-8.

4 B.Liu, Positive solutions of a mnonlinear four-point boundary value problems, Appl.Math.Comput,

155(2004)179-203.

5 R.Y.Ma, N.Cataneda, Existence of solution for nonlinear m-point boundary value problem, J.Math.Anal.Appl,
256(2001)556-567.

EJQTDE, 2007 No. 23, p. 10



10

11

12

13

14

15

Yanping Guo and Weigao Ge, Positive solutions for three-point boundary-value problems with dependence on

the first order derivative, J.Math.Anal.Appl, 290(2004):291-301.

7.B.Bai, W.G.Ge and Y.F.Wang, Multiplicity results for some second-order four-point boundary-value prob-
lems, Nonlinear Analysis. 60(2004), 491-500.

Feng W and Webb J R L, Solvability of three-point boundary value problems at resonance. Nonlinear Analysis,
30(6), 1997:3227-3238.

B.Liu, Solvability of multi-point boundary value problem at resonance(II), Appl.Math.Comput, 136(2003),
353-377.

S.P.Lu and W.G.Ge, On the existence of m-point boundary value problem at resonance for higher order

differential equation, J.Math.Anal.Appl, 287(2003), 522-539.

X.J.Lin, Z.J.Du and W.G.Ge, Solvability of multipoint boundary value problems at resonance for higher order
ordinary differential equations, Comput.Math.Appl, 49(2005), 1-11.

Z.J.Du, X.J.Lin and W.G.Ge, Some higher order multi-point boundary value problems at resonance, J.Math.
Anal.Appl, 177(2005), 55-65.

W. Ge and J. Ren, An extension of Mawhin’s continuation theorem and its application to boundary value

problems with a p-Laplacian. Nonlinear Analysis TMA 58 (2004), no. 3-4, 477-488.

W.S. Cheung and J. Ren, Periodic solutions for p-Laplacian differential equations with multiple deviating

arguments, Nonlinear Analysis TMA, 62(2005), no.4, 727-742.

J.Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS Regional Con-

ference Series in Math, American Mathematics Society, Providence, RI 1979.

(Received April 27, 2007)

EJQTDE, 2007 No. 23, p. 11



