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Abstract

In this work, we are concerned with a nonlinear weighted Cauchy type problem
of a differ-integral equation of fractional order. We will prove some local and global
existence theorems for this problem, also we will study the uniqueness and stability of
its solution.
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1 Preliminaries

Let L1(I) be the class of Lebesgue integrable functions on the interval I = [a, b], where
0 ≤ a < b < ∞ and let Γ(.) be the gamma function. Recall that the operator T is
compact if it is continuous and maps bounded sets into relatively compact ones. The set
of all compact operators from the subspace U ⊂ X into the Banach space X is denoted by
C(U,X). Moreover, we set Br = {u ∈ L1(I) : ||u|| < r, r > 0} and ||u||1 =

∫ 1
0 e

−Nt|u(t)|dt.
Definition 1.1 The fractional integral of the function f(.) ∈ L1(I) of order β ∈ R+ is
defined by (see [5] - [8])

Iβ
a f(t) =

∫ t

a

(t − s)β − 1

Γ(β)
f(s) ds.

Definition 1.2 The Riemann-Liouville fractional-order derivative of f(t) of order α ∈ (0, 1)
is defined as (see [5] - [8])

Dα
a f(t) =

d

dt
I1 − α
a f(t), t ∈ [a, b].

2 Introduction

We deal with the nonlinear weighted Cauchy-type problem:
{
Dα u(t) = f(t, u(φ(t))),

t1−α u(t)|t=0 = b.
(1)
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This problem has been intensively studied by many authors (see [2], for instance). In
comparison with earlier results of this type we get more general assumptions. In [2], the
function f(t, u) is assumed to be continuous on R+ × R, |f(t, u)| ≤ tµe−σtψ(t)|u|m, µ ≥
0,m > 1, σ > 0, ψ(t) is a continuous function on R+ and φ(t) = t.
In this work, we investigate the behavior of solutions for problem (1) with certain nonlinear-
ities. Using the equivalence of the fractional differ-integral problem with the corresponding
Volterra integral equation, we prove the existence of L1-solution such that the function f

satisfies the Caratheodory conditions and the growth condition. Moreover, we will study
the uniqueness and the stability of the solution.

Now, let us recall some results which will be needed in the sequel.

Theorem 2.1 (Rothe Fixed Point Theorem) [4]

Let U be an open and bounded subset of a Banach space E, let T ∈ C(Ū , E). Then T has
a fixed point if the following condition holds

T (∂U) ⊆ Ū .

Theorem 2.2 (Nonlinear alternative of Laray-Schauder type) [4]

Let U be an open subset of a convex set D in a Banach space E. Assume 0 ∈ U and
T ∈ C(Ū , E). Then either

(A1) T has a fixed point in Ū , or

(A2) there exists γ ∈ (0, 1) and x ∈ ∂U such that x = γ Tx.

Theorem 2.3 (Kolmogorov compactness criterion) [3]

Let Ω ⊆ Lp (0, 1), 1 ≤ p < ∞. If

(i) Ω is bounded in Lp (0, 1) and

(ii) xh → x as h → 0 uniformly with respect to x ∈ Ω, then Ω is relatively compact
in Lp (0, 1), where

xh(t) =
1

h

∫ t+h

t
x(s) ds.

3 Main results

We begin this section by proving the equivalence of problem (1) with the corresponding
Volterra integral equation:

u(t) = b tα−1 +

∫ t

0

(t − s)α−1

Γ(α)
f(s, u(φ(s))) ds, t ∈ (0, 1). (2)

Indeed: Let u(t) be a solution of (2), multiply both sides of (2) by t1−α, we get

t1−αu(t) = b + t1−α Iα f(t, u(φ(t))),
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which gives
t1−αu(t)|t=0 = b.

Now, operating by I1−α on both sides of (2), then

I1−αu(t) = b1 + I f(t, u(φ(t))).

Differentiating both sides we get

Dα u(t) = f(t, u(φ(t))).

Conversely, let u(t) be a solution of (1), integrate both sides, then

I1−αu(t) − I1−αu(t)|t=0 = I f(t, u(φ(t))),

operating by Iα on both sides of the last equation, then

Iu(t) − Iα C = I1+α f(t, u(φ(t))),

differentiate both sides, then

u(t) − C1 t
α−1 = Iα f(t, u(φ(t))),

from the initial condition, we find that C1 = b, then we obtain (2), i.e. Problem (1) and
equation (2) are equivalent to each other.
Now define the operator T as

Tu(t) = b tα−1 +

∫ t

0

(t − s)α−1

Γ(α)
f(s, u(φ(s))) ds, t ∈ (0, 1).

To solve equation (2) it is necessary to find a fixed point of the operator T .
Now, we present our main result by proving some local and global existence theorems for
the integral equation (2) in L1. To facilitate our discussion, let us first state the following
assumptions:

(i) f : (0, 1) ×R→ R be a function with the following properties:

(a) for each t ∈ (0, 1), f(t, .) is continuous,

(b) for each u ∈ R, f(., u) is measurable,

(c) there exist two real functions t→ a(t), t → b(t) such that

| f(t, u) | ≤ a(t) + b(t) | u |, for each t ∈ (0, 1), u ∈ R,

where a(.) ∈ L1(0, 1) and b(.) is measurable and bounded.

(ii) φ : (0, 1) → (0, 1) is nondecreasing and there is a constant M > 0 such that φ′ ≥ M

a.e. on (0, 1).
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Now, for the local existence of the solutions we have the following theorem:

Theorem 3.1

Let the assumptions (i) and (ii) are satisfied.

If sup | b(t) | < M Γ(1 + α), (3)

then the fractional order integral equation (2) has a solution u ∈ Br, where

r ≤

b
α

+ 1
Γ(1+α) || a ||

1 − 1
Γ(1+α) sup | b(t) | 1

M

.

Proof. Let u be an arbitrary element in Br. Then from the assumptions (i) - (ii), we have

||Tu|| =

∫ 1

0
| Tu(t) | dt

≤

∫ 1

0
| b tα−1 | dt +

∫ 1

0
|

∫ t

0

(t − s)α−1

Γ(α)
f(s, u(φ(s))) ds | dt

≤

(
b tα

α

)1

0
+

∫ 1

0

∫ 1

s

(t − s)α−1

Γ(α)
dt | f(s, u(φ(s))) | ds

≤
b

α
+

∫ 1

0

(t − s)α

Γ(1 + α)
|1s ( | a(s) | + | b(s) | | u(φ(s)) | ) ds

≤
b

α
+

∫ 1

0

(1 − s)α

Γ(1 + α)
( | a(s) | + | b(s) | | u(φ(s)) | ) ds

≤
b

α
+

1

Γ(1 + α)

∫ 1

0
( | a(s) | + | b(s) | | u(φ(s)) | ) ds

≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |

∫ 1

0
| u(φ(s)) | ds

≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M

∫ 1

0
| u(φ(s)) | | φ′ | ds

≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M

∫ φ(1)

φ(0)
| u(x) | dx

≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M
|| u ||.

The last estimate shows that the operator T maps L1 into itself. Now, let u ∈ ∂Br, that
is, ||u|| = r, then the last inequality implies

||Tu|| ≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M
r.

Then T (∂Br) ⊂ B̄r (closure of Br) if

||Tu|| ≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M
r ≤ r,
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which implies that

b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M
r ≤ r.

Therefore

r ≤

b
α

+ 1
Γ(1+α) || a ||

1 − 1
Γ(1+α) sup | b(t) | 1

M

.

Using inequality (3) we deduce that r > 0. Moreover, we have

||f || =

∫ 1

0
| f(s, u(φ(s))) | ds

≤

∫ 1

0
( | a(s) | + | b(s) | | u(φ(s)) | ) ds

≤ ||a|| + sup | b(t) |.
1

M
||u||.

This estimation shows that f in L1(0, 1).
Further, f is continuous in u (assumption (a)) and Iα maps L1(0, 1) continuously into
itself, Iαf(t, u(φ(t))) is continuous in u. Since u is an arbitrary element in Br, T maps Br

continuously into L1(0, 1).
Now, we will show that T is compact, to achieve this goal we will apply Theorem 2.3. So,
let Ω be a bounded subset of Br. Then T (Ω) is bounded in L1(0, 1), i.e. condition (i)
of Theorem 2.3 is satisfied. It remains to show that (Tu)h → Tu in L1(0, 1) as h → 0,
uniformly with respect to Tu ∈ T Ω. We have the following estimation:

||(Tu)h − Tu|| =

∫ 1

0
| (Tu)h(t) − (Tu)(t) | dt

=

∫ 1

0
|

1

h

∫ t+h

t
(Tu)(s) ds − (Tu)(t) | dt

≤

∫ 1

0

(
1

h

∫ t+h

t
| (Tu)(s) − (Tu)(t) | ds

)
dt

≤

∫ 1

0

1

h

∫ t+h

t
| b sα−1 − b tα−1 | ds dt

+

∫ 1

0

1

h

∫ t+h

t
| Iα f(s, u(φ(s))) − Iα f(t, u(φ(t))) |ds dt.

Since f ∈ L1(0, 1) we get that Iαf(.) ∈ L1(0, 1). Moreover tα−1 ∈ L1(0, 1). So, we have
(see [1])

1

h

∫ t+h

t
| b sα−1 − b tα−1 | ds → 0

and
1

h

∫ t+h

t
| Iα f(s, u(φ(s))) − Iα f(t, u(φ(t))) | ds → 0
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for a.e. t ∈ (0, 1). Therefore, by Theorem 2.3, we have that T (Ω) is relatively compact,
that is, T is a compact operator.
Therefore, Theorem 2.1 with U = Br and E = L1(0, 1) implies that T has a fixed point.
This complete the proof.

Now we prove the existence of global solution:

Theorem 3.2

Let the conditions (i) - (ii) be satisfied in addition to the following condition:

(iii) Assume that every solution u(.) ∈ L1(0, 1) to the equation

u(t) = γ

(
b tα−1 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, u(φ(s))) ds

)
a.e. on (0, 1), 0 < α < 1

satisfies ||u|| 6= r (r is arbitrary but fixed).

Then the fractional order integral equation (2) has at least one solution u ∈ L1(0, 1).
Proof. Let u be an arbitrary element in the open set Br = {u : ||u|| < r, r > 0}. Then
from the assumptions (i) - (ii), we have

||Tu|| ≤
b

α
+

1

Γ(1 + α)
|| a || +

1

Γ(1 + α)
sup | b(t) |.

1

M
|| u ||.

The above inequality means that the operator T maps Br into L1. Moreover, we have

||f || ≤ ||a|| + sup | b(t) |.
1

M
||u||.

This estimation shows that f in L1(0, 1).
As a consequence of Theorem 3.1 we get that T maps Br continuously into L1(0, 1) and T
is compact.
Set U = Br and D = E = L1(0, 1), then in the view of assumption (iii) the condition A2 of
Theorem 2.2 does not hold. Therefore, Theorem 2.2 implies that T has a fixed point. This
complete the proof.

4 Uniqueness of the solution

For the uniqueness of the solution we have the following theorem:

Theorem 4.1

Let the assumptions of Theorem 3.1 be satisfied, but instead of assumption (i) consider the
following conditions:

| f(t, u) − f(t, v) | ≤ L | u − v |

and
| f(t, 0) | ≤ a(t),
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then the fractional order integral equation (2) has a unique solution.
Proof. Let u1(t) and u2(t) be any two solutions of equation (2), then

u2(t) − u1(t) =

∫ t

0

(t− s)α−1

Γ(α)
(f(s, u2(φ(s))) − f(s, u1(φ(s)))) ds,

e−Nt| u2(t) − u1(t) | ≤ L e−Nt

∫ t

0

(t − s)α−1

Γ(α)
| u2(φ(s)) − u1(φ(s)) | ds.

Therefore

∫ 1

0
e−Nt| u2(t) − u1(t) | dt ≤ L

∫ 1

0
e−Nt

∫ t

0

(t − s)α−1

Γ(α)
|u2(φ(s)) − u1(φ(s))| ds dt,

|| u2 − u1 ||1 ≤ L

∫ 1

0

∫ 1

s
e−Nt (t − s)α−1

Γ(α)
dt |u2(φ(s)) − u1(φ(s))| ds

= L

∫ 1

0

∫ 1

s
e−N(t−s) (t− s)α−1

Γ(α)
dt e−Ns |u2(φ(s)) − u1(φ(s))|ds

= L

∫ 1

0

∫ N(1−s)

0
e−θ θα−1

Nα−1Γ(α)

dθ

N
e−Ns|u2(φ(s)) − u1(φ(s))|ds

≤
L

Nα

∫ 1

0
e−Ns |u2(φ(s)) − u1(φ(s))|ds

≤
L

MNα

∫ 1

0
e−Ns |u2(φ(s)) − u1(φ(s))| |φ′|ds

=
L

MNα

∫ φ(1)

φ(0)
e−Nφ−1(x) |u2(x) − u1(x)| dx

≤
L

MNα

∫ φ(1)

φ(0)
e−Nx |u2(x) − u1(x)| dx

≤
L

MNα
|| u2 − u1 ||1.

We choose N such that MNα > L, therefore

|| u2 − u1 ||1 < || u2 − u1 ||1,

which implies that
u1(t) = u2(t).
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5 Stability

Now we study the stability of the Weighted Cauchy-type problem (1).

Theorem 5.1

Let the assumptions of Theorem 4.1 be satisfied, then the solution of the Weighted Cauchy-
type problem (1) is uniformly stable.
Proof. Let u(t) be a solution of

u(t) = b tα−1 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, u(φ(s))) ds,

and let ũ(t) be a solution of the above equation such that t1−α ũ(t)|t=0 = b̃, then

u(t) − ũ(t) = (b − b̃) tα−1 +

∫ t

0

(t− s)α−1

Γ(α)
(f(s, u(φ(s))) − f(s, ũ(φ(s)))) ds,

e−Nt|u(t) − ũ(t)| ≤ e−Nt|b − b̃| tα−1 + Le−Nt

∫ t

0

(t− s)α−1

Γ(α)
|u(φ(s)) − ũ(φ(s))| ds.

Therefore

∫ 1

0
e−Nt| u(t) − ũ(t) | dt ≤

∫ 1

0
e−Nt | b − b̃ | tα−1 dt

+ L

∫ 1

0
e−Nt

∫ t

0

(t − s)α−1

Γ(α)
|u(φ(s)) − ũ(φ(s))| ds dt,

|| u − ũ ||1 ≤

∫ N

0
e−s | b − b̃ |

sα−1

Nα−1

ds

N

+ L

∫ 1

0

∫ 1

s
e−Nt (t − s)α−1

Γ(α)
dt |u(φ(s)) − ũ(φ(s))| ds

≤
Γ(α)

Nα
| b − b̃ |

+ L

∫ 1

0

∫ 1

s
e−N(t−s) (t− s)α−1

Γ(α)
dt e−Ns |u(φ(s)) − ũ(φ(s))|ds

=
Γ(α)

Nα
| b − b̃ |

+ L

∫ 1

0

∫ N(1−s)

0
e−θ θα−1

Nα−1Γ(α)

dθ

N
e−Ns|u(φ(s)) − ũ(φ(s))|ds

≤
Γ(α)

Nα
| b − b̃ | +

L

Nα

∫ 1

0
e−Ns |u(φ(s)) − ũ(φ(s))|ds

≤
Γ(α)

Nα
|b − b̃| +

L

MNα

∫ 1

0
e−Ns |u(φ(s)) − ũ(φ(s))| |φ′|ds

=
Γ(α)

Nα
|b − b̃| +

L

MNα

∫ φ(1)

φ(0)
e−Nφ−1(x) |u(x) − ũ(x)| dx
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≤
Γ(α)

Nα
|b − b̃| +

L

MNα

∫ φ(1)

φ(0)
e−Nx |u(x) − ũ(x)| dx

≤
Γ(α)

Nα
| b − b̃ | +

L

MNα
|| u − ũ ||1

(
1 −

L

MNα

)
||u − ũ||1 ≤

Γ(α)

Nα
| b − b̃ |

⇒ ||u − ũ||1 ≤

(
1 −

L

MNα

)
−1

.
Γ(α)

Nα
| b − b̃ |

=
M Γ(α)

M Nα − L
| b − b̃ |.

Therefore, if |b − b̃| < δ(ε), then ||u − ũ|| < ε. Now from the equivalence we get that
the solution of the Weighted Cauchy-type problem (1) is uniformly stable.
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