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Abstract: In this paper, we study the existence of positive solutions for a nonlinear four-
point boundary value problem with a p-Laplacian operator. By using a three functionals
fixed point theorem in a cone, the existence of double positive solutions for the nonlinear
four-point boundary value problem with a p-Laplacian operator is obtained. This is different
than previous results.
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1. Introduction

In this paper we are interested in the existence of positive solutions for the following nonlinear
four-point boundary value problem with a p-Laplacian operator:

(pp(u))) +e(t)f(u(t) =0, 0<t<1, (1.1)

1ép(u(0)) — wep(u' () =0, pdp(u(l)) + 7ép(u'(n)) = 0. (1.2)

where ¢,(s) is a p-Laplacian operator, i.e., ¢,(s) = [s|P72s,p > 1,0, = ((bp)*l,%
O,w > 0,p > 0,7 > 0,&,n € (0,1) is prescribed and £ < n,e : (0,1) — [0,00), f : [0,400) —
[0, +00).

In recent years, because of the wide mathematical and physical background [1,2,12], the exis-
tence of positive solutions for nonlinear boundary value problems with p-Laplacian has received
wide attention. There exists a very large number of papers devoted to the existence of solutions
of the p-Laplacian operators with two or three-point boundary conditions, for example,

u(0) = Bo(u/(0)) = 0, u(1) + Bi(u/(1)) =0,
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and

For further knowledge, see [3-11,13]. The methods and techniques employed in these papers
involve the use of Leray-Shauder degree theory [4], the upper and lower solution method [5],
fixed point theorem in a cone [3,6-8,10,11,13], and the quadrature method [9]. However, there
are several papers dealing with the existence of positive solutions for four-point boundary value
problem [13-15,18].

Motivated by results in [14], this paper is concerned with the existence of two positive solutions
of the boundary value problem (1.1)-(1.2). Our tool in this paper will be a new double fixed point
theorem in a cone [11,16,17,19] . The result obtained in this paper is essentially different from
the previous results in [14].

In the rest of the paper, we make the following assumptions:

(H1) f € C ([0, +50), [0, +00));

(H2) e(t) € C((0,1),[0,400)), and 0 < fol e(t)dt < co. Moreover, e(t) does not vanish identi-
cally on any subinterval of (0,1).

Define

Jo= tim LW gy S

u—0+ uP—1’ u—o0 yP~1

2. Some background definitions

In this section we provide some background material from the theory of cones in Banach space,
and we state a two fixed point theorem due to Avery and Henderson [19].
If P C F is a cone, we denote the order induced by P on E by <. That is

x <y if and only if y—z € P.

Definition 2.1 Given a cone P in a real Banach spaces F, a functional ¢ : P — R is said to be
increasing on P, provided ¢ (x) < ¥(y), for all z,y € P with x < y.

Definition 2.2 Given a nonnegative continuous functional 7 on a cone P of a real Banach space
E(i.e., v: P — [0,+00) continuous), we define, for each d > 0, the set

P(v,d) ={z € Ply(x) < d}.

In order to obtain multiple positive solutions of (1.1)-(1.2), the following fixed point theorem
of Avery and Henderson will be fundamental.
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Theorem 2.1 [19] Let P be a cone in a real Banach space E. Let a and ~y be increasing,
nonnegative continuous functional on P, and let 6 be a nonnegative continuous functional on P
with 6(0) = 0 such that, for some ¢ >0 and M > 0,

A(2) < 8(x) < a(z), and || < MA(2)

for all x € P(~,c). Suppose there exist a completely continuous operator ® : P(y,c¢) — P and
0 <a<b<csuch that

O(Ax) < N0(z) for 0<A<1 and =€ IP(0,b),

and
(i) v(®z) <e¢, for all x € OP(v,c),
(ii) 0(Px) > b for all x € OP(0,b),
(i) P(a,a) # 0 and o(®Pz) < a, for x € OP(a,a).
Then ® has at least two fized points x1 and xo belonging to P(7,c) satisfying

a < ofry) with 6(x1) <b,

and
b < 6(xg) with v(x2) < c.

3. Existence of two positive solutions of (1.1)-(1.2)

In this section, by defining an appropriate Banach space and cones, we impose growth condi-
tions on f which allow us to apply the above two fixed point theorem in establishing the existence
of double positive solutions of (1.1)-(1.2). Firstly, we mention without proof several fundamental
results.

Lemma 3.1 [Lemma 2.1, 14]. If condition (H2) holds, then there ezists a constant § € (0, 3) that
satisfies

1-6
0< / e(t)dt < oo.
6

Furthermore, the function:

y(t) = /;qﬁq(/ste(r)dr)ds—{—/tl6(;5(1(/; e(r)dr)ds, teo,1—19],

is a positive continuous function on [§,1 — d]. Therefore y1(t) has a minimum on [0,1 — §], so it
follows that there exists Ly > 0 such that

i t) = L.
uin yi(t) = L

If E = C[0,1], then E is a Banach space with the norm |[ul| = sup,¢jg 1) [u(t)|. We note that,
from the nonnegativity of e and f, a solution of (1.1)-(1.2) is nonnegative and concave on [0, 1].
Define

P ={ue€ E:u(t) > 0,u(t) is concave function, ¢ € [0,1]}.
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Lemma 3.2 [Lemma 2.2, 14]. Let u € P and ¢ be as Lemma 3.1, then
u(t) > ollull, te[s,1-24
Lemma 3.3 [Lemma 2.3, 14]. Suppose that conditions (H1), (H2) hold. Then u(t) € ENC?(0,1)

is a solution of boundary value problem (1.1)-(1.2) if and only if u(t) € E is a solution of the
following integral equation:

6q (2 / Cer)fulrdr) + [ oy / " e(r)f(ulr))dr)ds, 0<t<o,
u(t) = o o is
%(% /0 e(r)f(u(r))dr)+ t ¢q( /0 e(r)f(u(r))dr)ds, o<t<l,

where o € [€,n] C (0,1) and u/(o) = 0.

t

By means of the well known Guo-Krasnoselskii fixed point theorem in a cone, Su et al. [14]
established the existence of at least one positive solution for (1.1)-(1.2) under some superlinear
and sublinear assumptions imposed on the nonlinearity of f, which can be listed as

(i) fo =10 and fo = +o00 (superlinear), or

(ii) fo = 400 and foo = 0 (sublinear).

Using the same theorem, the authors also proved the existence of two positive solutions of
(1.1)-(1.2) when f satisfies

(iii) fo = fo =0, or

(iV) Jo = foo = +00.

When fo, foo & {0,400}, set

2 1
0f = = 9, =

L (1 +¢q(%))¢q</01 e(r)dr),

and in the following, always assume ¢ be as in Lemma 3.1, the existence of double positive solutions

of boundary value problem (1.1)-(1.2) can be list as follows:

Theorem 3.1 [Theorem 4.3, 14]. Suppose that conditions (H1),(H2) hold. Also assume that f
satisfies
p—1
(A1) fo=x € [0, (%) );
(A2) fo=A2 € [ (%) );
(A3) f(u) < (MR)P1,0<u<R,

where M € (0,0,). Then the boundary value problem (1.1)-(1.2) has at least two positive solutions
u1, us such that
0 < [lur]] < R < |Juz]|.

Theorem 3.2 [Theorem 4.4, 14]. Suppose that conditions (H1),(H2) hold. Also assume that f
satisfies

(Ad) fo = e [(25) o0):
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* pfl
(A5) foo = A2 € [(22 ) ,OO);
(AG) f(u) = (mr)P~tor <u <,
where m € (0*,00). Then the boundary value problem (1.1)-(1.2) has at least two positive solutions

u1, us such that
0 < fJur]] <r < usg].

When we see such a fact, we cannot but ask “Whether or not we can obtain a similar conclusion

if neither fo € [(2-)P~1,00) nor fo € [0,(%)P~1).” Motivated by the above mentioned results,

in this paper, we attempt to establish simple criteria for the existence of at least two positive
solutions of (1.1)-(1.2). Our result is based on Theorem 2.1 and gives a positive answer to the

question stated above.

Set
1-6

¢
ya(t) == ¢q(/ e(r)dr) + (bq(/ e(r)dr), §<t<1-4.
é t
For notational convenience, we introduce the following constants:

Ly = mi t
2 5§rtn§1{175y2(),

and

Ly = 5¢q(/01 e(r)d?“) + max{(bq(% /J e(r)dr),(éq(% /J e(r)dr)},

Q :qﬁq(/o e(r)dr) +max{¢q(% /;7 e(r)dr),(pq(% /: e(r)dr)}.

Finally, we define the nonnegative, increasing continuous functions «, # and « by

v(u) = Juin u(t),

O(u) = %[u(é) +u(l—9)], alu)= fax u(t).

We observe here that, for every u € P,
Y(u) <O(u) < afw).

It follows from Lemma 3.2 that, for each u € P, one has vy(u) > 6||ul|, so [Ju|| < +v(u), for all
u € P. We also note that 8(\u) = A\(u), for 0 < A <1, and u € 9P(0,b).
The main result of this paper is as follows:

Theorem 3.3 Assume that (H1) and (Hy) hold, and suppose that there exist positive constants

0<a<b<csuchthat 0 <a<db< 522LLSQ ¢, and f satisfies the following conditions

(D1) f(v) < 6p(&), if 0<v<a
(D2) f(v) > 6p(37;), if db<v<g
(D3) f(v) <op(g3), if 0<v<§;
Then, the boundary value problem (1.1) and (1.2) has at least two positive solutions ui and us
such that

) 1
a < tren[gflc] ui(t), with §[u1(6) +ui(l —9)] < b;
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and

1 . .
b< §[u2(5) +ug(1 —9)], with ter[glfia] uz(t) < c.

Proof. We define the operator: & : P — P,

o (2 /:e(r)f(u(r))dr) +/Ot¢q(/8“e(r)f(u(r))dr)ds, 0<t<o,

(Pu)(t) := 0 s
6a(z [ erstrr) + [ anl [ eI stutrr)ds, o <i<

for each u € P, where o € [£,n] C (0,1). It is shown in Lemma 3.3 that the operator ® : P — P
is well defined with ||®u| = ®Pu(o). In particular, if u € P(v,c), we also have du € P, moreover,
a standard argument shows that ® : P — P is completely continuous (see [Lemma 2.4, 14]) and
each fixed point of ® in P is a solution of (1.1)-(1.2).

We now show that the conditions of Theorem 2.1 are satisfied.

To fulfill property (i) of Theorem 2.2, we choose u € 9P (7, ¢), thus y(u) = minycs g u(t) = c.
Recalling that |u] < 1v(u) = £, we have

1
0<u(t) < Jul < sy(w) =5, 0<t<1

¢
5 )
Then assumption (D3) of Theorem 3.2 implies

Fu(t) < %(L%)’ 0<t<1.
(i) If o € (0,0), we have

1(@u) = min_(@u)(t) = (Pu)(1 - 6)

(ii) If o € [6,1 — 4], we have

v(Pu) = minte[é(;l—é}((bu)(t) = min{(‘?u)@)a (Pu)(1 —0)}
= mim{gbq(%/g e(r)f(u(r))dr) ¢q<

_|_
ou(z [ enrsuenar) + [ ool [ ewsueyar)as)
< o (3 [ etrnrtanar) + [ on( [ etr)stutryar)as

EJQTDE, 2008 No. 18, p. 6



(iii) If 0 € (1 — 4, 1), we have
v(Pu) = minge(s1— 5](‘1>U)(t) = ‘1()5“(5)
=a(3 || ) suonar) + |
< ¢q(§/ (r)dr) +
<[oals [

<c.

bq /: e(r)f(u(r))dr) ds
1
bq /0 e(r)f(u(r))dr) ds

S,

Therefore, condition (i) of Theorem 2.2 is satisfied.
We next address (ii) of Theorem 2.2. For this, we choose u € OP(6,b) so that O(u) =
2[u(8) + u(1 — 6)] = b. Noting that

Jull < (1/6)y(u) < (1/6)0(u) = b/5,

we have

for t €[d,1—4].

| o

85 < dllull < u(t) <
Then (D2) yields
b
Flu(t)) > %((%2), for te[1—0].

As due P
(i) If o € (0,0), we have

(ii) If o € [6,1 — d], we have

20(CI)<SU) = [<I>Uu(5) + Pu(l —9)] 1 8
/0 Pq /S e(r u(r))dr)d5+/1_6 %(/H e(r)f(u(r))dr)ds

([ e
[ oul [ et stutrar)as + [ ;fq( [ e suiryar)a
= 5[ou( [ et fulr)ar) + oy /U e(r) f (u(r))dr) |

(

Y

v

)

1=0 2b
/6 e(r dr) +¢q(/ e(r)dr)} "5Is

b.
(iii) If 0 € (1 — 4, 1), we have

AVARAY]
N
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O(®u) = §(@u(9) + Du(l - )) > Pu(9)

— (2 /5 () wr)dr) + [ o, [ er)f(ur))ar)ds
d 1-6

> [Cou( [ etrrtutrar)as

> 5%(/515 e(r)dr) . % > 2b> 0.

Hence, condition (ii) of Theorem 2.2 holds.

To fulfill property (iii) of Theorem 2.2, we note u.(t) = a/2,0 <t < 1, is a member of P(a, a
and a(us) = a/2, so P(a,a) # 0. Now, choose u € OP(a, a), so that a(u) = max,coju(t) = a
and implies 0 < u(t) < a,0 <t < 1. It follows from assumption (D1), f(u(t)) < ¢p(a/Q),t € [0,1].
As before we obtain

Thus, condition (iii) of Theorem 2.1 is also satisfied. Consequently, an application of Theorem
2.1 completes the proof. O

Finally, we present an example to explain our result.

Example. Consider the boundary value problem (1.1)-(1.2) with

3 1 1 1 .
= — :2 = :1 = — = — :1 = — =1 2
p=gu=2p=w=1=n=57=10 4,6('5) t 2,

and

NG
bv2u 0 < u < 200,

fay =4 46T 202

u) =
2 222w —200), 200 < u < 250
o7+ 335 v ) ==
180, 250 < u,

Then (1.1)-(1.2) has at least two positive solutions.

Proof. In this example we have

x x 3/4 s 3\/§ -5
= 1 _1/2 _1/2 =
Ly 1/421;23/4 { /1/4 gbq(/s t—/%dt)ds +/x gbq(/x t dt)ds} 9
Ly= min (¢ (/m t=Y2dt) 4 ¢ (/3/4t—1/2dt)) =23
27 aca<aa N0y e ’

Ls = 5¢q(/01 e(r)d?“) + max {gbq(% /; e(r)dr),gbq(% /J e(r)dr)} =4 -2V2,
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Q= ¢q(/01 e(r)dr) + max {(ﬁq(% /;7 e(r)dr),%(% /;7 e(r)dr)} =7-2V2.
Let a = 80,b = 1000, ¢ = 40000. Then we have

6v2u

flu) = ) < ¢pa/Q), for 0<u <80,

fu) =180 > ¢,((2b)/(5Ly)), for 250 < u < 4000,
fu) =180 < ¢,(c/Ls), for 0 < u < 160000.

Therefore, by Theorem 3.3 we deduce that (1.1)-(1.2) has at least two positive solutions u; and
ug satisfying

80 < max ur(t), with —[uy(8) +ur(1— 8)] < 1000:
t€[0,1] 2

and

1
1000 < —[u2(0) + ua(l —9)], with  min wua(t) < 40000.
2 te[s,1-4]

Remark. We notice that in the above example, fy = 612 ~ 8.48528, (‘%)1”_1 = \1/—05 ~ 0.223607

and (%)p—1 = 61/10 4+ 61/3 ~ 27.0947. Therefore, Theorem 3.1 and Theorem 3.2 are not appli-
cable to this example since conditions (Al) and (A4) fail.
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