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Abstract: In this paper, we study the existence of positive solutions for a nonlinear four-
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1. Introduction

In this paper we are interested in the existence of positive solutions for the following nonlinear

four-point boundary value problem with a p-Laplacian operator:

(φp(u
′))′ + e(t)f(u(t)) = 0, 0 < t < 1, (1.1)

µφp(u(0)) − ωφp(u
′(ξ)) = 0, ρφp(u(1)) + τφp(u

′(η)) = 0. (1.2)

where φp(s) is a p-Laplacian operator, i.e., φp(s) = |s|p−2s, p > 1, φq = (φp)
−1, 1

q + 1
p = 1, µ >

0, ω ≥ 0, ρ > 0, τ ≥ 0, ξ, η ∈ (0, 1) is prescribed and ξ < η, e : (0, 1) → [0,∞), f : [0,+∞) →
[0,+∞).

In recent years, because of the wide mathematical and physical background [1,2,12], the exis-

tence of positive solutions for nonlinear boundary value problems with p-Laplacian has received

wide attention. There exists a very large number of papers devoted to the existence of solutions

of the p-Laplacian operators with two or three-point boundary conditions, for example,

u(0) = 0, u(1) = 0,

u(0) −B0(u
′(0)) = 0, u(1) +B1(u

′(1)) = 0,
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u(0) −B0(u
′(0)) = 0, u′(1) = 0,

u′(0) = 0, u(1) +B1(u
′(1)) = 0,

and

u(0) = 0, u(1) = u(η),

u(0) −B0(u
′(η)) = 0, u(1) +B1(u

′(1)) = 0,

u(0) −B0(u
′(0)) = 0, u(1) +B1(u

′(η)) = 0,

au(r) − bp(r)u′(r) = 0, cu(R) + dp(R)u′(R) = 0.

For further knowledge, see [3-11,13]. The methods and techniques employed in these papers

involve the use of Leray-Shauder degree theory [4], the upper and lower solution method [5],

fixed point theorem in a cone [3,6-8,10,11,13], and the quadrature method [9]. However, there

are several papers dealing with the existence of positive solutions for four-point boundary value

problem [13-15,18].

Motivated by results in [14], this paper is concerned with the existence of two positive solutions

of the boundary value problem (1.1)-(1.2). Our tool in this paper will be a new double fixed point

theorem in a cone [11,16,17,19] . The result obtained in this paper is essentially different from

the previous results in [14].

In the rest of the paper, we make the following assumptions:

(H1) f ∈ C([0,+∞), [0,+∞));

(H2) e(t) ∈ C((0, 1), [0,+∞)), and 0 <
∫ 1
0 e(t)dt < ∞. Moreover, e(t) does not vanish identi-

cally on any subinterval of (0, 1).

Define

f0 = lim
u→0+

f(u)

up−1
, f∞ = lim

u→∞
f(u)

up−1
.

2. Some background definitions

In this section we provide some background material from the theory of cones in Banach space,

and we state a two fixed point theorem due to Avery and Henderson [19].

If P ⊂ E is a cone, we denote the order induced by P on E by ≤. That is

x ≤ y if and only if y − x ∈ P.

Definition 2.1 Given a cone P in a real Banach spaces E, a functional ψ : P → R is said to be

increasing on P , provided ψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.

Definition 2.2 Given a nonnegative continuous functional γ on a cone P of a real Banach space

E(i.e., γ : P → [0,+∞) continuous), we define, for each d > 0, the set

P (γ, d) = {x ∈ P |γ(x) < d}.

In order to obtain multiple positive solutions of (1.1)-(1.2), the following fixed point theorem

of Avery and Henderson will be fundamental.

EJQTDE, 2008 No. 18, p. 2



Theorem 2.1 [19] Let P be a cone in a real Banach space E. Let α and γ be increasing,

nonnegative continuous functional on P , and let θ be a nonnegative continuous functional on P

with θ(0) = 0 such that, for some c > 0 and M > 0,

γ(x) ≤ θ(x) ≤ α(x), and ‖x‖ ≤Mγ(x)

for all x ∈ P (γ, c). Suppose there exist a completely continuous operator Φ : P (γ, c) → P and

0 < a < b < c such that

θ(λx) ≤ λθ(x) for 0 ≤ λ ≤ 1 and x ∈ ∂P (θ, b),

and

(i) γ(Φx) < c, for all x ∈ ∂P (γ, c),

(ii) θ(Φx) > b for all x ∈ ∂P (θ, b),

(iii) P (α, a) 6= ∅ and α(Φx) < a, for x ∈ ∂P (α, a).

Then Φ has at least two fixed points x1 and x2 belonging to P (γ, c) satisfying

a < α(x1) with θ(x1) < b,

and

b < θ(x2) with γ(x2) < c.

3. Existence of two positive solutions of (1.1)-(1.2)

In this section, by defining an appropriate Banach space and cones, we impose growth condi-

tions on f which allow us to apply the above two fixed point theorem in establishing the existence

of double positive solutions of (1.1)-(1.2). Firstly, we mention without proof several fundamental

results.

Lemma 3.1 [Lemma 2.1, 14]. If condition (H2) holds, then there exists a constant δ ∈ (0, 1
2) that

satisfies

0 <

∫ 1−δ

δ
e(t)dt <∞.

Furthermore, the function:

y1(t) =

∫ t

δ
φq

(

∫ t

s
e(r)dr

)

ds+

∫ 1−δ

t
φq

(

∫ s

t
e(r)dr

)

ds, t ∈ [δ, 1 − δ],

is a positive continuous function on [δ, 1 − δ]. Therefore y1(t) has a minimum on [δ, 1 − δ], so it

follows that there exists L1 > 0 such that

min
t∈[δ,1−δ]

y1(t) = L1.

If E = C[0, 1], then E is a Banach space with the norm ‖u‖ = supt∈[0,1] |u(t)|. We note that,

from the nonnegativity of e and f, a solution of (1.1)-(1.2) is nonnegative and concave on [0, 1].

Define

P = {u ∈ E : u(t) ≥ 0, u(t) is concave function, t ∈ [0, 1]}.
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Lemma 3.2 [Lemma 2.2, 14]. Let u ∈ P and δ be as Lemma 3.1, then

u(t) ≥ δ‖u‖, t ∈ [δ, 1 − δ].

Lemma 3.3 [Lemma 2.3, 14]. Suppose that conditions (H1), (H2) hold. Then u(t) ∈ E∩C2(0, 1)

is a solution of boundary value problem (1.1)-(1.2) if and only if u(t) ∈ E is a solution of the

following integral equation:

u(t) =















φq

(

ω
µ

∫ σ

ξ
e(r)f(u(r))dr

)

+

∫ t

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds, 0 ≤ t ≤ σ,

φq

(

τ
ρ

∫ η

σ
e(r)f(u(r))dr

)

+

∫ 1

t
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds, σ ≤ t ≤ 1,

where σ ∈ [ξ, η] ⊂ (0, 1) and u′(σ) = 0.

By means of the well known Guo-Krasnoselskii fixed point theorem in a cone, Su et al. [14]

established the existence of at least one positive solution for (1.1)-(1.2) under some superlinear

and sublinear assumptions imposed on the nonlinearity of f , which can be listed as

(i) f0 = 0 and f∞ = +∞ (superlinear), or

(ii) f0 = +∞ and f∞ = 0 (sublinear).

Using the same theorem, the authors also proved the existence of two positive solutions of

(1.1)-(1.2) when f satisfies

(iii) f0 = f∞ = 0, or

(iv) f0 = f∞ = +∞.

When f0, f∞ 6∈ {0,+∞}, set

θ∗ =
2

L1
, θ∗ =

1
(

1 + φq(
ω
µ )

)

φq

(

∫ 1

0
e(r)dr

)

,

and in the following, always assume δ be as in Lemma 3.1, the existence of double positive solutions

of boundary value problem (1.1)-(1.2) can be list as follows:

Theorem 3.1 [Theorem 4.3, 14]. Suppose that conditions (H1),(H2) hold. Also assume that f

satisfies

(A1) f0 = λ1 ∈
[

0,
(

θ∗
4

)p−1)

;

(A2) f∞ = λ2 ∈
[

0,
(

θ∗
4

)p−1)

;

(A3) f(u) ≤ (MR)p−1, 0 ≤ u ≤ R,

where M ∈ (0, θ∗). Then the boundary value problem (1.1)-(1.2) has at least two positive solutions

u1, u2 such that

0 < ‖u1‖ < R < ‖u2‖.

Theorem 3.2 [Theorem 4.4, 14]. Suppose that conditions (H1),(H2) hold. Also assume that f

satisfies

(A4) f0 = λ1 ∈
[(

2θ∗

δ

)p−1
,∞

)

;
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(A5) f∞ = λ2 ∈
[(

2θ∗

δ

)p−1
,∞

)

;

(A6) f(u) ≥ (mr)p−1, δr ≤ u ≤ r,

where m ∈ (θ∗,∞). Then the boundary value problem (1.1)-(1.2) has at least two positive solutions

u1, u2 such that

0 < ‖u1‖ < r < ‖u2‖.

When we see such a fact, we cannot but ask “Whether or not we can obtain a similar conclusion

if neither f0 ∈ [(2θ∗

δ )p−1,∞) nor f0 ∈ [0, (θ∗
4 )p−1).” Motivated by the above mentioned results,

in this paper, we attempt to establish simple criteria for the existence of at least two positive

solutions of (1.1)-(1.2). Our result is based on Theorem 2.1 and gives a positive answer to the

question stated above.

Set

y2(t) := φq

(

∫ t

δ
e(r)dr

)

+ φq

(

∫ 1−δ

t
e(r)dr

)

, δ ≤ t ≤ 1 − δ.

For notational convenience, we introduce the following constants:

L2 = min
δ≤t≤1−δ

y2(t),

and

L3 = δφq

(

∫ 1

0
e(r)dr

)

+ max
{

φq

(ω

µ

∫ η

ξ
e(r)dr

)

, φq

(τ

ρ

∫ η

ξ
e(r)dr

)}

,

Q = φq

(

∫ 1

0
e(r)dr

)

+ max
{

φq

(ω

µ

∫ η

ξ
e(r)dr

)

, φq

(τ

ρ

∫ η

ξ
e(r)dr

)}

.

Finally, we define the nonnegative, increasing continuous functions γ, θ and α by

γ(u) = min
t∈[δ,1−δ]

u(t),

θ(u) =
1

2
[u(δ) + u(1 − δ)], α(u) = max

0≤t≤1
u(t).

We observe here that, for every u ∈ P ,

γ(u) ≤ θ(u) ≤ α(u).

It follows from Lemma 3.2 that, for each u ∈ P, one has γ(u) ≥ δ‖u‖, so ‖u‖ ≤ 1
δγ(u), for all

u ∈ P . We also note that θ(λu) = λθ(u), for 0 ≤ λ ≤ 1, and u ∈ ∂P (θ, b).

The main result of this paper is as follows:

Theorem 3.3 Assume that (H1) and (H2) hold, and suppose that there exist positive constants

0 < a < b < c such that 0 < a < δb < δ2L2

2L3
c, and f satisfies the following conditions

(D1) f(v) < φp(
a
Q), if 0 ≤ v ≤ a;

(D2) f(v) > φp(
2b

δL2
), if δb ≤ v ≤ b

δ ;

(D3) f(v) < φp(
c

L3
), if 0 ≤ v ≤ c

δ ;

Then, the boundary value problem (1.1) and (1.2) has at least two positive solutions u1 and u2

such that

a < max
t∈[0,1]

u1(t), with
1

2
[u1(δ) + u1(1 − δ)] < b;

EJQTDE, 2008 No. 18, p. 5



and

b <
1

2
[u2(δ) + u2(1 − δ)], with min

t∈[δ,1−δ]
u2(t) < c.

Proof. We define the operator: Φ : P → P,

(Φu)(t) :=















φq

(

ω
µ

∫ σ

ξ
e(r)f(u(r))dr

)

+

∫ t

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds, 0 ≤ t ≤ σ,

φq

(

τ
ρ

∫ η

σ
e(r)f(u(r))dr

)

+

∫ 1

t
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds, σ ≤ t ≤ 1,

for each u ∈ P, where σ ∈ [ξ, η] ⊂ (0, 1). It is shown in Lemma 3.3 that the operator Φ : P → P

is well defined with ‖Φu‖ = Φu(σ). In particular, if u ∈ P (γ, c), we also have Φu ∈ P , moreover,

a standard argument shows that Φ : P → P is completely continuous (see [Lemma 2.4, 14]) and

each fixed point of Φ in P is a solution of (1.1)-(1.2).

We now show that the conditions of Theorem 2.1 are satisfied.

To fulfill property (i) of Theorem 2.2, we choose u ∈ ∂P (γ, c), thus γ(u) = mint∈[δ,1−δ] u(t) = c.

Recalling that ‖u‖ ≤ 1
δγ(u) = c

δ , we have

0 ≤ u(t) ≤ ‖u‖ ≤ 1

δ
γ(u) =

c

δ
, 0 ≤ t ≤ 1.

Then assumption (D3) of Theorem 3.2 implies

f(u(t)) < φp(
c

L3
), 0 ≤ t ≤ 1.

(i) If σ ∈ (0, δ), we have

γ(Φu) = min
t∈[δ,1−δ]

(Φu)(t) = (Φu)(1 − δ)

= φq

(

τ
ρ

∫ η

σ
e(r)f(u(r))dr

)

+

∫ 1

1−δ
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds

≤ φq

(

τ
ρ

∫ η

ξ
e(r)f(u(r))dr

)

+

∫ 1

1−δ
φq

(

∫ 1

0
e(r)f(u(r))dr

)

ds

≤
[

φq

(

τ
ρ

∫ η

ξ
e(r)dr

)

+ δφq

(

∫ 1

0
e(r)dr

)]

· c

L3
< c.

(ii) If σ ∈ [δ, 1 − δ], we have

γ(Φu) = mint∈[δ,1−δ](Φu)(t) = min{(Φu)(δ), (Φu)(1 − δ)}
= min

{

φq

(

ω
µ

∫ σ

ξ
e(r)f(u(r))dr

)

+

∫ δ

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds,

φq

(

τ
ρ

∫ η

σ
e(r)f(u(r))dr

)

+

∫ 1

1−δ
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds
}

≤ max
{

φq

(

ω
µ

∫ η

ξ
e(r)f(u(r))dr

)

+

∫ δ

0
φq

(

∫ 1

0
e(r)f(u(r))dr

)

ds,

φq

(

τ
ρ

∫ η

ξ
e(r)f(u(r))dr

)

+

∫ 1

1−δ
φq

(

∫ 1

0
e(r)f(u(r))dr

)

ds
}

<
[

max
{

φq

(

ω
µ

∫ η

ξ
e(r)dr

)

, φq

(τ

ρ

∫ η

ξ
e(r)dr

)}

+ δφq

(

∫ 1

0
e(r)dr

)]

· c

L3

= c.
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(iii) If σ ∈ (1 − δ, 1), we have

γ(Φu) = mint∈[δ,1−δ](Φu)(t) = Φu(δ)

= φq

(

ω
µ

∫ σ

ξ
e(r)f(u(r))dr

)

+

∫ δ

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds

≤ φq

(

ω
µ

∫ η

ξ
e(r)f(u(r))dr

)

+

∫ δ

0
φq

(

∫ 1

0
e(r)f(u(r))dr

)

ds

≤
[

φq

(

ω
µ

∫ η

ξ
e(r)dr

)

+ δφq

(

∫ 1

0
e(r)dr

)]

· c

L3

< c.

Therefore, condition (i) of Theorem 2.2 is satisfied.

We next address (ii) of Theorem 2.2. For this, we choose u ∈ ∂P (θ, b) so that θ(u) =
1
2 [u(δ) + u(1 − δ)] = b. Noting that

‖u‖ ≤ (1/δ)γ(u) ≤ (1/δ)θ(u) = b/δ,

we have

δb < δ‖u‖ ≤ u(t) ≤ b

δ
, for t ∈ [δ, 1 − δ].

Then (D2) yields

f(u(t)) > φp(
2b

δL2
), for t ∈ [δ, 1 − δ].

As Φu ∈ P :

(i) If σ ∈ (0, δ), we have

θ(Φu) = 1
2 (Φu(δ) + Φu(1 − δ)) ≥ Φu(1 − δ)

= φq

(

τ
ρ

∫ η

σ
e(r)f(u(r))dr

)

+

∫ 1

1−δ
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds

≥
∫ 1

1−δ
φq

(

∫ 1−δ

σ
e(r)f(u(r))dr

)

ds

≥
∫ 1

1−δ
φq

(

∫ 1−δ

δ
e(r)f(u(r))dr

)

ds

= δφq

(

∫ 1−δ

δ
e(r)f(u(r))dr

)

≥ δφq

(

∫ 1−δ

δ
e(r)dr

)

· 2b

δL2
≥ 2b > b.

(ii) If σ ∈ [δ, 1 − δ], we have

2θ(Φu) = [Φu(δ) + Φu(1 − δ)]

≥
∫ δ

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds+

∫ 1

1−δ
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds

≥
∫ δ

0
φq

(

∫ σ

δ
e(r)f(u(r))dr

)

ds+

∫ 1

1−δ
φq

(

∫ 1−δ

σ
e(r)f(u(r))dr

)

ds

= δ
[

φq

(

∫ σ

δ
e(r)f(u(r))dr

)

+ φq

(

∫ 1−δ

σ
e(r)f(u(r))dr

)]

≥ δ
[

φq

(

∫ σ

δ
e(r)dr

)

+ φq

(

∫ 1−δ

σ
e(r)dr

)]

· 2b

δL2
≥ 2b.

(iii) If σ ∈ (1 − δ, 1), we have
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θ(Φu) = 1
2(Φu(δ) + Φu(1 − δ)) ≥ Φu(δ)

= φq

(

ω
µ

∫ σ

ξ
e(r)f(u(r))dr

)

+

∫ δ

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds

≥
∫ δ

0
φq

(

∫ 1−δ

δ
e(r)f(u(r))dr

)

ds

> δφq

(

∫ 1−δ

δ
e(r)dr

)

· 2b

δL2
≥ 2b > b.

Hence, condition (ii) of Theorem 2.2 holds.

To fulfill property (iii) of Theorem 2.2, we note u∗(t) ≡ a/2, 0 ≤ t ≤ 1, is a member of P (α, a)

and α(u∗) = a/2, so P (α, a) 6= 0. Now, choose u ∈ ∂P (α, a), so that α(u) = maxt∈[0,1] u(t) = a

and implies 0 ≤ u(t) ≤ a, 0 ≤ t ≤ 1. It follows from assumption (D1), f(u(t)) ≤ φp(a/Q), t ∈ [0, 1].

As before we obtain

α(Φu) = ‖Φu‖ = Φu(σ)

= φq

(

ω
µ

∫ σ

ξ
e(r)f(u(r))dr

)

+

∫ σ

0
φq

(

∫ σ

s
e(r)f(u(r))dr

)

ds

= φq

(

τ
ρ

∫ η

σ
e(r)f(u(r))dr

)

+

∫ 1

σ
φq

(

∫ s

σ
e(r)f(u(r))dr

)

ds

≤ max
{

φq

(ω

µ

∫ η

ξ
e(r)dr

)

+ φq

(

∫ 1

0
e(r)dr

)

,

φq

(

τ
ρ

∫ η

ξ
e(r)dr

)

+ φq

(

∫ 1

0
e(r)dr

)}

· a
Q

≤ a.

Thus, condition (iii) of Theorem 2.1 is also satisfied. Consequently, an application of Theorem

2.1 completes the proof. 2

Finally, we present an example to explain our result.

Example. Consider the boundary value problem (1.1)-(1.2) with

p =
3

2
, µ = 2, ρ = ω = 1, ξ =

1

4
, η =

1

2
, τ = 1, δ =

1

4
, e(t) = t−

1

2 ,

and

f(u) =























6
√

2u

u+ 1
, 0 ≤ u ≤ 200,

40

67
+

1202

335
(u− 200), 200 ≤ u ≤ 250,

180, 250 < u,

Then (1.1)-(1.2) has at least two positive solutions.

Proof. In this example we have

L1 = min
1/4≤x≤3/4

{

∫ x

1/4
φq(

∫ x

s
t−1/2dt)ds +

∫ 3/4

x
φq(

∫ s

x
t−1/2dt)ds

}

=
3
√

3 − 5

9
,

L2 = min
1/4≤x≤3/4

(

φq(

∫ x

1/4
t−1/2dt) + φq(

∫ 3/4

x
t−1/2dt)

)

= 2 −
√

3,

L3 = δφq

(

∫ 1

0
e(r)dr

)

+ max
{

φq

(ω

µ

∫ η

ξ
e(r)dr

)

, φq

(τ

ρ

∫ η

ξ
e(r)dr

)}

= 4 − 2
√

2,
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Q = φq

(

∫ 1

0
e(r)dr

)

+ max
{

φq

(ω

µ

∫ η

ξ
e(r)dr

)

, φq

(τ

ρ

∫ η

ξ
e(r)dr

)}

= 7 − 2
√

2.

Let a = 80, b = 1000, c = 40000. Then we have

f(u) =
6
√

2u

u+ 1
< φp(a/Q), for 0 ≤ u ≤ 80,

f(u) = 180 > φp((2b)/(δL2)), for 250 ≤ u ≤ 4000,

f(u) = 180 < φp(c/L3), for 0 ≤ u ≤ 160000.

Therefore, by Theorem 3.3 we deduce that (1.1)-(1.2) has at least two positive solutions u1 and

u2 satisfying

80 < max
t∈[0,1]

u1(t), with
1

2
[u1(δ) + u1(1 − δ)] < 1000;

and

1000 <
1

2
[u2(δ) + u2(1 − δ)], with min

t∈[δ,1−δ]
u2(t) < 40000.

Remark. We notice that in the above example, f0 = 6
√

2 ≈ 8.48528, (θ∗
4 )p−1 =

√
5

10 ≈ 0.223607

and (2θ∗

δ )p−1 = 6
√

10 + 6
√

3 ≈ 27.0947. Therefore, Theorem 3.1 and Theorem 3.2 are not appli-

cable to this example since conditions (A1) and (A4) fail.
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