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Two-parametric nonlinear eigenvalue problems

Armands Gritsans, Felix Sadyrbaev ∗

Abstract

Eigenvalue problems of the form x′′ = −λf(x+) + µg(x−), (i),
x(0) = 0, x(1) = 0, (ii) are considered, where x+ and x− are the pos-
itive and negative parts of x respectively. We are looking for (λ, µ) such
that the problem (i), (ii) has a nontrivial solution. This problem gener-
alizes the famous Fuč́ık problem for piece-wise linear equations. In our
considerations functions f and g may be nonlinear functions of super-, sub-
and quasi-linear growth in various combinations. The spectra obtained
under the normalization condition |x′(0)| = 1 are sometimes similar to
usual Fuč́ık spectrum for the Dirichlet problem and sometimes they are
quite different. This depends on monotonicity properties of the functions
ξt1(ξ) and ητ1(η), where t1(ξ) and τ1(η) are the first zero functions of
the Cauchy problems x′′ = −f(x), x(0) = 0, x′(0) = ξ > 0, y′′ = g(y),
y(0) = 0, y′(0) = −η, (η > 0) respectively.

1 Introduction

Our goal is to study boundary value problems for two-parameter second order
equations of the form

x′′ = −λf(x+) + µg(x−), x(0) = 0, x(1) = 0, (1)

where f, g : [0, +∞) → [0, +∞) are C1-functions such that f(0) = g(0) = 0,

x+ = max{x, 0}, x− = max{−x, 0}.
The same equation in extended form

x′′ =

{

−λf(x), if x ≥ 0
µg(−x), if x < 0.

(2)

We are motivated by the Fuč́ık equation:

x′′ = −λx+ + µx−. (3)
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In extended form:

x′′ =

{

−λx, if x ≥ 0
−µx, if x < 0,

x(0) = x(1) = 0. (4)

The Fuč́ık spectrum is well known and it is depicted in Fig. 1 and Fig. 2
It consists of a set of branches F±

i , where the number i = 0, 1, . . . refers to the
number of zeros of the respective nontrivial solution in the interval (0, 1) and an
upper index, which is either + or −, shows either x′(0) is positive or negative.
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Fig. 1. The classical (λ, µ) Fuč́ık spectrum.
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Fig. 2. The classical Fuč́ık spectrum in inverted coordinates
(γ = 1√

λ
, δ = 1√

µ
).
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2 One-parametric problems

Consider first the one-parametric eigenvalue problem of the type

x′′ = −λf(x), x(0) = 0, x(1) = 0, (5)

where f satisfies our assumptions.
It easily can be seen that this problem may have a continuous spectrum.
For example, the problem

x′′ = −λx3, x(0) = 0, x(1) = 0.

has a positive valued in (0, 1) solution x(t) for any λ > 0. The value
max[0,1] x(t) := ‖x‖ and λ relate as

‖x‖ · λ = 2
√

2 ·
∫ 1

0

dx√
1 − x4

.

In order to make the problem reasonable one should impose additional condi-
tions. Let us require that

|x′(0)| = 1.

Let us mention that problems of the type (5) were intensively studied in
various settings. For the recent review one may consider the paper [2].

3 Two-parametric problems

3.1 Assumptions

We assume that functions f and g satisfy the following conditions:
(A1) the first zero t1(α) of a solution to the Cauchy problem

u′′ = −f(u), u(0) = 0, u′(0) = α (6)

is finite for any α > 0.

Similar property can be assigned to a function g.

We assume that g satisfies the condition:
(A2) the first zero τ1(β) of a solution to the Cauchy problem

v′′ = g(−v), v(0) = 0, v′(0) = −β (7)

is finite for any β > 0.

Functions t1 and τ1 are the so called time maps ([5]).
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3.2 Formulas for nonlinear Fuč́ık type spectra

Consider

x′′ =

{

−λf(x), if x ≥ 0
µg(−x), if x < 0,

x(0) = x(1) = 0, |x′(0)| = 1. (8)

Let us recall the main result in [4].

Theorem 3.1 Let the conditions (A1) and (A2) hold. The Fuč́ık type spec-
trum for the problem (8) is given by the relations:

F+
0 =

{

(

λ, µ
)

: λ is a solution of
1√
λ

t1

( 1√
λ

)

= 1, µ ≥ 0
}

, (9)

F−
0 =

{

(

λ, µ
)

: λ ≥ 0, µ is a solution of
1√
µ

τ1

( 1√
µ

)

= 1
}

, (10)

F+
2i−1 =

{

(λ; µ) : i
1√
λ

t1

( 1√
λ

)

+ i
1√
µ

τ1

( 1√
µ

)

= 1

}

, (11)

F−
2i−1 =

{

(λ; µ) : i
1√
µ

τ1

( 1√
µ

)

+ i
1√
λ

t1

( 1√
λ

)

= 1

}

, (12)

F+
2i =

{

(λ; µ) : (i + 1)
1√
λ

t1

( 1√
λ

)

+ i
1√
µ

τ1

( 1√
µ

)

= 1

}

, (13)

F−
2i =

{

(λ; µ) : (i + 1)
1√
µ

τ1

( 1√
µ

)

+ i
1√
λ

t1

( 1√
λ

)

= 1

}

. (14)

The same formulas in inverted coordinates γ = 1√
λ
, δ = 1√

µ
are:

F+
0 =

{

(γ, δ) : γ is a solution of γ t1(γ) = 1, δ > 0
}

∪ (15)

∪
{

(γ,∞) : γ is a solution of γ t1(γ) = 1
}

,

F−
0 =

{

(γ, δ) : γ > 0, δ is a solution of δ τ1(δ) = 1
}

∪ (16)

∪
{

(∞, δ) : δ is a solution of δ τ1(δ) = 1
}

,

F+
2i−1 =

{

(γ; δ) : iγ t1(γ) + iδ τ1(δ) = 1, γ > 0, δ > 0
}

, (17)

F−
2i−1 =

{

(γ; δ) : iδ τ1(δ) + iγ t1(γ) = 1, γ > 0, δ > 0
}

, (18)

F+
2i =

{

(γ; δ) : (i + 1)γ t1(γ) + iδ τ1(δ) = 1, γ > 0, δ > 0
}

, (19)

F−
2i =

{

(γ; δ) : (i + 1)δ τ1(δ) + iγ t1(γ) = 1, γ > 0, δ > 0
}

. (20)

Corollary 3.1 The sets F+
2i−1 and F−

2i−1 (respectively F+
2i−1 and F−

2i−1) coin-
cide.

Remark 3.1 Each subset F±
i is associated with nontrivial solutions with defi-

nite nodal structure. For example, the set

F+
4 =

{

(λ; µ) : 3
1√
λ

t1

( 1√
λ

)

+ 2
1√
µ

τ1

( 1√
µ

)

= 1

}
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is associated with nontrivial solutions that have three positive humps and two
negative ones. The total number of interior zeros is exactly four. Similarly, the
set

F−
4 =

{

(λ; µ) : 2
1√
λ

t1

( 1√
λ

)

+ 3
1√
µ

τ1

( 1√
µ

)

= 1

}

is associated with nontrivial solutions that have two positive humps and three
negative ones.

Remark 3.2 The additional condition |x′(0)| = 1 is not needed if f and g are
linear functions (the classical Fuč́ık equation). Then t1 and τ1 are constants
and do not depend on the initial values of the derivatives.

3.3 Samples of time maps

Consider equations
x′′ = −(r + 1)xr, r > 0, (21)

which may be integrated explicitly. One has that

t1

( 1√
λ

)

= 2Aλ
r−1

2(r+1) , where A =

∫ 1

0

1
√

1 − ξr+1
dξ, (22)

so t1 is decreasing in λ for r ∈ (0, 1),
t1 is constant for r = 1,
t1 is increasing in λ for r > 1.

The function

u(λ) =
1√
λ

t1

( 1√
λ

)

= 2Aλ− 1
r+1

is decreasing for r > 0.

4 Some properties of spectra

Introduce the functions

u(λ) :=
1√
λ

t1

( 1√
λ

)

v(µ) :=
1√
µ

τ1

( 1√
µ

)

, (23)

where t1 and τ1 are the time maps associated with f and g respectively. Due
to Theorem 3.1 the spectrum of the problem (8) is a union of pairs (λ, µ) such
that one of the relations

u(λ) + v(µ) = 1, F±
1

2u(λ) + v(µ) = 1, F+
2

u(λ) + 2v(µ) = 1, F−
2

2u(λ) + 2v(µ) = 1, F±
3

3u(λ) + 2v(µ) = 1, F+
4

2u(λ) + 3v(µ) = 1, F−
4

. . .

(24)
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holds. The coefficients at u(λ) and v(µ) indicate the numbers of “positive” and
“negative” humps of the respective eigenfunctions.

4.1 Monotone functions u and v

Suppose that both functions u and v are monotonically decreasing. Then the
same do the multiples iu and iv, i is a positive integer.

Theorem 4.1 Suppose that the functions u and v monotonically decrease from
+∞ to zero. Then the spectrum of the problem (8) is essentially the classical
Fuč́ık spectrum, that is, it is a union of branches F±

i , which are the straight
lines for i = 0, the curves which look like hyperbolas and have both vertical and
horizontal asymptotes, for i > 0.

Proof. First of all notice that the value u(λ) = 1√
λ

t1

(

1√
λ

)

is exactly

the distance between two consecutive zeros of a solution to the problem x′′ =

−λf(x), x(0) = 0, x′(0) = 1. Similarly the value v(µ) = 1√
µ

τ1

(

1√
µ

)

is the dis-

tance between two consecutive zeros of a solution to the problem y′′ = µg(−y),
y(0) = 0, y′(0) = −1.

Let λ1, λ2, λ3 and so on be the points of intersection of u(λ), 2u(λ), 3u(λ), . . .
with the horizontal line u = 1. Respectively µ1, µ2, µ3 and so on for the function
v(µ) (see the Fig. 3 and Fig. 4).
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Fig. 3. The graphs of
u(λ), 2u(λ), 3u(λ) (schematically).
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Fig. 4. The graphs of
v(µ), 2v(µ), 3v(µ) (schematically).

Positive solutions to the problem with no zeros in the interval (0, 1) appear
for λ = λ1. Thus F+

0 is a straight line {(λ1, µ) : µ ≥ 0}. Similarly F−
0 is a

straight line {(λ, µ1) : λ ≥ 0}.
The branches F±

1 which are defined by the first equation of (24) coincide
and look like hyperbola with the vertical asymptote at λ = λ1 and horizontal
asymptote at µ = µ1.

The branch F+
2 has the vertical asymptote at λ = λ2 and horizontal asymp-

tote at µ = µ1. This can be seen from the second equation of (24).
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The branch F−
2 has the vertical asymptote at λ = λ1 and horizontal asymp-

tote at µ = µ2. This is a consequence of the third equation of (24). Notice that
the branches F+

2 and F−
2 need not to cross at the bisectrix λ = µ unless g ≡ f

(in contrast with the case of the classical Fuč́ık spectrum).

The branches F±
3 coincide and have the vertical asymptote at λ = λ2 and

horizontal asymptote at µ = µ2.

The branch F+
4 has the vertical asymptote at λ = λ3 and horizontal asymp-

tote at µ = µ2.

The branch F−
4 has the vertical asymptote at λ = λ2 and horizontal asymp-

tote at µ = µ3. The branches F+
4 and F−

4 need not to cross at the bisectrix.
In a similar manner any of the remaining branches can be considered. �

Proposition 4.1 The function u(λ) = 1√
λ
t1

(

1√
λ

)

, where t1 is defined in (6),

is monotonically decreasing if

1 − F (x)F ′′(x)

f2(x)
> 0, F (x) =

∫ x

0

f(s) ds. (25)

Proof. Let us show that the function α t1(α) is monotonically increasing
for α > 0. Consider the Cauchy problem x′′ + f(x) = 0, x(0) = 0, x′(0) = α. A
solution x satisfies the relation 1

2x′2(t) + F (x(t)) = h, where h = 1
2α2 = F (x+),

x+ is a maximal value of x(t).
It was shown in [3, Lemma 2.1] that the function T (h) = 2

∫ x+

0
ds√

2(h−F (s))

has the derivative

dT

dh
=

2

h

∫ x+

0

(1

2
− F (x)F ′′(x)

f2(x)

) dx
√

2(h − F (x))
. (26)

Notice that t1(α) = T (1
2α2). One has that

[α t1(α)]′α = t1(α) + α t′1(α)

= 2
∫ x+

0
dx√

α2−2F (x))
+ 4

∫ x+

0

(

1
2 − F (x)F ′′(x)

f2(x)

)

dx√
α2−2F (x))

= 4
∫ x+

0

(

1 − F (x)F ′′(x)
f2(x)

)

dx√
α2−2F (x))

(27)

�

For instance, if x′′ + x = 0, then f = x, F = 1
2x2, ω(α) := αt1(α) = πα,

ω′ = π. Taking into account that x+ = α one obtains from (27)

ω′(α) = 4

∫ α

0

(1 − 1

2
)

dx√
α2 − x2

= 2 arcsin
x

α

∣

∣

∣

α

0
= π.
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4.2 Non-monotone functions u and v

It is possible that the functions u(λ) = 1√
λ
t1

(

1√
λ

)

and v(µ) = 1√
µ
τ1

(

1√
µ

)

are

not monotone.
Then spectra may differ essentially from those in the monotone case.

Proposition 4.2 Suppose that u(λ) and v(µ) are not zeros at λ = 0 and µ = 0
respectively and monotonically decrease to zero starting from some values λF

and µF. Then the subsets F±
i of the spectrum behave like the respective branches

of the classical Fuč́ık spectrum for large numbers i, that is, they form curves
looking like hyperbolas which have vertical and horizontal asymptotes.

Indeed, notice that for large enough values of i the functions iu(λ) and
iv(µ) monotonically decrease to zero in the regions {λ ≥ λ∆, 0 < u < 1},
{µ ≥ µ∆, 0 < v < 1} respectively (for some λ∆ and µ∆) and are greater than
unity for 0 < λ < λ∆ and 0 < µ < µ∆ respectively. Therefore one may complete
the proof by analyzing the respective relations in (24).

If one (or both) of the functions u and v is non-monotone then the spectrum
may differ essentially from the classical Fuč́ık spectrum. Consider the case
depicted in Fig. 5.
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Fig. 5. Functions u (solid line) and v (dashed line).

Proposition 4.3 Let the functions u and v behave like depicted in Fig. 5, that
is, v monotonically decreases from +∞ to zero and u has three segments of
monotonicity, u tends to zero as λ goes to +∞. Then the subset F±

1 consists of
two components.

Indeed, let λ1, λ2 and λ3 be successive points of intersection of the graph of
u with the line u = 1. Denote λ∗ the point of minimum of u(λ) in the interval
(λ1, λ2). Let µ∗ be such that u(λ∗) + v(µ∗) = 1. It is clear that there exists
a U-shaped curve with vertical asymptotes at λ = λ1 and λ = λ2 and with
a minimal value µ∗ at λ∗ which belongs to F+

1 . There also exists a hyperbola
looking curve with the vertical asymptote at λ = λ3 and horizontal asymptote
at µ = µ1, where µ1 is the (unique) point of intersection of the graph of v with
the line v = 1.

There are no more points belonging to F+
1 .
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5 Examples

Let
0 < a1 < a2 < a3, b1 > b2 > 0, b3 > b2.

Consider a piece-wise linear function:

f(x) =







f1(x), 0 ≤ x ≤ a1,

f2(x), a1 ≤ x ≤ a2,

f3(x), x ≥ a3,

(28)

f1(x) = p1x + q1, f2(x) = p2x + q2, f3(x) = p3x + q3,

f1(0) = 0, f1(a1) = f2(a1), f2(a2) = f3(a2), f3(a3) = b3.

-1 1 2 3 4 5 6

2

4

6

8

10

Fig. 6. Function f(x).
Notice that

p1 =
b1

a1
, q1 = 0,

p2 =
b2 − b1

a2 − a1
, q2 =

b1a2 − a1b2

a2 − a1
,

p3 =
b3 − b2

a3 − a2
, q3 =

b2a3 − a2b3

a3 − a2
.

Let t1(α) be the first positive zero of a solution to the initial value problem

x′′ = −f(x), x(0) = 0, x′(0) = α > 0. (29)

Denote F (x) =
∫ x

0 f(s) ds. Direct calculations ([1]) show that

1. if 0 ≤ α ≤
√

2F (a1), then t1(α) = π
√

a1

b1
;

2. if
√

2F (a1) ≤ α ≤
√

2F (a2), then

t1(α) = 2

√

a1

b1
arcsin

√
a1b1

α
+

+

√

a2 − a1

b1 − b2
ln

D2(α)
(

−2b1 + 2
√

b1−b2
a2−a1

√
α2 − a1b1

)2 ,
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3. if α ≥
√

2F2(a2), then

t1(α) = 2

√

a1

b1
arcsin

√
a1b1

α
+

√

a3 − a2

b3 − b2

[

π − 2 arcsin
2b2

√

D3(α)

]

+

+ 2

√

a2 − a1

b1 − b2
ln

∣

∣

∣

∣

∣

∣

−b2 +
√

b1−b2
a2−a1

√

α2 − a1b1 − (a2 − a1)(b1 + b2)

−b1 +
√

b1−b2
a2−a1

√
α2 − a1b1

∣

∣

∣

∣

∣

∣

,

where

D2(α) = 4
b1 − b2

a1 − a2
α2 + 4b1

a1b2 − a2b1

a1 − a2
, D3(α) = 4

b2 − b3

a2 − a3
α2+

+ 4
−a2b1b2 + a1b

2
2 + a3b

2
2 + a2b1b3 − a1b2b3 + a2b2b3

a2 − a3
.

The first zero function is asymptotically linear:

lim
α→+∞

t1(α) =

√

a3 − a2

b3 − b2
π.

Consider equation
x′′ = −λf(x+) + µf(x−),

where f(x) is a piece-wise linear function depicted in Fig. 6. Let parameters of
the piece-wise linear function f(x) be

a1 = 0.1, a2 = 0.3, a3 = 0.31,

b1 = 9, b2 = 0.5, b3 = 150.
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x

5

10

15
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35

40

fHxL

Fig. 7. The graph of y = f(x).
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Fig. 8. The graphs of y = γt1(γ)
(γ = 1√

λ
) and y = 1.
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Fig. 9. The subset F+
0 in the

(γ, δ)-plane.
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Fig. 10. The subset F+
0 in the

(λ, µ)-plane.

The subset F+
0 consists of three vertical lines which correspond to three

solutions of the equation 1√
λ
t1(

1√
λ
) = 1.
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Fig. 11.The subset F−
0 in the

(γ, δ)-plane.
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Fig. 12.The subset F−
0 in the

(λ, µ)-plane.

The subset F−
0 consists of horizontal lines which correspond to solutions of

the equation 1√
µ
τ1(

1√
µ
) = 1.
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Fig. 13. The subset F+
1 = F−

1 in the
(γ, δ)-plane.
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Fig. 14. The subset F+
1 = F−

1 in the
(λ, µ)-plane.

Properties of the subsets F±
1 depend on solutions of the equation

u(λ) + v(µ) = 1.

A set of solutions of this equation consists of exactly three components due to
non-monotonicity of the functions u(λ) and v(µ). Respectively, properties of the
subsets F±

1 depend on solutions of the equation

γt1(γ) + δτ1(δ) = 1.
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Fig. 15. The subset F+
2 in the

(γ, δ)-plane.
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Fig. 16. The subset F+
2 in the

(λ, µ)-plane.
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Fig. 17. The subset F−
2 in the

(γ, δ)-plane.

2 4 6 8
Λ

2

4

6

8

Μ

Fig. 18. The subset F−
2 in the

(λ, µ)-plane.

The subsets F±
2 look a little bit different since now their properties depend

on a set of solutions of equations

2
1√
λ

t1

( 1√
λ

)

+
1√
µ

τ1

( 1√
µ

)

= 1

and
1√
λ

t1

( 1√
λ

)

+ 2
1√
µ

τ1

( 1√
µ

)

= 1.

Respectively, properties of the subsets F±
2 depend on solutions of equations

2γt1(γ) + δτ1(δ) = 1

and
γt1(γ) + 2δτ1(δ) = 1.
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