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Abstract. In this paper, under some structural assumptions of weight function b(x) and
nonlinear term f (u), we establish the asymptotic behavior and uniqueness of boundary
blow-up solutions to semilinear elliptic equations{

∆u = b(x) f (u), x ∈ Ω,
u(x) = ∞, x ∈ ∂Ω,

where Ω ⊂ RN is a bounded smooth domain. Our analysis is based on the Karamata
regular variation theory and the López-Gómez localization method.
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1 Introduction and main results

In this paper, we deal with the asymptotic behavior of boundary blow-up solutions to semi-
linear elliptic equations

∆u = b(x) f (u), x ∈ Ω,

u(x) = ∞, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain, weight function b(x) satisfies

(b1) there exists a positive nondecreasing function a(x) ∈ C([0, δ]) such that

lim
d(x)→0

b(x)
a(d(x))

= 1, (1.2)

where
1

a(r)

∫ r

0
a(s) ds ∈ C1([0, δ]);
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(b2) for any x0 ∈ ∂Ω, there exists τ > 0, such that b(x) ∈ C1(Ωτ(x0) ∩Ω) satisfies

bx0(r) ∈ C1((0, τ)), b′x0
(r) > 0 for each r ∈ (0, τ), (1.3)

and

lim
x∈∂Ω, x→x0,

r→0

bx(r)
bx0(r)

= 1, (1.4)

where Ωτ(x0) is a ball in RN of radius τ centered at x0, boundary normal sections bx(r)
defined as

bx(r) = b(x− rnx), r > 0, r ∼ 0, (1.5)

where nx stands for the outward unit normal vector at x ∈ ∂Ω.

The nonlinear term f (u) satisfies

( f1) f ≥ 0 is locally Lipschitz continuous on [0, ∞) and f (u)/u is increasing on (0, ∞);

( f2) there exist some L ∈ C2([A, ∞)) satisfying limu→∞ L(u) = ∞ if r = 1 and L′ ∈
NRV−r(0 ≤ r ≤ 1), a slowly varying function L and p ≥ 0 such that

lim
u→∞

f (L(u))
L ′(u)up+r = 1, (1.6)

where p > 1− r if 0 ≤ r < 1 and p ≥ 0 if r = 1.

The main result of this paper is the following theorem.

Theorem 1.1. Suppose that b(x) satisfies (b1)–(b2) and f (u) satisfies ( f1)–( f2). Then, problem (1.1)
possesses a unique positive solution u(x). Moreover, for each x0 ∈ ∂Ω, any positive solution u(x)
satisfies

lim
r→0

u(x0 − rnx0)

I(x0)
− p

p−1L(Φx0(d(x)))
=

(
p + 1
p− 1

) p+1
p−1

, (1.7)

where

Φx0(t) =
∫ ∞

t

[∫ s

0

(
L ′(Φx0)bx0

L′(Φx0)

) 1
p+r+1

]− p+r+1
p+r−1

ds, (1.8)

I(x0) = lim
t→0

Φx0(t)Φ
′′
x0
(t)

[Φ′x0
(t)]2

, (1.9)

L ,L appear in (1.6) and bx0 is defined by (1.5).

The interest in these problems goes back to the pioneering works of López-Gómez. Pre-
cisely, López-Gómez [11], used the so-called López-Gómez’s localization method, ascertained
asymptotic behavior of boundary blow-up solutions to problem (1.1) with f (u) = up and b(x)
vanishing on the boundary of the underlying domain at different rates according to the point
of boundary. This results was developed by López-Gómez [12], Cano-Casanova and López-
Gómez [1, 2], Wei and Zhu [18], Wang and Wang [19] and Xie [20]. In particular, Huang
et. al. [10] obtained asymptotic behavior of boundary blow-up solutions to problem (1.1) with
nonlinear term f satisfying
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( f3) there exists a slowly varying function H and p > 1 such that

lim
u→∞

f (u)
H(u)up = 1. (1.10)

Remark 1.2. Note that ( f3) implies that f (u) ∈ RVp, see Remark 1.1 of [10]. It can easily be
seen that f (L(u)) ∈ RVp if ( f2) holds. Thus f is a normalized varying function at infinity with
index p/(1− r) if 0 ≤ r < 1 and f is rapidly varying with index ∞ if r = 1, for more details
see [9]. Consequently, the main results of this paper give a unified asymptotic behavior of
boundary blow-up solutions to problem (1.1).

Remark 1.3. Based on the results of López-Gómez [1,2,11,12], Ouyang and Xie [13,14], Xie [20],
Xie and Zhao [21] established some similar asymptotic behavior of boundary blow-up solu-
tions to problem (1.1). Recently, Huang et. al. [8], using the Karamata regular variation theory
approach introduced by Cîrstea and Rădulescu [5, 6], established asymptotic behavior and
uniqueness of boundary blow-up solutions to problem (1.1) with f satisfying ( f3), extended
the main results of [13,14,20]. Similarly, we can obtain similar asymptotic behavior of bound-
ary blow-up solutions to problem (1.1) with f satisfying ( f2).

Remark 1.4. For the existence of boundary blow-up solutions to problem (1.1), see Theorem
1.1 of [4].

Remark 1.5. One easily sees that Φx0(t), defined by (1.8), is a decreasing C2-function on some
interval (0, ς), for some ς > 0. Consequently, taking into account Lemma 3.1 in [3], I(x0) ≥ 1.
Furthermore, −Φ′x0

(t) is normalized regularly varying at zero of index I(x0)/(1− I(x0)) if
I(x0) > 1 and Φx0(t) has a representation formula if I(x0) = 1.

Remark 1.6. By (1.8), we know that

Φ′x0
(t) = −

[∫ t

0

(
L ′(Φx0)bx0

L′(Φx0)

) 1
p+r+1

]− p+r+1
p+r−1

, (1.11)

and

Φ′′x0
(t) =

p + r + 1
p + r− 1

[∫ t

0

(
L ′(Φx0)bx0

L′(Φx0)

) 1
p+r+1

]− 2(p+r)
p+r−1 (

L ′(Φx0)bx0

L′(Φx0)

) 1
p+r+1

. (1.12)

Thus, taking into account ( f2) and limt→0 Φx0(t) = ∞, we obtain

lim
t→0

Φ′′x0
(t)L′(Φx0(t))

bx0(t) f (L(Φx0(t)))

= lim
t→0

L ′(Φx0(t))Φ
p+r
x0 (t)

f (L(Φx0(t)))

[
Φx0(t)Φ

′′
x0
(t)

[Φ′x0
(t)]2

]−(p+r) [Φ′′x0
(t)]p+r+1

[Φ′x0
(t)]2(p+r)

L′(Φx0(t))
L ′(Φx0(t))bx0(t)

= [I(x0)]
−(p+r)

(
p + r + 1
p + r− 1

)p+r+1

,
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and

lim
t→0

[Φ′x0
(t)]2L′′(Φx0(t))

bx0(t) f (L(Φx0(t)))

= lim
t→0

Φx0(t)L′′(Φx0(t))
L′(Φx0(t))

L ′(Φx0(t))Φ
p+r
x0 (t)

f (L(Φx0(t)))

[
Φx0(t)Φ

′′
x0
(t)

[Φ′x0
(t)]2

]−(p+r+1)

×
[Φ′′x0

(t)]p+r+1

[Φ′x0
(t)]2(p+r)

L′(Φx0(t))
L ′(Φx0(t))bx0(t)

= −r[I(x0)]
−(p+r+1)

(
p + r + 1
p + r− 1

)p+r+1

.

The structure of this paper is as follows. In Section 2, we collect some preliminary results of
Karamata regular variation theory. In Section 3 we prove some auxiliary results. Theorem 1.1
will be proved in Section 4.

2 Auxiliary results

The main purpose of this section is to provide some concepts from the theory of regular
variation. For detailed accounts of the theory of regular variation, its extensions and many of
its applications, we refer the interested reader to [7,15–17]. When the regular variation occurs
at infinity and there is no possibility of confusion, we omit “at infinity”.

Definition 2.1. A positive measurable function f defined on [D, ∞) for some D > 0 is called
regularly varying (at infinity) with index p ∈ R (written f ∈ RVp) if for all ξ > 0

lim
u→∞

f (ξu)
f (u)

= ξ p.

When the index of regular variation p is zero, we say that the function is slowly varying.
The transformation f (u) = upL(u) reduces regular variation to slow variation.

Proposition 2.2. Assume that L is slowly varying. Then the convergence L(ξu)/L(u)→ 1 as u→ ∞
holds uniformly on each compact ε-set in (0, ∞).

Proposition 2.3. If L is slowly varying, then

(i) ln L(u)/ ln u→ 0 as u→ ∞;

(ii) for any α > 0, uαL(u)→ ∞, u−αL(u)→ 0 as u→ ∞;

(iii) (L(u))α varies slowly for every α ∈ R;

(iv) if L1 varies slowly, so do L(u)L1(u) and L(u) + L1(u).

Now we collect some important results which will be used in the proof of Theorem 1.1.

Definition 2.4. A function u ∈ C2(Ω) is a (classical) subsolution to problem (1.1), if
u = +∞ on ∂Ω and

∆u ≥ b(x) f (u), x ∈ Ω.

Similarly, u is a (classical) supersolution to problem (1.1), if u = +∞ on ∂Ω and

∆u ≤ b(x) f (u), x ∈ Ω.
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The following comparison principle which plays an important role in the proof of Theorem
1.1 will be used in later sections.

Proposition 2.5. Let f be continuous on (0, ∞) such that f (u)/u is increasing for u > 0, Let
b(x) ∈ C(Ω) be a nonnegative function. Assume that u1, u2 ∈ C2(Ω) are positive such that{

∆u1 − b(x) f (u1) ≤ 0 ≤ ∆u2 − b(x) f (u2), x ∈ Ω,

lim supd(x,∂Ω)→0(u2 − u1)(x) ≤ 0.

Then we have u1 ≥ u2 in Ω.

3 Auxiliary results

To prove Theorem 1.1 by the López-Gómez localization method, firstly consider the corre-
sponding singular problem with radial weight function b(x) in a ball or an annular domain.
Note that, in this case, (3.2) is uniformly satisfied on ∂Ω.

Theorem 3.1. Suppose Ωr(x0) = {x ∈ RN : |x − x0| < r}, f (u) satisfies ( f1)–( f2), and b(x) =

b(r− ‖x− x0‖), b ∈ C([0, r] : [0, ∞)) satisfies (b1). Then, problem (1.1) possesses a unique positive
solution u(x). Moreover, any positive solution u(x) satisfies

lim
d(x)→0

u(x)
Φ(d(x))

= I−
p

p−1

(
p + 1
p− 1

) p+1
p−1

, (3.1)

where

I = lim
t→0

Φ(t)Φ′′(t)
[Φ′(t)]2

, Φ(t) =
∫ ∞

t

[∫ s

0

(
L (Φ)a
L(Φ)

) 1
p+1
]− p+1

p−1

ds, (3.2)

L ,L appear in (1.6) and a appears in (b1) .

Similarly, we have the following corresponding results when Ω = Ωr1,r2(x0) =
{

x ∈ RN :
r1 < |x− x0| < r2

}
.

Theorem 3.2. Suppose Ω = Ωr1,r2(x0), f (u) satisfies ( f1)–( f2), and b(x) = b(r2 − ‖x − x0‖),
b ∈ C([0, r] : [0, ∞)) satisfies (b1). Then problem (1.1) possesses a unique positive solution u(x) and
(3.1) holds.

Note that, when the domain is an annular domain,

d(x) =

{
r2 − |x− x0|, (r1 + r2)/2 ≤ |x− x0| < r2,

|x− x0| − r1, r1 ≤ |x− x0| < (r1 + r2)/2.

In the following, the proof of Theorem 3.1 will be given. Theorem 3.2 can be proved by
similar arguments, more details are omitted here.

Proof of Theorem 3.1. It is interesting to note that (1.2) holds uniformly, for each ε > 0; choose
δ > 0 sufficiently small such that,

(1− ε)a(d(x)− β) < b(x) < (1 + ε)a(d(x) + β), 0 < β < d(x) < δ.
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For fixed β ∈ (0, δ), define u±(x) = L(ξ±Φ(d(x)± β)), x ∈ Ω±β , where u(x) is the solution
to problem (1.1), Φ(t) is defined by (3.2), Ωδ = {x ∈ Ω, 0 < d(x) < δ}, Ω−β = Ω2δ\Ω̄β,
Ω+

β = Ω2δ−β and

ξ± =

[
1± ε

1∓ ε

(
p + 1
p− 1

)p+1

Ip

] 1
p−1

.

Consequently,

∇u±(x) = ξ±L′(ξ±Φ(d(x)± β))Φ′(d(x)± β)∇d(x),

∆u±(x) = (ξ±)2L′′(ξ±Φ(d(x)± β))[Φ′(d(x)± β)]2

+ ξ±L′(ξ±Φ(d(x)± β))Φ′′(d(x)± β)

+ ξ±L′(ξ±Φ(d(x)± β))Φ′(d(x)± β)∆d(x).

Thus,

∆u+(x)− b(x) f (u+(x))

≥ (ξ+)2L′′(ξ±Φ(d(x) + β))[Φ′(d(x) + β)]2 + ξ+L′(ξ±Φ(d(x) + β))Φ′′(d(x) + β)

+ ξ+L′(ξ+Φ(d(x) + β))Φ′(d(x) + β)∆d(x)− (1 + ε)a(d(x) + β) f (u+(x))

= a(d(x) + β) f (u+(x))[A +
1 (d(x) + β) +A +

2 (d(x) + β)∆d(x)− (1 + ε)],

and

∆u−(x)− b(x) f (u(x))

≤ (ξ−)2L′′(ξ−Φ(d(x)− β))[Φ′(d(x)− β)]2 + ξ−L′(ξ−Φ(d(x)− β))Φ′′(d(x)− β)

+ ξ−L′(ξ−Φ(d(x)− β))Φ′(d(x)− β)∆d(x)− (1− ε)a(d(x)− β) f (u−(x))

= a(d(x)− β) f (u−(x))[A −
1 (d(x)− β) +A −

2 (d(x)− β)∆d(x)− (1− ε)],

where

A ±
1 (t) =

(ξ±)2L′′(ξ±Φ(t))[Φ′(t)]2

a(t) f (L(ξ±Φ(t)))
+

ξ±L′(ξ±Φ(t))Φ′′(t)
a(t) f (L(ξ±Φ(t)))

,

A ±
2 (t) =

ξ±L′(ξ±Φ(t))Φ′(t)
a(t) f (L(ξ±Φ(t)))

.

Similar computations as in Remark 1.6 show that

lim
t→0

A ±
1 (t) =

[
(ξ±)2 I−(p+r) − rξ± I−(p+r+1)

] ( p + r + 1
p + r− 1

)p+r+1

,

and

lim
t→0

A ±
2 (t) = lim

t→0

ξ±L′(ξ±Φ(t))Φ′′(t)
a(t) f (L(ξ±Φ(t)))

Φ′(t)
Φ′′(t)

= 0.

Consequently,

lim
d(x)±β→0

[
A ±

1 (d(x)± β) +A ±
2 (d(x)± β)∆d(x)− (1± ε)

]
= ±ε,

which implies that we can choose δ > 0 such that{
∆u+

β − b(x) f (u+
β ) ≥ 0, x ∈ Ω+

β ,

∆u−β − b(x) f (u−β ) ≤ 0, x ∈ Ω−β .
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Define M(2δ) = maxd(x)≥2δ u(x), where u(x) is a nonnegative solution of problem (1.1).
Obviously, u(x) ≤ M(2δ) + u−β , x ∈ {x ∈ Ω : d(x) = 2δ} and limd→β[M(2δ) + u−β ] = ∞.
Namely, u(x) ≤ M(2δ) + u−β , x ∈ ∂Ω−β . On the other hand, ∆(M(2δ) + u−β ) = ∆u−β ≤
b(x) f (u−β ) ≤ b(x) f (M(2δ) + u−β ), x ∈ Ω−β , the comparison principle of elliptic equations leads
to

u(x) ≤ M(2δ) + u−β , x ∈ Ω−β . (3.3)

Define u+
β (x) = L(ξ+Φ(2δ)), x ∈ {x ∈ Ω : d(x) = 2δ− β} and N(2δ) = L(ξ+Φ(2δ)). It is

easy to see that

u+
β (x) ≤ N(2δ) + u(x), x ∈ {x ∈ Ω : d(x) = 2δ− β}, lim

d→0
[u+

β (x)− N(2δ)− u(x)] = −∞.

That is, u+
β (x) ≤ N(2δ) + u(x), x ∈ ∂Ω+

β . Note that ∆(u+
β (x) − N(2δ)) = ∆u+

β (x) ≥
b(x) f (u+

β ) ≥ b(x) f (u+
β (x)−N(2δ)). This fact, combined with the comparison principle shows

that
u+

β (x) ≤ N(2δ) + u(x), x ∈ Ω+
β . (3.4)

According to (3.3) and (3.4), we find

u+
β (x)− N(2δ) ≤ u(x) ≤ M(2δ) + u−β , x ∈ Ω−β ∩Ω+

β .

This yields

u+
β (x)− N(2δ)

L(ξ±Φ(d(x)))
≤ u(x)
L(ξ±Φ(d(x)))

≤
M(2δ) + u−β
L(ξ±Φ(d(x)))

, x ∈ Ω−β ∩Ω+
β . (3.5)

Letting ε → 0 and d(x) → 0 in (3.5) leads to (3.1), here we use the fact that d(x) → 0 implies
β→ 0 if x ∈ Ω−β ∩Ω+

β .

4 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by the localization method introduced in [11, 12].

Proof. Fixed ε > 0, according to (1.4), there exist ρ = ρ(ε) ∈ (0, η) and µ = µ(ε) such that for
each x ∈ ∂Ω ∩Ωρ(x0), r ∈ (0, µ),

1− ε <
bx(r)
bx0(r)

=
b(x− rnx)

b(x0 − rnx0)
< 1 + ε. (4.1)

Define B =
{

x− rnx : x ∈ ∂Ω ∩Ωρ(x0), r ∈ [0, µ]
}

. Note that for each y ∈ B (ρ, µ can be
shortened if necessary), there exists a unique y0 ∈ ∂Ω∩Ωρ(x0), and r(y) ∈ [0, µ], such that y =

y0 − r(y)ny0 , r(y) = |y− y0| = dist(y, ∂Ω). Furthermore, there exists r0 ∈ (0, min{ρ/2, µ/2}),
such that Ωr0(x0 − r0nx0) ⊂ Ω, and Ωr0(x0 − r0nx0) ∩ ∂Ω = {x0}. Thus there exists σ0 > 0
such that for σ ∈ (0, σ0], Ωr0(x0 − (r0 + σ)nx0) ⊂ Ω ∩ Int B. Consequently, for σ ∈ [0, σ0] and
y ∈ Ωr0(x0 − (r0 + σ)nx0),

b(y) = b(y0 − r(y)ny0) ≥ (1− ε)b(x0 − r(y)nx0) = (1− ε)bx0(r(y))

≥ (1− ε)bx0(dist(y, ∂Ωr0(x0 − (r0 + σ)nx0))),

which shows that b(y) ≥ (1− ε)bx0(rσ), where rσ = dist(y, ∂Ωr0(x0 − (r0 + σ)nx0)).
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Let U be the unique solution to problem{
∆u = (1− ε)bx0(rσ) f (u), x ∈ Ωr0(x0 − (r0 + σ)nx0),

u(x) = +∞, x ∈ ∂Ωr0(x0 − (r0 + σ)nx0),
(4.2)

where σ ∈ [0, σ0]. Equation (3.1) shows that

lim
x→∂Ωr0 (x0−(r0+σ)nx0 )

U (x)
K1(x0)B1(rσ)

= (1− ε)β,

where

B1(t) =
∫ r

0

∫ s

0
(H ◦ B−β

1 (t))bx0(t) dt ds, K1(x0) = [β(β + 1)Cx0 − β]β, β =
1

p− 1
,

Cx0 = lim
t→0

[B′1(t)]2

B1(t)bx0(t)H ◦ B−β
1 (t)

.

Thus u|Ωr0 (x0−(r0+σ)nx0 )
is a bounded subsolution of (4.2), hence, for each σ ∈ [0, σ0] and

x ∈ Ωr0(x0 − (r0 + σ)nx0), uσ = u|Ωr0 (x0−(r0+σ)nx0 )
≤ U , and

lim sup
x→∂Ωr0 (x0−(r0+σ)nx0 )

uσ

K1(x0)B1(rσ)
≤ (1− ε)β.

Letting σ→ 0 gives

lim
r→0

u(x0 − rnx0)

K1(x0)B1(r)
≤ (1− ε)β.

This is valid for any sufficiently small ε > 0, then

lim
r→0

u(x0 − rnx0)

K1(x0)B1(r)
≤ 1. (4.3)

For any x0 ∈ ∂Ω, there exist 0 < r1 < r2 and σ0, such that

Ω ⊂
⋂

0≤σ≤σ0

Ωr1,r2(x0 + (r1 + σ)nx0), ∂Ω ∩Ωr1,r2(x0 + r1nx0) = {x0}

and r1 is small enough, r2 is large enough such that Ω ⊂ Ωr1,r2/3(x0 + r1nx0).
By (4.1), we find that for each y ∈ Ω2η(x0) ∩ Ω, where η ∈ min{ρ, µ} is small, b(y) =

b(y0 − r(y)ny0) ≤ (1 + ε)bx0(r(y)) ≤ (1 + ε)bx0(dist(y, ∂Ωr1(x0 + r1nx0))). Define the function
b̃ : Ωr1,r2(x0 + r1nx0) → [0, ∞) as b̃(y) = b̃(r) = (1 + ε)bx0(r), where y ∈ Ω2η(x0) ∩ Ω and
r = dist(y, ∂Ωr1,r2(x0 + r1nx0)). Moreover, b̃(dist(y, ∂Ωr1,r2(x0 + (r1 + σ)nx0)) ≥ b(y), for each
y ∈ Ω, σ ∈ [0, σ0],

Let U be the unique solution to{
∆u = b̃(r) f (u), x ∈ Ωr1,r2(x0 + (r1 + σ)nx0),

u(x) = +∞, x ∈ ∂Ωr1,r2(x0 + (r1 + σ)nx0),

where r = dist(y, ∂Ωr1,r2(x0 + (r1 + σ)nx0)), and

lim
x→∂Ωr1,r2 (x0+(r1+σ)nx0 )

U(x)
K2(x0)B2(r)

= (1 + ε)β,
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where

B2(t) =
∫ r

0

∫ s

0
(H ◦ B−β

2 (r))bx0(r) ds dt,

K2(x0) = [β(β + 1)Cx0 − β]β, β =
1

p− 1
,

Cx0 = lim
t→0

[B′2(t)]2

B2(t)bx0(r)H ◦ B−β
2 (t)

.

Moreover, U|Ω is a subsolution of (1.1), this implies that U(x) ≤ u(x), for each σ ∈ [0, σ0]

and x ∈ Ωr1,r2(x0 + (r1 + σ)nx0) ∩Ω. This yields

lim
r→0

u(x0 − rnx0)

K2(x0)B2(r)
≥ (1 + ε)β.

Letting σ→ 0, we derive that

lim inf
x→x0,

x∈Ωr1,r2 (x0+r1nx0 )

u(x)
K2(x0)B2(r)

≥ 1. (4.4)

It can easily be seen that B1(r) = B2(r) and K1(x0) = K2(x0). Using (4.3) and (4.4), we
obtain (1.7).
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