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Abstract

In this paper, existence criteria of three positive solutions to the followimg p-Laplacian
functional dynamic equation on time scales

{ [%m%»]v alt)f(u(t), w(p(t) =0, 1 € (0,7),
UO(t) = (P(t) [ aO]v U(O BO( ( )) = Oa UA(T) = 0;

are established by using the well-known Five Functionals Fixed Point Theorem.
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1 Introduction

The theory of dynamic equations on time scales has been a new important mathematical
branch (see, for example, [1-5] ) since it was initiated by Hilger [6]. At the same time, boundary
value problems ( BVPs ) for dynamic equation on time scales have received considerable attention
[7-15]. However, to the best of our knowledge, few papers can be found in the literature for BVPs
of p-Laplacian dynamic equations on time scales, especially for p-Laplacian functional dynamic
equations on time scales [12, 14].

Let T be a time scale, i.e., T is a nonempty closed subset of R. Let 0, T be points in T, an
interval (0,7") denote time scales interval, that is, (0,7") := (0,7)) N'T. Other types of intervals
are defined similarly. Some definitions concerning time scales can be found in [2-4].

In this paper, we are concerned with the existence of positive solutions for the p-Laplacian
functional dynamic equation on time scale

(t) @(t) [ T, 0], u(0) = Bo(u®(n)) = 0, u(T) =0,
where ®,(s) is p-Laplacian operator, i.e., ®,(s) = IsP~2s, p > 1, (@)t = @, %4—% =1,

n € (0,p(T)) and

(C1) f: (RT)®> — RT is continuous ;

(Cy) a : T — RT is left dense continuous (i.e., a € Ciq(T,R")) and does not vanish
identically on any closed subinterval of [0, 7], where Ciq(T, RT) denotes the set of all left dense
continuous functions from T to RT;
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(C3) ¢ : [-r,0] — RT is continuous and r > 0;

(Cyq) u:[0,T] — [—r,T] is continuous, u(t) < 0 for all ¢;

(Cs) By : R — R is continuous and satisfies the condition that there are A > B > 0 such
t

Bv < By(v) < Av, for all v > 0.

We note that in [16], Li and Shen studied the problem (1.1) when T = R, ¢(t) = 0,t € [—r, 0]
and the nonlinear term is not involved w(u(t)). They imposed conditions on f to yield at least
three positive solutions to the problem (1.1), by applying the Five Functionals Fixed Point
Theorem [17] (which is a generalization of the Leggett-Williams Fixed-Point Theorem [18]).

In [14], Song and Xiao considered the problem (1.1), by using a double fixed-point theorem
due to Avery et al. [19] in a cone, and obtained the existence of two positive solutions.

Motivated by [14] and [16], we shall show that the problem (1.1), has at least three positive
solutions by means of the Five Functionals Fixed Point Theorem.

Let v, 8, 0 be nonnegative, continuous, convex functionals on P and «, 1 be nonnegative,
continuous, concave functionals on P. Then, for nonnegative real numbers h, a, b, d and ¢, we
define the convex sets

P(y,e) = {zeP:qy(x)<cj,
P(y,a,a,¢) = {x€P:a<a(x), y(zx) <c},
Q(y,8.d.c) = {zxeP:p(x)<d () <c},
P(v,0,a,a,b,c) = {ze€P:a<ax), 0(x) <b, v(z) <c} and
Q(y, B, hd,c) = {zeP:h<¢), f(z) <d, y(z) <c}.

To prove our main results, we need the following Five Functionals Fixed Point Theorem[17].

Theorem 1.1. Let P be a cone in a real Banach space E. Suppose there exist positive
numbers ¢ and M, nonnegative, continuous, concave functionals o and ) on P, and nonnegative,
continuous, convex functionals 7, 8 and 6 on P, with

a(z) < B(z) and [lz]| < M~y(z)
for all z € P(v,c). Suppose

F:P(y,¢c) = P(y,¢)
is completely continuous and there exist nonnegative numbers h, a, k, b, with 0 < a < b such that:
(i) {x € P(,0,a,b,k,c) : a(x) > b} # ¢ and a(Fx) > b for z € P(v,0,,b, k,c);
(ii) {z € Q(v, 8,9, h,a,c) : B(z) < a} # ¢ and B(Fz) < a for z € Q(v, 8,9, h,a,0);
(ili) a(Fz) > b for x € P(v,a,b,c) with 0(Fz) > k;
(iv) B(Fz) < a for x € Q(v, 8, a,c) with Y(Fz) < h.
Then F has at least three fixed points x1, z9, 23 € P(7,c) such that

B(x1) < a, b < a(xz), and a < (r3) with a(zs) < b.
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2 Existence of Three Positive Solutions

We note that u(t) is a solution of the BVP (1.1) if and only if

Bo (@4 (J7 o) f (ulr), u(u(r)) V7))
wl) =9+ fray ([T alr) f(ulr), u(u(r)Vr) s,
o(t), t[-r0].

Let £ = C14([0,T], R) be endowed with [[ul| = sup,cjo 1y |u(t)|, so E is a Banach space.
Define cone P C E by

te[0,17,

P= {u € E : u is concave and nonnegative valued on [0,7], and uA(T ) = O} .

For each u € E, extend u(t) to [—r, T] with u(t) = ¢(t) for t € [—r,0].
Define F': P — E by

(Fu)(t) = Bo (@ (J; alr)f(ur), u(u(r)Vr))
+ o @4 ([ a)fu(r), u(u(r)Vr) As, ¢ € 0,T].
We seek a point, uq, of F'in the cone P. Define
o= { B0 1)

gp(t), [—’I“,

Then u(t) denotes a positive solution of the BVP (1.1).
We have the following results

l.

Lemma 2.1. Let u € P, then

(1) w(t) > % ||ju| for t € [0,T], and
(2) Tu(s) <su(r) for 0 <7 <¢<Tand 7,5 € T.

Proof. (1) is Lemma 3.1 of [12]. It is easy to conclude that (2) is satisfied by the concavity
of u.

Set
Vi ={t€[0,T]: ult) <0}; Yo={te[0,T]:pu(t)>0}; Ys=vin[,T].

Throughout this paper, we assume Y3 # ¢ and st a(r)Vr > 0.

Let [ € T be fixed such that 0 < n <l < T, and define the nonnegative, continuous, concave
functionals «, @ and the nonnegative, continuous, convex functionals 3, 6, v on the cone P
respectively as

Y(w) = 6(u)= e u(t) = u(n), a(u) = tgl{g] u(t) = u(l),
Bu) = mnax u(t) = u(l), ¥(u) = nin, u(t) = u(n).
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We observe that a(u) = (u) for each u € P.
In addition, by Lemma 2.1, we have y(u) = u(n) > Z |lu|| . Hence [Jul| < %W(U) for all u € P.
For convenience, we define

p=(A+n)o, (/OT a(?"Wr) 6= (B+1)¥, </Y3 a(r)VT) :

T
A=(A+ l)<I>q(/0 a(r)Vr).

We now state growth conditions on f so that the BVP (1.1) has at least three positive solu-
tions.

Theorem 2.1. Let 0 < a < %b < %c, ub < dc, and suppose that f satisfies the following
conditions:

(H1) f(u,o(s)) < @, <9) ,if 0 < u < Le, uniformly in s € [—r,0], and f(u1,uz) < (I)p(ﬁ)’ if
0<wu; < %Cal =1,2;
2
(Ha) flu,p(s)) > @, (3),ifb<u< <%> b, uniformly in s € [—7,0];
(Hs) f(u,(s)) < @, (%), if 0 < u < Ta, uniformly in s € [-7,0], and f(u1,u2) < ®,(%), if
0<u; <ZTai=12

Then the BVP (1.1) has at least three positive solutions of the form
| ou(t), te€[0,T], i=1,2,3,
u= { p(t), tel-r0],
where maxycp g u1(t) < @, minge 7 u2(t) > b, and a < max;e(g ;) us(t) with mingep 7 us(t) < b.
Proof. By [12], it is known that F': P — P is completely continuous.

Let u € P(v,c¢), then y(u) = max|g, u(t) = u(n) < ¢, consequently, 0 < u(t) < ¢ for
t € [0,n]. Since u(n) > Fu(T), so |jul| = u(T) < %u(n) < %c, this implies

T
0<u(t) < —¢, fort €[0,T].
n

From (H;), we have

W) = (Fu))
= no(o(f Sas et er) )+ [ ([t s, r) o
< a0, ([ arstute). o) 9r) + 2y ([ atrrs(utr)atuo) )
= e, | [ )+ [
< (A+n)3, (/OTa(r)VT>£

= C.

a<r>fu<r>,u<u<r>>>w}
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Therefore

Fu € P(v,c).
We now turn to property (i) of Theorem 1.1. Choosing u = %b, k= %b, it follows that

T T T
a(u) =u(l) = Eb > b, O(u) =u(n) = Zb =k, y(u) =u(n) = Zb <c,
which shows that {u € P(v,0,a,b,k,c) : a(u) > b} # ¢, and for u € P(v,0,a,b, %b, ¢), we have

T\ 2
b<u(t) < (—) b, fort € [I,T].
n

From (Hsg), we have

o(Fu) = (Pu)(i)
- 5o (o ( / Ta<r>f<u<r>,u<u<r>>>w)) - a, (/ Ta<r>f<u<r>,u<u<r>>>w) As

> B, (/lT a(r) f(u(r), U(N(T‘)))VT> +1P, </lT a(r)f(u(r), U(M(T)))VT’>

> wroe, ([ ) f(utr) ) vr )

> (B+1)a, </Y3a(r)Vr>g
~ b

We conclude that (i) of Theorem 1.1 is satisfied.
We next address (ii) of Theorem 1.1. If we take u = Za, h = Za, then

V() = u() = Fa < ¢, Y(w) = u(m) = Fa=h, Bu) =u(l) = Fa <a.

From this we know that {u € Q(v,5,9,h,a,c) : f(u) < a} # ¢. If u € Q(v, 8,9, Fa,a,¢),
then

T
0<u(t) < 7% for t € [0, 7.

From (Hgs), we have

BFu) = (Fu)(l)
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Now we show that (iii) of Theorem 1.1 is satisfied. If u € P(vy, «,b,c) and 8(Fu) = Fu(n) >
Ly, then
n )

a(Fu) > (Fu)(l) = %Fu(l) > %Fu(n) > %b > b.
Finally, if u € Q(a, f,a,¢) and ¥(Fu) = Fu(n) < Fa, then from (2) of the Lemma 2.1 we
have

B(Fu) = Fu(l) < %Fu(l) < %Fu(n) < a.

which shows that condition (iv) of Theorem 1.1 is fulfilled.
Thus, all the conditions of Theorem 1.1 are satisfied. Hence, I has at least three fixed points
u1, U, ug satisfying
B(ur) < a, b < auz), and a < f(ug) with a(us) < b.
Let

[ wt), tel0,T], i=1,2,3
““)‘{ o), tel-r0],

which are three positive solutions of the BVP (1.1).
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