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Abstract
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1 Introduction

In this paper, we consider the existence of mild solutions defined on a semi-infinite
positive real interval J := [0,+∞), for two classes of first order semilinear functional
and neutral functional differential evolution inclusions with infinite delay in a real
Banach space (E, | · |). Firstly, in Section 3, we study the following evolution inclusion
of the form

y′(t) ∈ A(t)y(t) + F (t, yt), a.e. t ∈ J (1)

y0 = φ ∈ B, (2)

where F : J×B → P(E) is a multivalued map with nonempty compact values, P(E) is
the family of all subsets of E, φ ∈ B are given functions and {A(t)}0≤t<+∞ is a family
of linear closed (not necessarily bounded) operators from E into E that generate an
evolution system of operators {U(t, s)}(t,s)∈J×J for 0 ≤ s ≤ t < +∞.

For any continuous function y and any t ≥ 0, we denote by yt the element of B
defined by yt(θ) = y(t + θ) for θ ∈ (−∞, 0]. We assume that the histories yt belongs
to some abstract phase space B, to be specified later.

In Section 4, we consider the following neutral evolution inclusion of the form

d

dt
[y(t) − g(t, yt)] ∈ A(t)y(t) + F (t, yt), a.e. t ∈ J (3)
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y0 = φ ∈ B, (4)

where A(·), F and φ are as in problem (1)− (2) and g : J ×B → E is a given function.
Finally in Section 5, two examples are provided illustrating the abstract theory.

Functional differential and partial differential equations arise in many areas of ap-
plied mathematics and such equations have received much attention in recent years. A
good guide to the literature for functional differential equations is the books by Hale
[25] and Hale and Verduyn Lunel [27], Kolmanovskii and Myshkis [36], Kuang [37] and
Wu [41] and the references therein.

During the last decades, several authors considered the problem of existence of
mild solutions for semilinear evolution equations with finite delay. Some results can be
found in the books by Ahmed [1, 2], Heikkila and Lakshmikantham [28] and Pazy [38]
and Wu [41] and the references therein. When the delay is infinite, the notion of the
phase space B plays an important role in the study of both qualitative and quantitative
theory. A usual choice is a seminormed space satisfying suitable axioms, which was
introduced by Hale and Kato in [26], see also Corduneanu and Lakshmikantham [17],
Hino et al. [31], Kappel and Schappacher [33], and Schumacher [39].

An extensive theory is developed for inclusion (1) with A(t) = A. We refer the
reader to the books by Heikkila and Lakshmikantham [28], Kamenski et al [34] and the
pioneer Hino and Murakami paper [30]. By means of fixed point arguments, Benchohra
and his collaborators have studied many classes of first and second order functional
differential inclusions with local and nonlocal conditions in [7, 8, 10, 11, 13, 14, 15, 23]
on a bounded interval. Extension to the semiinfinite interval is given by Benchohra
and Ntouyas in [9, 12] and by Henderson and Ouahab [29] with finite delay.

When A is depending on the time, Arara et al [3] considered control multivalued
problem on a bounded interval [0, b] and very recently Baghli and Benchohra [4, 5]
provided uniqueness results for some classes of partial and neutral functional differential
evolution equations on the interval J = [0,+∞) when the delay is finite. The perturbed
problem with infinite delay is studied in [6]. Our main purpose in this paper is to look
for the multivalued version of these problems.

Sufficient conditions are established to get existence results of mild solutions which
are fixed points of the appropriate operators of the semilinear functional and the neu-
tral functional differential evolution problems by applying the nonlinear alternative of
Leray-Schauder type due to Frigon [21] for contractive multivalued maps in Fréchet
spaces, combined with the semigroup theory [1, 2, 38].

2 Preliminaries

We introduce here notations, definitions and preliminary facts from multivalued
analysis which are used throughout this paper.

Let C([0,+∞);E) be the space of continuous functions from [0,+∞) into E and
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B(E) be the space of all bounded linear operators from E into E, with the norm

‖N‖B(E) = sup { |N(y)| : |y| = 1 }.

A measurable function y : [0,+∞) → E is Bochner integrable if and only if |y| is
Lebesgue integrable. (For the Bochner integral properties, see Yosida [42] for instance).

Let L1([0,+∞), E) denotes the Banach space of measurable functions y : [0,+∞) →
E which are Bochner integrable normed by

‖y‖L1 =

∫ +∞

0

|y(t)| dt.

Consider the following space

B+∞ = {y : (−∞,+∞) → E : y|J ∈ C(J,E), y0 ∈ B} ,

where y|J is the restriction of y to J = [0,+∞).

In this paper, we will employ an axiomatic definition of the phase space B introduced
by Hale and Kato in [26] and follow the terminology used in [31]. Thus, (B, ‖ · ‖B) will
be a seminormed linear space of functions mapping (−∞, 0] into E, and satisfying the
following axioms :

(A1) If y : (−∞, b) → E, b > 0, is continuous on [0, b] and y0 ∈ B, then for every
t ∈ [0, b) the following conditions hold :
(i) yt ∈ B ;
(ii) There exists a positive constant H such that |y(t)| ≤ H‖yt‖B ;
(iii) There exist two functions K(·),M(·) : R+ → R+ independent of y(t) with
K continuous and M locally bounded such that :

‖yt‖B ≤ K(t) sup{ |y(s)| : 0 ≤ s ≤ t} +M(t)‖y0‖B.

Denote Kb = sup{K(t) : t ∈ [0, b]} and Mb = sup{M(t) : t ∈ [0, b]}.

(A2) For the function y(.) in (A1), yt is a B−valued continuous function on [0, b].

(A3) The space B is complete.

Remark 2.1

1. (ii) is equivalent to |φ(0)| ≤ H‖φ‖B for every φ ∈ B.

2. Since ‖·‖B is a seminorm, two elements φ, ψ ∈ B can verify ‖φ−ψ‖B = 0 without
necessarily φ(θ) = ψ(θ) for all θ ≤ 0.

3. From the equivalence of (ii), we can see that for all φ, ψ ∈ B such that ‖φ−ψ‖B =
0 : This implies necessarily that φ(0) = ψ(0).
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Hereafter are some examples of phase spaces. For other details we refer, for instance
to the book by Hino et al [31].

Example 2.2 The spaces BC, BUC, C∞ and C0. Let :

BC the space of bounded continuous functions defined from (−∞, 0] to E;

BUC the space of bounded uniformly continuous functions defined from (−∞, 0] to E;

C∞ :=

{
φ ∈ BC : lim

θ→−∞
φ(θ) exist in E

}
;

C0 :=

{
φ ∈ BC : lim

θ→−∞
φ(θ) = 0

}
, endowed with the uniform norm

‖φ‖ = sup{|φ(θ)| : θ ≤ 0}.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)−(A3). BC satisfies
(A1), (A3) but (A2) is not satisfied.

Example 2.3 The spaces Cg, UCg, C
∞
g and C0

g . Let g be a positive continuous func-
tion on (−∞, 0]. We define :

Cg :=

{
φ ∈ C((−∞, 0], E) :

φ(θ)

g(θ)
is bounded on (−∞, 0]

}
;

C0
g :=

{
φ ∈ Cg : lim

θ→−∞

φ(θ)

g(θ)
= 0

}
, endowed with the uniform norm

‖φ‖ = sup

{
|φ(θ)|

g(θ)
: θ ≤ 0

}
.

We consider the following condition on the function g.

(g1) For all a > 0, sup
0≤t≤a

sup

{
g(t+ θ)

g(θ)
: −∞ < θ ≤ −t

}
<∞.

Then we have that the spaces Cg and C0
g satisfy conditions (A3). They satisfy conditions

(A1) and (A2) if (g1) holds.

Example 2.4 The space Cγ. For any real constant γ, we define the functional space
Cγ by

Cγ :=

{
φ ∈ C((−∞, 0], E) : lim

θ→−∞
eγθφ(θ) exist in E

}

endowed with the following norm

‖φ‖ = sup{eγθ|φ(θ)| : θ ≤ 0}.

Then in the space Cγ the axioms (A1) − (A3) are satisfied.
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In what follows, we assume that {A(t), t ≥ 0} is a family of closed densely de-
fined linear unbounded operators on the Banach space E and with domain D(A(t))
independent of t.

Definition 2.5 We say that a family {A(t)}t≥0 generates a unique linear evolution
system {U(t, s)}(t,s)∈∆ for ∆ := {(t, s) ∈ J × J : 0 ≤ s ≤ t < +∞} satisfying the
following properties :

1. U(t, t) = I where I is the identity operator in E,

2. U(t, s) U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t < +∞,

3. U(t, s) ∈ B(E) the space of bounded linear operators on E, where for every
(t, s) ∈ ∆ and for each y ∈ E, the mapping (t, s) → U(t, s)y is continuous.

More details on evolution systems and their properties could be found on the books
of Ahmed [1], Engel and Nagel [19] and Pazy [38].

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈IN. Let Y ⊂ X,

we say that F is bounded if for every n ∈ IN, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows : For every
n ∈ IN, we consider the equivalence relation ∼n defined by : x ∼n y if and only if
‖x − y‖n = 0 for all x, y ∈ X. We denote Xn = (X|∼n

, ‖ · ‖n) the quotient space, the
completion of Xn with respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence the
{Y n} of subsets Y n ⊂ Xn as follows : For every x ∈ X, we denote [x]n the equivalence
class of x of subset Xn and we defined Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n)
and ∂nY

n, respectively, the closure, the interior and the boundary of Y n with respect
to ‖ · ‖ in Xn. We assume that the family of semi-norms {‖ · ‖n} verifies :

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ... for every x ∈ X.

Let (X, d) be a metric space. We use the following notations :

Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) = {Y ∈ P(X) : Y bounded},

Pcv(X) = {Y ∈ P(X) : Y convexe}, Pcp(X) = {Y ∈ P(X) : Y compact}.

Consider Hd : P(X) × P(X) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B) , sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(X), Hd) is a metric space

and (Pcl(X), Hd) is a generalized (complete) metric space (see [35]).
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Definition 2.6 A multivalued map G : J → Pcl(X) is said to be measurable if for
each x ∈ E, the function Y : J → X defined by

Y (t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)}

is measurable where d is the metric induced by the normed Banach space X.

Definition 2.7 A function F : J × B −→ P(X) is said to be an L1
loc-Carathéodory

multivalued map if it satisfies :

(i) x 7→ F (t, y) is continuous (with respect to the metric Hd) for almost all t ∈ J ;

(ii) t 7→ F (t, y) is measurable for each y ∈ B;

(iii) for every positive constant k there exists hk ∈ L1
loc(J ; R+) such that

‖F (t, y)‖ ≤ hk(t) for all ‖y‖B ≤ k and for almost all t ∈ J.

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X → P(X) has convex
(closed) values if G(x) is convex (closed) for all x ∈ X. We say that G is bounded on
bounded sets if G(B) is bounded in X for each bounded set B of X, i.e.,

sup
x∈B

{sup{ ‖y‖ : y ∈ G(x)}} <∞.

Finally, we say that G has a fixed point if there exists x ∈ X such that x ∈ G(x).

For each y ∈ B+∞ let the set SF,y known as the set of selectors from F defined by

SF,y = {v ∈ L1(J ;E) : v(t) ∈ F (t, yt) , a.e. t ∈ J}.

For more details on multivalued maps we refer to the books of Deimling [18],
Górniewicz [24], Hu and Papageorgiou [32] and Tolstonogov [40].

Definition 2.8 A multivalued map F : X → P(X) is called an admissible contraction
with constant {kn}n∈N if for each n ∈ N there exists kn ∈ (0, 1) such that

i) Hd(F (x), F (y)) ≤ kn ‖x− y‖n for all x, y ∈ X.

ii) For every x ∈ X and every ε ∈ (0,∞)n, there exists y ∈ F (x) such that

‖x− y‖n ≤ ‖x− F (x)‖n + εn for every n ∈ N

Theorem 2.9 (Nonlinear Alternative of Frigon, [21, 22]). Let X be a Fréchet space
and U an open neighborhood of the origin in X and let N : U → P(X) be an admis-
sible multivalued contraction. Assume that N is bounded. Then one of the following
statements holds :

(C1) N has a fixed point;

(C2) There exists λ ∈ [0, 1) and x ∈ ∂U such that x ∈ λ N (x).

EJQTDE, 2008 No. 33, p. 6



3 Semilinear Evolution Inclusions

The main result of this section concerns the semilinear evolution problem (1) − (2).
Before stating and proving this one, we give first the definition of the mild solution.

Definition 3.1 We say that the function y(·) : (−∞,+∞) → E is a mild solution of
the evolution system (1) − (2) if y(t) = φ(t) for all t ∈ (−∞, 0] and the restriction of
y(·) to the interval J is continuous and there exists f(·) ∈ L1(J ;E) : f(t) ∈ F (t, yt)
a.e. in J such that y satisfies the following integral equation :

y(t) = U(t, 0) φ(0) +

∫ t

0

U(t, s) f(s) ds for each t ∈ [0,+∞). (5)

We will need to introduce the following hypothesis which are assumed hereafter :

(H1) There exists a constant M̂ ≥ 1 such that :

‖U(t, s)‖B(E) ≤ M̂ for every (t, s) ∈ ∆.

(H2) The multifunction F : J × B −→ P(E) is L1
loc-Carathéodory with compact and

convex values for each u ∈ B and there exist a function p ∈ L1
loc(J ; R+) and a

continuous nondecreasing function ψ : J → (0,∞) such that:

‖F (t, u)‖P(E) ≤ p(t) ψ(‖u‖B) for a.e. t ∈ J and each u ∈ B.

(H3) For all R > 0, there exists lR ∈ L1
loc(J ; R+) such that :

Hd(F (t, u) − F (t, v)) ≤ lR(t) ‖u− v‖B

for each t ∈ J and for all u, v ∈ B with ‖u‖B ≤ R and ‖v‖B ≤ R and

d(0, F (t, 0)) ≤ lR(t) a.e. t ∈ J.

For every n ∈ IN, we define in B+∞ the family of semi-norms by :

‖y‖n := sup { e−τ L∗

n
(t) |y(t)| : t ∈ [0, n] }

where : L∗
n(t) =

∫ t

0

ln(s) ds , ln(t) = M̂Knln(t) and ln is the function from (H3).

Then B+∞ is a Fréchet space with the family of semi-norms ‖ · ‖n∈N. In what follows
we will choose τ > 1.

Theorem 3.2 Suppose that hypotheses (H1) − (H3) are satisfied and moreover
∫ +∞

cn

ds

ψ(s)
> KnM̂

∫ n

0

p(s) ds for each n ∈ IN (6)

with cn = (KnM̂H +Mn)‖φ‖B. Then evolution problem (1) − (2) has a mild solution.
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Proof. Transform the problem (1) − (2) into a fixed-point problem. Consider the
multivalued operator N : B+∞ → P(B+∞) defined by :

N(y) =




h ∈ B+∞ : h(t) =





φ(t), if t ≤ 0;

U(t, 0) φ(0) +

∫ t

0

U(t, s) f(s) ds, if t ≥ 0,





where f ∈ SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, yt) for a.e. t ∈ J}.

Clearly, the fixed points of the operatorN are mild solutions of the problem (1)−(2).
We remark also that, for each y ∈ B+∞, the set SF,y is nonempty since, by (H2), F
has a measurable selection (see [16], Theorem III.6).

For φ ∈ B, we will define the function x(.) : (−∞,+∞) → E by

x(t) =

{
φ(t), if t ∈ (−∞, 0];

U(t, 0) φ(0), if t ∈ J.

Then x0 = φ. For each function z ∈ B+∞, set

y(t) = z(t) + x(t). (7)

It is obvious that y satisfies (5) if and only if z satisfies z0 = 0 and

z(t) =

∫ t

0

U(t, s) f(s) ds for t ∈ J.

where f(t) ∈ F (t, zt + xt) a.e. t ∈ J .

Let

B0
+∞ = {z ∈ B+∞ : z0 = 0} .

Define in B0
+∞, the multivalued operator F : B0

+∞ → P(B0
+∞) by :

F(z) =

{
h ∈ B0

+∞ : h(t) =

∫ t

0

U(t, s) f(s) ds, t ∈ J

}
,

where f ∈ SF,z = {v ∈ L1(J,E) : v(t) ∈ F (t, zt + xt) for a.e. t ∈ J}.

Obviously the operator inclusion N has a fixed point is equivalent to the operator
inclusion F has one, so it turns to prove that F has a fixed point.

Let z ∈ B0
+∞ be a possible fixed point of the operator F . Given n ∈ N, then z

should be solution of the inclusion z ∈ λ F(z) for some λ ∈ (0, 1) and there exists
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f ∈ SF,z ⇔ f(t) ∈ F (t, zt + xt) such that, for each t ∈ [0, n], we have

|z(t)| ≤

∫ t

0

‖U(t, s)‖B(E) |f(s)| ds

≤ M̂

∫ t

0

p(s) ψ (‖zs + xs‖B) ds.

Assumption (A1) gives

‖zs + xs‖B ≤ ‖zs‖B + ‖xs‖B

≤ K(s)|z(s)| +M(s)‖z0‖B +K(s)|x(s)| +M(s)‖x0‖B

≤ Kn|z(s)| +Kn‖U(s, 0)‖B(E)|φ(0)| +Mn‖φ‖B

≤ Kn|z(s)| +KnM̂ |φ(0)|+Mn‖φ‖B

≤ Kn|z(s)| +KnM̂H‖φ‖B +Mn‖φ‖B

≤ Kn|z(s)| + (KnM̂H +Mn)‖φ‖B.

Set cn := (KnM̂H +Mn)‖φ‖B, then we have

‖zs + xs‖B ≤ Kn|z(s)| + cn (8)

Using the nondecreasing character of ψ, we get

|z(t)| ≤ M̂

∫ t

0

p(s) ψ (Kn|z(s)| + cn) ds.

Then

Kn|z(t)| + cn ≤ KnM̂

∫ t

0

p(s)ψ(Kn|z(s)| + cn)ds+ cn.

We consider the function µ defined by

µ(t) := sup { Kn|z(s)| + cn : 0 ≤ s ≤ t }, 0 ≤ t < +∞.

Let t? ∈ [0, t] be such that

µ(t) = Kn|z(t
?)| + cn.

By the previous inequality, we have

µ(t) ≤ KnM̂

∫ t

0

p(s) ψ(µ(s)) ds+ cn for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). Then, we have

µ(t) ≤ v(t) for all t ∈ [0, n].
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From the definition of v, we have

v(0) = cn and v′(t) = KnM̂p(t) ψ(µ(t)) a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤ KnM̂ p(t) ψ(v(t)) a.e. t ∈ [0, n].

This implies that for each t ∈ [0, n] and using the condition (6), we get

∫ v(t)

cn

ds

ψ(s)
≤ KnM̂

∫ t

0

p(s) ds ≤ KnM̂

∫ n

0

p(s) ds <

∫ +∞

cn

ds

ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Nn and hence
µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λn. Set

U = { z ∈ B0
+∞ : sup{ |z(t)| : 0 ≤ t ≤ n} < Λn + 1 for all n ∈ IN}.

Clearly, U is an open subset of B0
+∞.

We shall show that F : U → P(B0
+∞) is a contraction and an admissible operator.

First, we prove that F is a contraction ; Let z, z ∈ B0
+∞ and h ∈ F(z). Then there

exists f(t) ∈ F (t, zt + xt) such that for each t ∈ [0, n]

h(t) =

∫ t

0

U(t, s) f(s) ds.

From (H3) it follows that

Hd(F (t, zt + xt), F (t, zt + xt)) ≤ ln(t) ‖zt − zt‖B.

Hence, there is ρ ∈ F (t, zt + xt) such that

|f(t) − ρ| ≤ ln(t) ‖zt − zt‖B t ∈ [0, n].

Consider U? : [0, n] → P(E), given by

U? = {ρ ∈ E : |f(t) − ρ| ≤ ln(t) ‖zt − zt‖B}.

Since the multivalued operator V(t) = U?(t) ∩ F (t, zt + xt) is measurable (in [16],
see Proposition III.4), there exists a function f(t), which is a measurable selection for
V. So, f(t) ∈ F (t, zt + xt) and using (A1), we obtain for each t ∈ [0, n]

|f(t) − f(t)| ≤ ln(t) ‖zt − zt‖B

≤ ln(t) [K(t) |z(t) − z(t)| +M(t) ‖z0 − z0‖B]

≤ ln(t) Kn |z(t) − z(t)|
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Let us define, for each t ∈ [0, n]

h(t) =

∫ t

0

U(t, s) f(s) ds.

Then we have

|h(t) − h(t)| ≤

∫ t

0

‖U(t, s)‖B(E)

∣∣f(s) − f(s)
∣∣ ds

≤

∫ t

0

M̂ Kn ln(s) |z(s) − z(s)| ds

≤

∫ t

0

[ln(s) eτ L∗

n
(s) ] [e−τ L∗

n
(s) |z(s) − z(s)|] ds

≤

∫ t

0

[
eτ L∗

n
(s)

τ

]′

ds ‖z − z‖n

≤
1

τ
eτ L∗

n
(t) ‖z − z‖n.

Therefore,

‖h− h‖n ≤
1

τ
‖z − z‖n.

By an analogous relation, obtained by interchanging the roles of z and z, it follows
that

Hd(F(z),F(z)) ≤
1

τ
‖z − z‖B.

So, F is a contraction for all n ∈ N.

Now we shall show that F is an admissible operator. Let z ∈ B0
+∞. Set, for every

n ∈ N, the space

B0
n :=

{
y : (−∞, n] → E : y|[0,n] ∈ C([0, n], E), y0 ∈ B

}
,

and let us consider the multivalued operator F : B0
n → Pcl(B

0
n) defined by :

F(z) =

{
h ∈ B0

n : h(t) =

∫ t

0

U(t, s) f(s) ds, t ∈ [0, n]

}

where f ∈ Sn
F,y = {v ∈ L1([0, n], E) : v(t) ∈ F (t, yt) for a.e. t ∈ [0, n]}.

From (H1) − (H3) and since F is a multivalued map with compact values, we
can prove that for every z ∈ B0

n, F(z) ∈ Pcl(B
0
n) and there exists z? ∈ B0

n such that
z? ∈ F(z?). Let h ∈ B0

n, y ∈ U and ε > 0. Assume that z? ∈ F(z), then we have

|z(t) − z?(t)| ≤ |z(t) − h(t)| + |z?(t) − h(t)|

≤ eτ L∗

n
(t) ‖z − F(z)‖n + ‖z? − h‖.
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Since h is arbitrary, we may suppose that h ∈ B(z?, ε) = {h ∈ B0
n : ‖h − z?‖n ≤ ε}.

Therefore,
‖z − z?‖n ≤ ‖z −F(z)‖n + ε.

If z is not in F(z), then ‖z?−F(z)‖ 6= 0. Since F(z) is compact, there exists x ∈ F(z)
such that ‖z? − F(z)‖ = ‖z? − x‖. Then we have

|z(t) − z?(t)| ≤ |z(t) − h(t)| + |x(t) − h(t)|

≤ eτ L∗

n
(t) ‖z −F(z)‖n + |x(t) − h(t)|.

Thus,
‖z − x‖n ≤ ‖z − F(z)‖n + ε.

So, F is an admissible operator contraction. From the choice of U there is no
z ∈ ∂U such that z = λ F(z) for some λ ∈ (0, 1). Then the statement (C2) in
Theorem 2.9 does not hold. We deduce that the operator F has a fixed point z?. Then
y?(t) = z?(t) + x(t), t ∈ (−∞,+∞) is a fixed point of the operator N , which is a mild
solution of the evolution inclusion problem (1) − (2).

4 Semilinear Neutral Evolution Inclusions

In this section, we give existence results for the neutral functional differential evolu-
tion problem with infinite delay (3) − (4). Firstly we define the mild solution.

Definition 4.1 We say that the function y(·) : (−∞,+∞) → E is a mild solution of
the neutral evolution system (3)− (4) if y(t) = φ(t) for all t ∈ (−∞, 0], the restriction
of y(·) to the interval J is continuous and there exists f(·) ∈ L1(J ;E) : f(t) ∈ F (t, yt)
a.e. in J such that y satisfies the following integral equation

y(t) = U(t, 0)[φ(0) − g(0, φ)] + g(t, yt) +

∫ t

0

U(t, s)A(s)g(s, ys)ds

+

∫ t

0

U(t, s)f(s) ds for each t ∈ [0,+∞).

(9)

We consider the hypotheses (H1)− (H3) and we will need the following assumptions :

(H4) There exists a constant M 0 > 0 such that :

‖A−1(t)‖B(E) ≤M 0 for all t ∈ J.

(H5) There exists a constant 0 < L <
1

M 0Kn

such that :

|A(t) g(t, φ)| ≤ L (‖φ‖B + 1) for all t ∈ J and φ ∈ B.
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(H6) There exists a constant L? > 0 such that :

|A(s) g(s, φ) −A(s) g(s, φ)| ≤ L? (|s− s| + ‖φ− φ‖B)

for all s, s ∈ J and φ, φ ∈ B.

For every n ∈ IN, let us take here ln(t) = M̂Kn[L? + ln(t)] for the family of semi-
norm {‖ · ‖n}n∈IN defined in Section 3. In what follows we fix τ > 1 and assume[
M0L?Kn +

1

τ

]
< 1.

Theorem 4.2 Suppose that hypotheses (H1) − (H6) are satisfied and moreover

∫ +∞

δn

ds

s+ ψ(s)
>

M̂Kn

1 −M 0LKn

∫ n

0

max(L, p(s))ds for each n ∈ IN (10)

with

δn := (KnM̂H +Mn)‖φ‖B +
Kn

1 −M 0LKn

[
(M̂ + 1)M 0L+ M̂Ln

+M 0L
[
M̂(KnH + 1) +Mn

]
‖φ‖B

]
.

Then the neutral evolution problem (3) − (4) has a mild solution.

Proof. Transform the neutral evolution problem (3)− (4) into a fixed-point problem.

Consider the multivalued operator Ñ : B+∞ → P(B+∞) defined by :

Ñ(y) =





h ∈ B+∞ : h(t) =





φ(t), if t ≤ 0;

U(t, 0) [φ(0) − g(0, φ)] + g(t, yt)

+

∫ t

0

U(t, s)A(s)g(s, ys)ds

+

∫ t

0

U(t, s)f(s)ds, if t ∈ J,





where f ∈ SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, yt) for a.e. t ∈ J}.

Clearly, the fixed points of the operator Ñ are mild solutions of the problem (3)−(4).
We remark also that, for each y ∈ B+∞, the set SF,y is nonempty since, by (H2), F
has a measurable selection (see [16], Theorem III.6).

For φ ∈ B, we will define the function x(.) : (−∞,+∞) → E by

x(t) =

{
φ(t), if t ∈ (−∞, 0];

U(t, 0) φ(0), if t ∈ J.
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Then x0 = φ. For each function z ∈ B+∞, set

y(t) = z(t) + x(t). (11)

It is obvious that y satisfies (9) if and only if z satisfies z0 = 0 and

z(t) = g(t, zt + xt) − U(t, 0)g(0, φ)

+

∫ t

0

U(t, s)A(s)g(s, zs + xs)ds+

∫ t

0

U(t, s)f(s)ds.

where f(t) ∈ F (t, zt + xt) a.e. t ∈ J .

Let

B0
+∞ = {z ∈ B+∞ : z0 = 0} .

Define in B0
+∞, the multivalued operator F̃ : B0

+∞ → P(B0
+∞) by :

F̃(z) =
{
h ∈ B0

+∞ : h(t) = g(t, zt + xt) − U(t, 0)g(0, φ)

+

∫ t

0

U(t, s)A(s)g(s, zs + xs)ds

+

∫ t

0

U(t, s)f(s)ds, t ∈ J

}

where f ∈ SF,z = {v ∈ L1(J,E) : v(t) ∈ F (t, zt + xt) for a.e. t ∈ J}.

Obviously the operator inclusion Ñ has a fixed point is equivalent to the operator
inclusion F̃ has one, so it turns to prove that F̃ has a fixed point.

Let z ∈ B0
+∞ be a possible fixed point of the operator F̃ . Given n ∈ N, then z

should be solution of the inclusion z ∈ λ F̃(z) for some λ ∈ (0, 1) and there exists
f ∈ SF,z ⇔ f(t) ∈ F (t, zt + xt) such that, for each t ∈ [0, n], we have

|z(t)| ≤ ‖A−1(t)‖B(E)|A(t)g(t, zt + xt)| + ‖U(t, 0)‖B(E)‖A
−1(0)‖B(E)|A(0) g(0, φ)|

+

∫ t

0

‖U(t, s)‖B(E)|A(s)g(s, zs + xs)|ds+

∫ t

0

‖U(t, s)‖B(E)|f(s)|ds

≤ M 0L(‖zt + xt‖B + 1) + M̂M 0L(‖φ‖B + 1)

+ M̂

∫ t

0

L(‖zs + xs‖B + 1)ds+ M̂

∫ t

0

p(s)ψ(‖zs + xs‖B)ds

≤ M 0L‖zt + xt‖B +M0L(1 + M̂) + M̂Ln+ M̂M 0L‖φ‖B

+ M̂

∫ t

0

L‖zs + xs‖Bds+ M̂

∫ t

0

p(s)ψ(‖zs + xs‖B)ds.
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Using the inequality (8) and the nondecreasing character of ψ, we obtain

|z(t)| ≤ M 0L(Kn|z(t)| + cn) +M 0L(1 + M̂) + M̂Ln + M̂M 0L‖φ‖B

+ M̂

∫ t

0

L(Kn|z(s)| + cn)ds+ M̂

∫ t

0

p(s)ψ(Kn|z(s)| + cn)ds

≤ M 0LKn|z(t)| +M 0L(1 + M̂) + M̂Ln +M 0Lcn + M̂M 0L‖φ‖B

+ M̂

[∫ t

0

L(Kn|z(s)| + cn)ds+

∫ t

0

p(s)ψ(Kn|z(s)| + cn)ds

]
.

Then

(1 −M 0LKn)|z(t)| ≤ (M̂ + 1)M0L+ M̂Ln +M0Lcn + M̂M 0L‖φ‖B

+ M̂

[∫ t

0

L(Kn|z(s)| + cn)ds+

∫ t

0

p(s)ψ(Kn|z(s)| + cn)ds

]
.

Set δn := cn +
Kn

1 −M 0LKn

[
(M̂ + 1)M 0L+ M̂Ln +M 0Lcn + M̂M0L‖φ‖B

]
. Thus

Kn|z(t)| + cn ≤ δn

+
M̂Kn

1 −M 0LKn

[∫ t

0

L(Kn|z(s)| + cn)ds+

∫ t

0

p(s)ψ(Kn|z(s)| + cn)ds

]
.

We consider the function µ defined by

µ(t) := sup { Kn|z(s)| + cn : 0 ≤ s ≤ t }, 0 ≤ t < +∞.

Let t? ∈ [0, t] be such that µ(t) = Kn|z(t
?)| + cn. By the previous inequality, we have

µ(t) ≤ δn +
M̂Kn

1 −M 0LKn

[∫ t

0

Lµ(s)ds+

∫ t

0

p(s)ψ(µ(s))ds

]
for t ∈ [0, n].

Let us take the right-hand side of the above inequality as v(t). Then, we have

µ(t) ≤ v(t) for all t ∈ [0, n].

From the definition of v, we have v(0) = δn and

v′(t) =
M̂Kn

1 −M 0LKn

[Lµ(t) + p(t)ψ(µ(t))] a.e. t ∈ [0, n].

Using the nondecreasing character of ψ, we get

v′(t) ≤
M̂Kn

1 −M 0LKn

[Lv(t) + p(t)ψ(v(t))] a.e. t ∈ [0, n].
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This implies that for each t ∈ [0, n] and using the condition (10), we get

∫ v(t)

δn

ds

s+ ψ(s)
≤

M̂Kn

1 −M0LKn

∫ t

0

max(L, p(s))ds

≤
M̂Kn

1 −M0LKn

∫ n

0

max(L, p(s))ds

<

∫ +∞

δn

ds

s+ ψ(s)
.

Thus, for every t ∈ [0, n], there exists a constant Λn such that v(t) ≤ Λn and hence
µ(t) ≤ Λn. Since ‖z‖n ≤ µ(t), we have ‖z‖n ≤ Λn.

We can show as in Section 3 that F̃ is an admissible operator and we shall prove
now that F̃ : U → P(B0

+∞) is a contraction.

Let z, z ∈ B0
+∞ and h ∈ F̃(z). Then there exists f(t) ∈ F (t, zt + xt) such that for

each t ∈ [0, n]

h(t) = g(t, zt + xt) − U(t, 0)g(0, φ) +

∫ t

0

U(t, s)A(s)g(s, zs + xs)ds+

∫ t

0

U(t, s)f(s)ds

From (H3) it follows that

Hd(F (t, zt + xt), F (t, zt + xt)) ≤ ln(t) ‖zt − zt‖B.

Hence, there is ρ ∈ F (t, zt + xt) such that

|f(t) − ρ| ≤ ln(t) ‖zt − zt‖B t ∈ [0, n].

Consider U? : [0, n] → P(E), given by

U? = {ρ ∈ E : |f(t) − ρ| ≤ ln(t) ‖zt − zt‖B}.

Since the multivalued operator V(t) = U?(t) ∩ F (t, zt + xt) is measurable (in [16],
see Proposition III.4), there exists a function f(t), which is a measurable selection for
V. So, f(t) ∈ F (t, zt + xt) and using (A1), we obtain for each t ∈ [0, n]

|f(t) − f(t)| ≤ ln(t) ‖zt − zt‖B
≤ ln(t) [K(t) |z(t) − z(t)| +M(t) ‖z0 − z0‖B]
≤ ln(t) Kn |z(t) − z(t)|.

(12)

Let us define, for each t ∈ [0, n]

h(t) = g(t, zt + xt) − U(t, 0)g(0, φ) +

∫ t

0

U(t, s)A(s)g(s, zs + xs)ds+

∫ t

0

U(t, s)f(s)ds
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Then, for each t ∈ [0, n] and n ∈ IN and using (H1) and (H3) to (H6), we get

|h(t) − h(t)| ≤ |g(t, zt + xt) − g(t, zt + xt)|

+

∫ t

0

|U(t, s)A(s)[g(s, zs + xs) − g(s, zs + xs)]| ds

+

∫ t

0

∣∣U(t, s)[f(s) − f(s)]
∣∣ ds

≤ ‖A−1(t)‖B(E) |A(t)g(t, zt + xt) − A(t)g(t, zt + xt)|

+

∫ t

0

‖U(t, s)‖B(E)|A(s)g(s, zs + xs) − A(s)g(s, zs + xs)| ds

+

∫ t

0

‖U(t, s)‖B(E)|f(s) − f(s)| ds

≤ M 0L?‖zt − zt‖B +

∫ t

0

M̂L?‖zs − zs‖B ds+

∫ t

0

M̂ |f(s) − f(s)| ds.

Using (A1) and (12), we obtain

|h(t) − h(t)| ≤ M 0L?K(t)|z(t) − z(t)| +

∫ t

0

M̂L?K(s)|z(s) − z(s)| ds

+

∫ t

0

M̂ln(s)Kn|z(s) − z(s)| ds

≤ M 0L?Kn|z(t) − z(t)| +

∫ t

0

M̂Kn[L? + ln(s)]|z(s) − z(s)| ds

≤ M 0L?Kn|z(t) − z(t)| +

∫ t

0

ln(s)|z(s) − z(s)| ds

≤ M 0L?Kn[eτ L∗

n
(t) ] [e−τ L∗

t
(t) |z(t) − z(t)|]

+

∫ t

0

[
ln(s) eτ L∗

n
(s)

] [
e−τ L∗

n
(s) |z(s) − z(s)|

]
ds

≤ M 0L?Kn e
τ L∗

n
(t) ‖z − z‖n +

∫ t

0

[
eτ L∗

n
(s)

τ

]′

ds ‖z − z‖n

≤ M 0L?Kn e
τ L∗

n
(t) ‖z − z‖n +

1

τ
eτ L∗

n
(t) ‖z − z‖n

≤

[
M0L?Kn +

1

τ

]
eτ L∗

n
(t) ‖z − z‖n.

Therefore,

‖h− h‖n ≤

[
M 0L?Kn +

1

τ

]
‖z − z‖n.
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By an analogous relation, obtained by interchanging the roles of z and z, it follows
that

Hd(F̃(z), F̃(z)) ≤

[
M0L?Kn +

1

τ

]
‖z − z‖B.

So the operator F̃ is a contraction for all n ∈ N and an admissible operator. From
the choice of U there is no z ∈ ∂U such that z = λ F̃(z) for some λ ∈ (0, 1). Then

the statement (C2) in Theorem 2.9 does not hold. This implies that the operator F̃
has a fixed point z?. Then y?(t) = z?(t) + x(t), t ∈ (−∞,+∞) is a fixed point of the

operator Ñ , which is a mild solution of the problem (3) − (4).

5 Applications

To illustrate the previous results, we give in this section two applications:

Example 5.1 Consider the following model





∂v

∂t
(t, ξ) ∈ a(t, ξ)

∂2v

∂ξ2
(t, ξ)

+

∫ 0

−∞

P (θ)R(t, v(t+ θ, ξ))dθ ξ ∈ [0, π]

v(t, 0) = v(t, π) = 0 t ∈ [0,+∞)

v(θ, ξ) = v0(θ, ξ) −∞ < θ ≤ 0, ξ ∈ [0, π],

(13)

where a(t, ξ) is a continuous function and is uniformly Hölder continuous in t ;
P : (−∞, 0] → R and v0 : (−∞, 0] × [0, π] → R are continuous functions and R :
[0,+∞) × R → P(R) is a multivalued map with compact convex values.

Consider E = L2([0, π],R) and define A(t) by A(t)w = a(t, ξ)w′′ with domain

D(A) = { w ∈ E : w, w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0 }

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) (see [20]).

For the phase space B, we choose the well known space BUC(R−, E) : the space of
uniformly bounded continuous functions endowed with the following norm

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B.

If we put for ϕ ∈ BUC(R−, E) and ξ ∈ [0, π]

y(t)(ξ) = v(t, ξ), t ∈ [0,+∞), ξ ∈ [0, π],
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φ(θ)(ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

and

F (t, ϕ)(ξ) =

∫ 0

−∞

P (θ)R(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π].

Then, the problem (13) takes the abstract semilinear functional evolution inclusion
form (1) − (2). In order to prove the existence of mild solutions of problem (13), we
suppose the following assumptions :

- There exist p ∈ L1(J,R+) and a nondecreasing continuous function ψ : [0,+∞) →
(0,+∞) such that

|R(t, u)| ≤ p(t)ψ(|u|), for ∈ J, and u ∈ R.

- P is integrable on (−∞, 0].

By the dominated convergence theorem, one can show that f ∈ SF,y is a continuous
function from B to E. On the other hand, we have for ϕ ∈ B and ξ ∈ [0, π]

|F (t, ϕ)(ξ)| ≤

∫ 0

−∞

|p(t)P (θ)|ψ(|(ϕ(θ))(ξ)|)dθ.

Since the function ψ is nondecreasing, it follows that

‖F (t, ϕ)‖P(E) ≤ p(t)

∫ 0

−∞

|P (θ)| dθψ(|ϕ|), for ϕ ∈ B.

Proposition 5.2 Under the above assumptions, if we assume that condition (6) in
Theorem 3.2 is true, ϕ ∈ B, then the problem (13) has a mild solution which is defined
in (−∞,+∞).

Example 5.3 Consider the following model





∂

∂t

[
v(t, ξ) −

∫ 0

−∞

T (θ)u(t, v(t+ θ, ξ))dθ

]

∈ a(t, ξ)
∂2v

∂ξ2
(t, ξ)

+

∫ 0

−∞

P (θ)R(t, v(t+ θ, ξ))dθ t ∈ [0,+∞), ξ ∈ [0, π]

v(t, 0) = v(t, π) = 0 t ∈ [0,+∞)

v(θ, ξ) = v0(θ, ξ) −∞ < θ ≤ 0, ξ ∈ [0, π],

(14)
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where a(t, ξ) is a continuous function and is uniformly Hölder continuous in t ;
T, P : (−∞, 0] → R ; u : (−∞, 0] × R → R and v0 : (−∞, 0] × [0, π] → R are
continuous functions and R : [0,+∞)×R → P(R) is a multivalued map with compact
convex values.

Consider E = L2([0, π],R) and define A(t) by A(t)w = a(t, ξ)w′′ with domain

D(A) = { w ∈ E : w, w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0 }

Then A(t) generates an evolution system U(t, s) satisfying assumption (H1) (see [20]).

For the phase space B, we choose the well known space BUC(R−, E) : the space of
uniformly bounded continuous functions endowed with the following norm

‖ϕ‖ = sup
θ≤0

|ϕ(θ)| for ϕ ∈ B.

If we put for ϕ ∈ BUC(R−, E) and ξ ∈ [0, π]

y(t)(ξ) = v(t, ξ), t ∈ [0,+∞), ξ ∈ [0, π],

φ(θ)(ξ) = v0(θ, ξ), −∞ < θ ≤ 0, ξ ∈ [0, π],

g(t, ϕ)(ξ) =

∫ 0

−∞

T (θ)u(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π],

and

F (t, ϕ)(ξ) =

∫ 0

−∞

P (θ)R(t, ϕ(θ)(ξ))dθ, −∞ < θ ≤ 0, ξ ∈ [0, π].

Then, the problem (14) takes the abstract neutral functional evolution inclusion
form (3) − (4). In order to prove the existence of mild solutions of problem (14), we
suppose the following assumptions :

- u is Lipschitz with respect to its second argument. Let lip(u) denotes the Lipschitz
constant of u.

- There exist p ∈ L1(J,R+) and a nondecreasing continuous function ψ : [0,+∞) →
(0,+∞) such that

|R(t, x)| ≤ p(t)ψ(|x|), for ∈ J, and x ∈ R.

- T, P are integrable on (−∞, 0].
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By the dominated convergence theorem, one can show that f ∈ SF,y is a continuous
function from B to E. Moreover the mapping g is Lipschitz continuous in its second
argument, in fact, we have

|g(t, ϕ1) − g(t, ϕ2)| ≤ M0L∗lip(u)

∫ 0

−∞

|T (θ)| dθ |ϕ1 − ϕ2| , for ϕ1, ϕ2 ∈ B.

On the other hand, we have for ϕ ∈ B and ξ ∈ [0, π]

|F (t, ϕ)(ξ)| ≤

∫ 0

−∞

|p(t)P (θ)|ψ(|(ϕ(θ))(ξ)|)dθ.

Since the function ψ is nondecreasing, it follows that

‖F (t, ϕ)‖P(E) ≤ p(t)

∫ 0

−∞

|P (θ)| dθψ(|ϕ|), for ϕ ∈ B.

Proposition 5.4 Under the above assumptions, if we assume that condition (10) in
Theorem 4.2 is true, ϕ ∈ B, then the problem (14) has a mild solution which is defined
in (−∞,+∞).
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