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Abstract

In this paper, an existence and the existence of extremal random solutions
are proved for a periodic boundary value problem of second order ordinary ran-
dom differential equations. Our investigations have been placed in the space of
real-valued functions defined and continuous on closed and bounded intervals
of real line together with the applications of the random version of a nonlinear
alternative of Leray-Schauder type and an algebraic random fixed point theorem
of Dhage [5]. An example is also indicated for demonstrating the realizations of
the abstract theory developed in this paper.
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1 Statement of the Problem

Let R denote the real line and let J = [0, 2π] be a closed and bounded interval in
R. Let C1(J,R) denote the class of real-valued functions defined and continuously
differentiable on J . Given a measurable space (Ω,A) and for a given measurable
function x : Ω → C1(J,R), consider a second order periodic boundary value problem
of ordinary random differential equations (in short PBVP)

−x′′(t, ω) = f(t, x(t, ω), ω) a.e. t ∈ J

x(0, ω) = x(2π, ω), x′(0, ω) = x′(2π, ω)

}

(1)

for all ω ∈ Ω, where f : J × R × Ω → R.

By a random solution of the random PBVP (1) we mean a measurable function
x : Ω → AC1(J,R) that satisfies the equations in (1), where AC1(J,R) is the space of
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continuous real-valued functions whose first derivative exists and is absolutely contin-
uous on J .

The random PBVP (1) is new to the theory of periodic boundary value problems of
ordinary differential equations. When the random parameter ω is absent, the random
PBVP (1) reduces to the classical PBVP of second order ordinary differential equations,

−x′′(t) = f(t, x(t)) a.e. t ∈ J

x(0) = x(2π), x′(0) = x′(2π)

}

(2)

where, f : J × R → R.

The study of PBVP (2) has been discussed in several papers by many authors for
different aspects of the solutions. See for example, Lakshmikantham and Leela [12],
Leela [13], Nieto [14, 15], Yao [16], and the references therein. In this paper, we discuss
the random PBVP (1) for existence as well as for existence of extremal solutions under
suitable conditions of the nonlinearity f which thereby generalize several existence
results of the PBVP (2) proved in the above mentioned paper. Our analysis rely on
the random versions of nonlinear alternative of Leray-Schauder type (see Dhage [5, 6])
and an algebraic random fixed point theorem of Dhage [5].

The paper is organized as follows: In Section 2 we give some preliminaries and
definitions needed in the sequel. The main existence result is given in Section 3, while
the result on extremal solutions is given in Section 4. Finally, in Section 5, an example
is presented to illustrate the abstract result developed in Section 3.

2 Auxiliary Results

Let E denote a Banach space with the norm ‖ · ‖ and let Q : E → E. Then Q is called
compact if Q(E) is a relatively compact subset of E. Q is called totally bounded
if Q(B) is totally bounded subset of E for any bounded subset B of E. Q is called
completely continuous if is continuous and totally bounded on E. Note that every
compact operator is totally bounded, but the converse may not be true. However, both
the notions coincide on bounded sets in the Banach space E.

We further assume that the Banach space E is separable, i.e., E has a countable
dense subset and let βE be the σ-algebra of Borel subsets of E. We say a mapping
x : Ω → E is measurable if for any B ∈ βE,

x−1(B) = {ω ∈ Ω | x(ω) ∈ B} ∈ A.

Similarly, a mapping x : Ω × E → E is called jointly measurable if for any B ∈ βE ,
one has

x−1(B) = {(ω, , x) ∈ Ω × E | x(ω, x) ∈ B} ∈ A × βE ,

where A×βE is the direct product of the σalgebras A and βE those defined in Ω and E
respectively. The details of the measurablity of the functions appears in Himmelberg
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[9]. Note that a continuous map f from a Banach space E into itself is measurable,
but the converse may not be true.

Let Q : Ω × E → E be a mapping. Then Q is called a random operator if Q(ω, x)
is measurable in ω for all x ∈ E and it is expressed as Q(ω)x = Q(ω, x). In this case
we also say that Q(ω) is a random operator on E. A random operator Q(ω) on E

is called continuous (resp. compact, totally bounded and completely continuous) if
Q(ω, x) is continuous (resp. compact, totally bounded and completely continuous) in
x for all ω ∈ Ω. The details of completely continuous random operators in Banach
spaces and their properties appear in Itoh [10]. The study of random equations and
their solutions have been discussed in Bharucha-Reid [1] and Hans [7] which is further
applied to different types of random equations such as random differential and random
integral equations etc. See Itoh [10], Bharucha-Reid [2] and the references therein. In
this paper, we employ the following random nonlinear alternative in proving the main
result of this paper.

Theorem 2.1 (Dhage [5, 6]) Let U be a non-empty, open and bounded subset of the
separable Banach space E such that 0 ∈ U and let Q : Ω × U → E be a compact and
continuous random operator. Further suppose that there does not exists an u ∈ ∂U

such that Q(ω)x = αx for all ω ∈ Ω, where α > 1 and ∂U is the boundary of U
in E.. Then the random equation Q(ω)x = x has a random solution, i.e., there is a
measurable function ξ : Ω → E such that Q(ω)ξ(ω) = ξ(ω) for all ω ∈ Ω.

An immediate corollary to above theorem in applicable form is

Corollary 2.1 Let Br(0) and Br(0) be the open and closed balls centered at origin of
radius r in the separable Banach space E and let Q : Ω×Br(0) → E be a compact and
continuous random operator. Further suppose that there does not exists an u ∈ E with
‖u‖ = r such that Q(ω)u = αu for all ω ∈ Ω, where α > 1. Then the random equation
Q(ω)x = x has a random solution, i.e., there is a measurable function ξ : Ω → Br(0)
such that Q(ω)ξ(ω) = ξ(ω) for all ω ∈ Ω.

The following theorem is often used in the study of nonlinear discontinuous random
differential equations. We also need this result in the subsequent part of this paper.

Theorem 2.2 (Carathéodory) Let Q : Ω × E → E be a mapping such that Q(·, x)
is measurable for all x ∈ E and Q(ω, ·) is continuous for all ω ∈ Ω. Then the map
(ω, x) 7→ Q(ω, x) is jointly measurable.

The following lemma appears in Nieto [15] and is useful in the study of second order
periodic boundary value problems of ordinary differential equations.
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Lemma 2.1 For any real number m > 0 and σ ∈ L1(J,R), x is a solution to the
differential equation

−x′′(t) +m2 x(t) = σ(t) a.e. t ∈ J

x(0) = x(2π), x′(0) = x′(2π)

}

(3)

if and only if it is a solution of the integral equation

x(t) =

∫ 2π

0

Gm(t, s)σ(s) ds (4)

where,

Gm(t, s) =



















1

2m(e2mπ − 1)

[

em(t−s) + em(2π−t+s)
]

, 0 ≤ s ≤ t ≤ 2π,

1

2m(e2mπ − 1)

[

em(s−t) + em(2π−s+t)
]

, 0 ≤ t < s ≤ 2π.

(5)

Notice that the Green’s function Gm is continuous and nonnegative on J × J and
the numbers

α = min{ |Gm(t, s)| : t, s ∈ [0, 2π] } =
emπ

m(e2mπ − 1)

and

β = max{ |Gm(t, s)| : t, s ∈ [0, 2π] } =
e2mπ + 1

2m(e2mπ − 1)

exist for all positive real number m.

We need the following definitions in the sequel.

Definition 2.1 A function f : J × R × Ω → R is called random Carathéodory if

(i) the map (t, ω) → f(t, x, ω) is jointly measurable for all x ∈ R, and

(ii) the map x→ f(t, x, ω) is continuous for all t ∈ J and ω ∈ Ω.

Definition 2.2 A function f : J × R × Ω → R is called random L1-Carathéodory if

(iii) for each real number r > 0 there is a measurable and bounded function qr : Ω →
L1(J,R) such that

|f(t, x, ω)| ≤ qr(t, ω)a. e.t ∈ J

for all ω ∈ Ω and x ∈ R with |x| ≤ r.

Remark 2.1 If f is random L1-Carathéodory on J × R × Ω, then the function t 7→
f(t, x, ω) is Lebesgue integrable on J for all ω ∈ Ω and x ∈ R with |x| ≤ r.
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3 Existence Result

We seek the random solutions of PBVP (1) in the Banach space C(J,R) of continuous
real-valued functions defined on J . We equip the space C(J,R) with the supremum
norm ‖ · ‖ defined by

‖x‖ = sup
t∈J

|x(t)|.

It is known that the Banach space C(J,R) is separable. By L1(J,R) we denote the
space of Lebesgue measurable real-valued functions defined on R+. By ‖·‖L1 we denote
the usual norm in L1(J,R) defined by

‖x‖L1 =

∫ 2π

0

|x(t)| dt.

For a given real number m > 0, consider the random PBVP,

−x′′(t, ω) +m2x(t, ω) = fm(t, x(t, ω), ω) a.e. t ∈ J

x(0, ω) = x(2π, ω), x′(0, ω) = x′(2π, ω)

}

(6)

for all ω ∈ Ω, where the function fm : J × R × Ω → R is defined by

fm(t, x, ω) = f(t, x, ω) +m2x.

Remark 3.1 We remark that the random PBVP (1) is equivalent to the random
PBVP (6) and therefore, a random solution to the PBVP (6) implies the random
solution to the PBVP (1) and vice versa.

The random PBVP (6) is equivalent to the random integral equation,

x(t, ω) =

∫ 2π

0

Gm(t, s)fm(s, x(s, ω), ω) ds (7)

for all t ∈ J and ω ∈ Ω, where the function Gm(t, s) is defined by (5).

We consider the following set of hypotheses in what follows:

(H1) The function fm is random Carathéodory on J × R × Ω.

(H2) There exists a measurable and bounded function γ : Ω → L2(J,R) and a contin-
uous and nondecreasing function ψ : R+ → (0,∞) such that

|fm(t, x, ω)| ≤ γ(t, ω)ψ(|x|)a.e.t ∈ J

for all ω ∈ Ω and x ∈ R.

Our main existence result is
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Theorem 3.1 Assume that the hypotheses (H1)-(H2) hold. Suppose that there exists
a real number r > 0 such that

r >
e2mπ + 1

2m(e2mπ − 1)
‖γ(ω)‖L1ψ(r) (8)

for all ω ∈ Ω. Then the random PBVP (1) has a random solution defined on J .

Proof. Set E = C(J,R) and define a mapping Q : Ω × E → E by

Q(ω)x(t) =

∫ 2π

0

Gm(t, s)fm(s, x(s, ω), ω) ds (9)

for all t ∈ J and ω ∈ Ω.

Since the map t 7→ Gm(t, s) is continuous on J , Q(ω) defines a mapping Q :
Ω×E → E. Define a closed ball Br(0) in E centered at origin 0 of radius r, where the
real number r satisfies the inequality (8). We show that Q satisfies all the conditions
of Corollary 2.1 on Br(0).

First we show that Q is a random operator on Br(0). Since fm(t, x, ω) is random
Carathéodory, the map ω → fm(t, x, ω) is measurable in view of Theorem 2.2. Simi-
larly, the product Gm(t, s)fm(s, x(s, ω), ω) of a continuous and a measurable function
is again measurable. Further, the integral is a limit of a finite sum of measurable
functions, therefore, the map

ω →

∫ 2π

0

Gm(t, s)fm(s, x(s, ω), ω) ds = Q(ω)x(t)

is measurable. As a result, Q is a random operator on Ω × Br(0) into E.

Next we show that the random operator Q(ω) is continuous on Br(0). Let {xn} be
a sequence of points in Br(0) converging to the point x in Br(0). Then it is enough
to prove that lim

n→∞

Q(ω)xn(t) = Q(ω)x(t) for all t ∈ J and ω ∈ Ω. By dominated

convergence theorem, we obtain:

lim
n→∞

Q(ω)xn(t) = limn→∞

∫ 2π

0
Gm(t, s)fm(s, xn(s, ω), ω) ds

=
∫ 2π

0
Gm(t, s) limn→∞[fm(s, xn(s, ω), ω)] ds

=
∫ 2π

0
Gm(t, s)fm(s, x(s, ω), ω) ds

= Q(ω)x(t)

for all t ∈ J and ω ∈ Ω. This shows that Q(ω) is a continuous random operator on
Br(0).

Now, we show that Q(ω) is a compact random operator on Br(0). To finish, it is
enough to prove that Q(ω)(Br(0)) is uniformly bounded and equi-continuous set in E
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for each ω ∈ Ω. Since the map ω 7→ γ(t, ω) is bounded and L2(J,R) ⊂ L1(J,R), by
hypothesis (H2), there is a constant c such that ‖γ(ω)‖L1 ≤ c for all ω ∈ Ω. Let ω ∈ Ω
be fixed. Then for any x : Ω → Br(0), one has

|Q(ω)x(t)| ≤

∫ 2π

0

Gm(t, s)|fm(s, x(s, ω), ω)| ds

≤

∫ 2π

0

Gm(t, s)γ(s, ω)ψ(|x(s, ω)|) ds

≤

∫ 2π

0

Gm(t, s)γ(s, ω)ψ(‖x(ω)‖) ds

≤
e2mπ + 1

2m(e2mπ − 1)

(
∫ 2π

0

γ(s, ω) ds

)

ψ(r)

≤ K1

for all t ∈ J , where K1 =
e2mπ + 1

2m(e2mπ − 1)
c ψ(r). This shows that Q(ω)(Br(0)) is a

uniformly bounded subset of E for each ω ∈ Ω.

Next, we show that Q(ω)(Br(0)) is an equi-continuous set in E. Let x ∈ Br(0) be
arbitrary. Then for any t1, t2 ∈ J , one has

|Q(ω)x(t1) −Q(ω)x(t1)|

≤

∫ 2π

0

|Gm(t1, s) −Gm(t2, s)| |fm(s, x(s, ω), ω)| ds

≤

∫ 2π

0

|Gm(t1, s) −Gm(t2, s)| γ(s, ω)ψ(|x(s, ω)|) ds

≤

∫ 2π

0

|Gm(t1, s) −Gm(t2, s)| γ(s, ω)ψ(r) ds

≤

(
∫ 2π

0

|Gm(t1, s) −Gm(t2, s)|
2 ds

)1/2 (
∫ 2π

0

|γ(s, ω)|2 ds

)1/2

ψ(r). (10)

Hence for all t1, t2 ∈ J ,

|Q(ω)x(t1) −Q(ω)x(t1)| → 0 as t1 → t2,

uniformly for all x ∈ Br(0). Therefore, Q(ω)(Br(0)) is an equi-continuous set in E.
As Q(ω)(Br(0)) is uniformly bounded and equi-continuous, it is compact by Arzelá-
Ascoli theorem for each ω ∈ Ω. Consequently, Q(ω) is a completely continuous random
operator on Br(0).

Finally, we prove that there does not exist an u ∈ E with ‖u‖ = r such that
Q(ω)u(t) = αu(t, ω) for all t ∈ J and ω ∈ Ω, where α > 1. Suppose not. Then there
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exists such an element u in E satisfying Q(ω)u(t) = αu(t, ω) for some ω ∈ Ω. Let
λ = 1

α
. Then λ < 1 and λQ(ω)u(t) = u(t, ω) for some ω ∈ Ω. Now for this ω ∈ Ω, one

has

|u(t, ω)| ≤ λ|Q(ω)u(t)|

≤

∫ 2π

0

Gm(t, s)|fm(s, u(s, ω), ω)| ds

≤
e2mπ + 1

2m(e2mπ − 1)

∫ 2π

0

γ(s, ω)ψ(|u(s, ω)|) ds

≤
e2mπ + 1

2m(e2mπ − 1)

∫ 2π

0

γ(s, ω)ψ(‖u(ω)‖) ds

≤
e2mπ + 1

2m(e2mπ − 1)
‖γ(ω)‖L1ψ(‖u(ω)‖)

for all t ∈ J . Taking supremum over t in the above inequality yields

‖u(ω)‖ ≤
e2mπ + 1

2m(e2mπ − 1)
‖γ(ω)‖L1ψ(‖u(ω)‖)

or

r ≤
e2mπ + 1

2m(e2mπ − 1)
‖γ(ω)‖L1ψ(r)

for some ω ∈ Ω. This contradicts to the condition (8).

Thus, all the conditions of Corollary 2.1 are satisfied. Hence the random equation
Q(ω)x(t) = x(t, ω) has a random solution in Br(0), i.e., there is a measurable function
ξ : Ω → Br(0) such that Q(ω)ξ(t) = ξ(t, ω) for all t ∈ J and ω ∈ Ω. As a result, the
random PBVP (1) has a random solution defined on J . This completes the proof. �

4 Extremal Random Solutions

A closed set K of the Banach space E is called a cone if

(i) K +K ⊆ K,

(ii) λK ⊂ K for all λ ∈ R+, and

(iii) {−K} ∩K = {θ},

where θ is the zero element of E. We introduce an order relation ≤ in E with the
help of the cone K in E as follows. Let x, y ∈ E, then we define

x ≤ y ⇐⇒ y − x ∈ K. (11)
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A cone K in the Banach space E is called normal, if the norm ‖ · ‖ is semi-monotone
on K i.e., if x, y ∈ K, then ‖x + y‖ ≤ ‖x‖ + ‖y‖. Again a cone K is called regular,
if every monotone order bounded sequence in E converges in norm. Similarly, a cone
K is called fully regular, if every monotone norm bounded sequence converges in E.
The details of different types of cones and their properties appear in Deimling [3] and
Heikkilä and Lakshmikantham.

We introduce an order relation ≤ in C(J,R) with the help of a cone K in it defined
by

K = {x ∈ C(J,R) | x(t) ≥ 0 for all t ∈ J}.

Thus, we have
x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J.

It is known that the cone K is normal in C(J,R). For any function a, b : Ω → C(J,R)
we define a random interval [a, b] in C(J,R) by

[a, b] = {x ∈ C(J,R) | a(ω) ≤ x ≤ b(ω) ∀ω ∈ Ω}

=
⋂

ω∈Ω

[a(ω), b(ω)].

Definition 4.1 An operator Q : Ω×E → E is called nondecreasing if Q(ω)x ≤ Q(ω)y
for all ω ∈ Ω and for all x, y ∈ E for which x ≤ y.

We use the following random fixed point theorem of Dhage [4, 5] in what follows.

Theorem 4.1 (Dhage [4]) Let (Ω,A) be a measurable space and let [a, b] be a random
order interval in the separable Banach space E. Let Q : Ω×[a, b] → [a, b] be a completely
continuous and nondecreasing random operator. Then Q has a least fixed point x∗ and a
greatest random fixed point y∗ in [a, b]. Moreover, the sequences {Q(ω)xn} with x0 = a

and {Q(ω)yn} with y0 = a converge to x∗ and y∗ respectively.

We need the following definitions in the sequel.

Definition 4.2 A measurable function a : Ω → C(J,R) is called a lower random
solution for the PBVP (1) if

−a′′(t, ω) ≤ f(t, a(t, ω), ω)a.e.t ∈ J

a(0, ω) ≤ a(2π, ω), a′(0, ω) = a′(2π, ω)

}

for all ω ∈ Ω. Similarly, a measurable function b : Ω → C(J,R) is called an upper
random solution for the PBVP (1) if

−b′′(t, ω) ≥ f(t, b(t, ω), ω)a.e.t ∈ J

b(0, ω) ≥ b(2π, ω), b′(0, ω) = b′(2π, ω)

}

for all ω ∈ Ω.
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Note that a random solution for the random PBVP (1) is lower as well as upper random
solution for the random PBVP (1) defined on J .

Remark 4.1 We remark that lower and upper random solutions to the PBVP (1)
implies respectively the lower and upper random solutions to the PBVP (6) on J and
vice versa.

Definition 4.3 A random solution rM for the random PBVP (1) is called maximal
if for all random solutions of the random PBVP (1), one has x(t, ω) ≤ rM(t, ω) for
all t ∈ J and ω ∈ Ω. Similarly, a minimal random solution to the PBVP (1) on J is
defined.

Remark 4.2 We remark that maximal and minimal random solutions to the PBVP
(1) implies respectively the maximal and minimal random solutions to the PBVP (6)
on J and vice versa.

Definition 4.4 A function f : J × R × Ω is called random Chandrabhan if

(i) the map (t, ω) 7→ f(t, x, ω) is jointly measurable,

(ii) the map x 7→ f(t, x, ω) is continuous and nondecreasing for all t ∈ J and ω ∈ Ω.

Definition 4.5 A function f(t, x, ω) is called random L1-Chandrabhan if for each
real number r > 0 there exists a measurable function qr : Ω → L1(J,R) such that for
all ω ∈ Ω

|f(t, x, ω)| ≤ qr(t, ω)a.e.t ∈ J

for all x ∈ R with |x| ≤ r.

We consider the following set of assumptions:

(H3) The function fm is random Chandrabhan on J × R × Ω.

(H4) The PBVP (1) has a lower random solution a and upper random solution b with
a ≤ b on J .

(H5) The function q : J × Ω → R+ defined by

q(t, ω) = |fm(t, a(t, ω), ω)|+ |fm(t, b(t, ω), ω)|

is Lebesgue integrable in t for all ω ∈ Ω.

Remark 4.3 If the hypotheses (H3) and (H5) hold, then for each ω ∈ Ω,

|fm(t, x(t, ω), ω)| ≤ q(t, ω)

for all t ∈ J and x ∈ [a, b] and the map ω → q(t, ω) is measurable on Ω.
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Remark 4.4 Hypothesis (H3) is natural and used in several research papers on random
differential and integral equations (see Dhage [4, 5] and the references given therein).
Hypothesis (H4) holds, in particular, if there exist measurable functions u, v : Ω →
C(J,R) such that for each ω ∈ Ω,

u(t, ω) ≤ f(t, x, ω) ≤ v(t, ω)

for all t ∈ J and x ∈ R. In this case, the lower and upper random solutions to the
random PBVP (1) are given by

a(t, ω) =

∫ 2π

0

Gm(t, s)u(s, ω) ds

and

b(t, ω) =

∫ 2π

0

Gm(t, s)v(s, ω) ds

respectively, where Gm(t, s) is associated with the PBVP (3) on J . The details about
the lower and upper random solutions for different types of random differential equa-
tions may be found in Ladde and Lakshmikantham [11]. Finally, hypothesis (H5)
remains valid if the function fm is L1-Carathéodory on J × R × Ω.

Theorem 4.2 Assume that the hypotheses (H1), (H3)-(H5) hold. Then the PBVP (1)
has a minimal random solution x∗(ω) and a maximal random solution y∗(ω) defined
on J . Moreover,

x∗(t, ω) = lim
n→∞

xn(t, ω) and y∗(t, ω) = lim
n→∞

yn(t, ω)

for all t ∈ J and ω ∈ Ω, where the random sequences {xn(ω)} and {yn(ω)} are given
by

xn+1(t, ω) =

∫ 2π

0

Gm(t, ω)fm(s, xn(s, ω), ω) ds, n ≥ 0 with x0 = a,

and

yn+1(t, ω) =

∫ 2π

0

Gm(t, ω)fm(s, yn(s, ω), ω) ds, n ≥ 0 with y0 = b

for all t ∈ J and ω ∈ Ω.

Proof. Set E = C(J,R) and define an operator Q : Ω × [a, b] → E by (9). We show
that Q satisfies all the conditions of Theorem 4.1 on [a, b].

It can be shown as in the proof of Theorem 3.1 that Q is a random operator on Ω×
[a, b]. We show that it is L1-Chandrabhan. First we show that Q(ω) is nondecreasing
on [a, b]. Let x, y : Ω → [a, b] be arbitrary such that x ≤ y on Ω. Then,

Q(ω)x(t) ≤

∫ 2π

0

Gm(t, s)fm(s, x(s, ω), ω) ds

≤

∫ 2π

0

Gm(t, s)fm(s, y(s, ω), ω) ds

= Q(ω)y(t)
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for all t ∈ J and ω ∈ Ω. As a result, Q(ω)x ≤ Q(ω)y for all ω ∈ Ω and that Q is
nondecreasing random operator on [a, b].

Secondly, by hypothesis (H4),

a(t, ω) ≤ Q(ω)a(t)

=

∫ 2π

0

Gm(t, s)fm(s, a(s, ω), ω) ds

=

∫ 2π

0

Gm(t, s)fm(s, x(s, ω), ω) ds

= Q(ω)x(t)

≤ Q(ω)b(t)

=

∫ 2π

0

Gm(t, s)fm(s, b(s, ω), ω) ds

≤ b(t, ω)

for all t ∈ J and ω ∈ Ω. As a result Q defines a random operator Q : Ω× [a, b] → [a, b].

Next, since (H5) holds, the hypothesis (H2) is satisfied with γ(t, ω) = q(t, ω) for all
(t, ω) ∈ J × Ω and ψ(r) = 1 for all real number r ≥ 0. Now it can be shown as in the
proof of Theorem 3.1 that the random operator Q(ω) is completely continuous on [a, b]
into itself. Thus, the random operator Q(ω) satisfies all the conditions of Theorem 4.1
and so the random operator equation Q(ω)x = x(ω) has a least and a greatest random
solution in [a, b]. Consequently, the PBVP (1) has a minimal and a maximal random
solution defined on J . This completes the proof. �

Remark 4.5 The conclusion of the Theorem 4.2 also remains true if we replace the
hypotheses (H3) and (H5) with the following one.

(H6) The function fm is random L1-Chandrabhan on J × R × Ω.

To see this, let hypothesis (H6) hold. Since the cone K in C(J,R) is normal, the
random order interval [a, b] is norm-bounded. Hence there is a real number r > 0 such
that ‖x‖ ≤ r for all x ∈ [a, b]. Now fm is L1-Chandrabhan, so there is a measurable
function qr : Ω → C(J,R) such that

|fm(t, x, ω)| ≤ qr(t, ω)a.e.t ∈ J

for all x ∈ R with |x| ≤ r and for all ω ∈ Ω. Hence, hypotheses (H3) and (H5) hold
with q(t, ω) = qr(t, ω) for all t ∈ J and ω ∈ Ω.

EJQTDE, 2009 No. 21, p. 12



5 An Example

Example 5.1 Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of
Lebesgue measurable subsets of (−∞, 0) and let J = [0, 2π] be a closed and bounded
interval in R. Given a measurable function x : Ω → C(J,R), consider the following
random PBVP

−x′′(t, ω) = −x(t, ω) + t ω2 x2(t,ω)
π2(1+ω2)[1+x2(t,ω)]

a.e. t ∈ J

x(0, ω) = x(2π, ω), x′(0, ω) = x′(2π, ω)

}

(12)

for all ω ∈ Ω.

Here,

f(t, x, ω) = −x+
t ω2 x2

π2(1 + ω2)[1 + x2]

so that taking m = 1, we obtain

fm(t, x, ω) = f1(t, x, ω) =
t ω2 x2

π2(1 + ω2)[1 + x2]
.

Clearly, the map (t, ω) 7→ f1(t, x, ω) is jointly continuous for all x ∈ R and hence jointly
measurable for all x ∈ R. Also the map x 7→ f1(t, x, ω) is continuous for all t ∈ J and
ω ∈ Ω. Moreover,

∣

∣

∣

∣

t ω2 x2

π2(1 + ω2)[1 + x2]

∣

∣

∣

∣

≤
t

π2
= γ(t, ω)ψ(|x|)

where, γ(t, ω) =
t

π2
for all t ∈ [0, 2π] and ψ(r) = 1 for all real number r ≥ 0. Now

‖γ(ω)‖L1 =

∫ 2π

0

γ(t, ω) dt =
1

π2

∫ 2π

0

t dt = 2.

Therefore, if we take r = 2, then

r = 2 >
e2π + 1

e2π − 1
=

e2mπ + 1

2m(e2mπ − 1)
‖γ(ω)‖L1ψ(r)

for all ω ∈ (0,∞) and so, the condition (8) of Theorem 3.1 is satisfied. Hence the
random PBVP (12) has a random solution in the closed ball B2(0) and defined on
[0, 2π].
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