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Abstract. We study the existence of non-zero solutions for a fourth-order differential
equation with nonlinear boundary conditions which models beams on elastic founda-
tions. The approach is based on variational methods. Some applications are illustrated.
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1 Introduction

In this paper, we consider the following fourth-order problem

ul®(x) = Af(x,u(x)) in[0,1],
u(0) =u'(0) =0, (Pap)
u'(1) =0,  u"(1) = pg(u(1)),

where f: [0,1] x R — R is an L!-Carathéodory function, ¢: R — R is a continuous function
and A, p are positive parameters. The problem (P, ,) describes the static equilibrium of a
flexible elastic beam of length 1 when, along its length, a load f is added to cause deforma-
tion. Precisely, conditions #(0) = #/(0) = 0 mean that the left end of the beam is fixed and
conditions u”(1) =0, u"'(1) = ug(u(1)) mean that the right end of the beam is attached to a
bearing device, given by the function g.

Existence and multiplicity results for this kinds of problems has been extensively studied.
In particular, by using a variational approach, the existence of three solutions for the problems
(Pr1) and (P) ») has been established respectively in [6] and in [4]. Moreover, in [8] the author
obtained the existence of at least two positive solutions for the problem (P ;). Finally, we
point out that the problem (P, ;) can be also studied by iterative methods (see for instance [7])
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and, for fourth order equations subject to conditions of different type, we refer, for instance,
to [3, 5] and references therein.

In this paper we will deal with the existence of one non-zero solution for the problem
(Pj,u)- Precisely, using a variational approach, under conditions involving the antiderivatives
of f and g, we will obtain two precise intervals of the parameters A and u for which the
problem (P, ;) admits at least one non-zero classical solution (see Theorem 3.1). As a way of
example, we present here a special case of our results.

Theorem 1.1. Let f: R — R be a nonnegative continuous function.

Then, for each A € |0 the problem

10 jg}(t) dt[
u® (x) = Af(u(x)) in0,1],
u(0) =u'(0) =0,
w’(1) =0,  w”(1) = /[u(1)]

admits at least one non-zero classical solution.

We explicitly observe that in Theorem 1.1, assumptions on the behavior of f, as for instance
asymptotic conditions at zero or at infinity, are not requested, whereby f is a totally arbitrary
function.

The paper is arranged as follows. In Section 2, we recall some basic definitions and our
main tool (Theorem 2.2), which is a local minimum theorem established in [1]. Finally, Section
3 is devoted to our main results. Precisely, under a suitable behaviour of f and for parameters
p# small enough, the existence of a non-zero solution for (P, ,) is obtained (Theorem 3.1)
and a variant is highlighted (Theorem 3.3). Moreover, some consequences are pointed out
(Corollaries 3.4 and 3.5) and a concrete example of application is given (Example 3.7).

2 Basic definitions and preliminary results

We consider the space
X := {u € H*([0,1]) : u(0) = '(0) = 0}

where H?([0,1]) is the Sobolev space of all functions u: [0,1] — R such that u and its distri-
butional derivative u’ are absolutely continuous and u” belongs to L?([0,1]). X is a Hilbert
space with inner product

(u,0) := /O (b (1) dt

Jull = ( 1<u"<t>)2dt)%,

which is equivalent to the usual norm fol(]u(t) 2+ |u/(t)|> + |u"(t)|?) dt. Moreover, the inclu-
sion X < C!([0,1]) is compact (see [6]) and it results

and norm

it o)) = max {{Julleo, [’ floo } < [u] 2.1)

for each u € X. We consider the functionals ®, ¥, ,: X — R defined by

1
() = 5l
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and
¥ (1) = /01 F(x,u(x)) dx + £G(u(1))

for each u € X and for each A, u > 0 where F(x,¢) : fo f(x,t)dt and G(¢ fo t) dt for
each x € [0,1], ¢ € R. By standard arguments, ® is sequentially weakly lower semlcontmuous
and coercive. Moreover, ® and ¥, , are in C!(X) and their Fréchet derivatives are respectively

(P (u),v) = /01 u”(x)v" (x) dx
and
(#0000 = [ feu)oe) dx+ Eg((yo)

for each u,v € X. In [6] the authors proved that ' admits a continuous inverse on X* and ¥’
is compact. In particular, in Lemma 2.1 of [6] it has been shown that, for each A,y > 0, the
critical points of the functional
IA,y =0 — )\‘Y/\,y

are solutions for problem (P, ;).

In order to obtain solutions for the problem (P, ,), we make use of a recent critical point
result, where a novel type of Palais—-Smale condition is applied (see Theorem 3.1 of [1]). We
recall it.

Definition 2.1. Let ® and ¥ two continuously Gateaux differentiable functionals defined on a
real Banach space X and fix r € R. The functional I = ® — Y is said to verify the Palais-Smale
condition cut off upper at 7 (in short (P.S.)l")) if any sequence {u,},cn in X such that

(a) {I(uy)} is bounded;

(B) limy—poo || 1’ (14n) ]
(v) ®(u,) < rforeachn € IN;

x- =0;

has a convergent subsequence.

The following theorem is a particular case of Theorem 5.1 of [1] and it is the main tool of
the next section.

Theorem 2.2 (Theorem 2.3 of [2]). Let X be a real Banach space, ®,Y: X — R be two continuously
Gateaux differentiable functionals such that infyex ®(x) = ®(0) = ¥(0) = 0. Assume that there
exist ¥ > 0 and ¥ € X, with 0 < ®(%) < r, such that:
(@) SUPg(y)<, T (%) _ ¥ (%)

! r d(x)’
(ap) for each

d(x) r [
(%) supgy)<, ¥(x)
the functional I, := ® — AY satisfies (P.S.)!") condition.

Then, for each
rea = |28
Y(x) SUPg

=i

re|

(x) [
there is xo, € ®71(]0,r[) such that I (xo) = Ox- and I,\(XO/\) < I)(x) forall x € ®71(]0, 7).
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3 Existence of one solution

Before introducing the main result, we define some notation. With « > 0, we put

1
F*:= [ maxF(x,¢)dx
0 [¢l<a

and

G" := maxG({)
¢l<a

Theorem 3.1. Assume that

(f1) thereexist 5,y € R, with 0 < & < vy, such that

Fr 1 (3\* J; F(x0)dx
'y2<87r4<2) T2

(f2) F(x,t) > 0 for almost every x € [0,1] and for all t € [0,6].

3 2 2
A€ Ay, = |amt <2> 0 77
fs XCS dx ZF

and for each g: R — R continuous, there exists 17, > 0, where

Then, for each

2 _2AFY
% if G(6) >0
Mg = 2 oppr 4P — A (3)° 3 F(x, ) dx (3.1)
min T 3 E if G(4) <0
(3)"G(9)

such that for each y €0,1, | the problem (P, ,) admits at least one non-zero solution u, such that
A lleor [l lleo < 7.

Proof. Fix A € A;s,. We observe that 7, > 0. Indeed, if G (6) > 0, then G” > 0 and by
A € As, it follows that 42 —2AF7 > 0. Hence 7, > 0. Let G (§) < 0. We have by A € A;,

that 47t (3 )313/4‘572&“ < A, which implies 47t*6% — A (3 ) f3/4 (x,0)dx < 0. Hence 17,4 > 0,

in this case as well.
Now, fix g: R — R continuous, u €]0,1,,[ and consider the space X. Our aim is to apply

Theorem 2.2 to the functionals ®,%¥) ;, defined above. To this end, we fix r = 772

The properties of the functionals ® and ¥ , ensure that the functional I, , = ® — AY, ,
verifies (P.S.)[r] condition for each r, A, u > 0 (see Proposition 2.1 of [1]) and so condition (a,)
of Theorem 2.2 is verified.

Denote by ¢ the function of X defined by

0 xe[0,3],
o(x) = $ocos® (3)  xe]dil, (32)
6 xe[}1],
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2 (2)’
3
3
5

/iF(x,ﬁ(x))dx >0
0

for which it results

Taking into account that o(x) € [0, 6] for each x € [2, 3], condition (f,) ensures that

and
1

F(x,0)dx >0,

Mm\

which implies

¥,,(0) = /01 F(x,0(x)) dx + £G(6) 2 /31 F(x,8)dx +£6 ().

This ensures that
) f3 (x,0) dx + £G(6)

0
) 4mis? (2)°

¥
(3

2

For each u: ® (u) = Hqu <r, by (2.1) one has

lull < v = V2r

and
[u][eo < -

It results )
0000 = [ Flna(o) e+ Eluqr) < 1+ B
, o 3 1

for each u € ®!(] — oo, 7]). This leads to

1 4
- sup Yo,(u) < SF'+ =S2G7-
T e (o)) v rEA
Now, taking into account (f1), if G(5) > 0, then, it results
2 2 2 2 Mg 1
S+ S« S S8 =
7 7> A 7’ 7 A A

and

1 1 /3\° 1 1 /3\’/ 1 u
- = < et s .
= < <2> /i F(x,0)dx < s (2> (ﬁ P(x,cS)dx+/\G(cS)>

If G(4) < 0, taking into account that

2= 2aF 4762 — A (3 3f;ll-"(x,é)alx
U <1,),g=min , 3 ,
267 (3)°6)

it results

2 1 1
71:7+ ]/[G7<—F7—|— 8Gr < =
7 A 7 7 A A

(3.5)
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if GY > 0,and 5F7+ ZKGY < 1if G7 =0.
Moreover, again from (3.6),

1 1 /3\° . po 1 (3\°

In all cases, taking into account (3.4) and (3.5), we have

1 1 Yaulo
- sup Yau(u) < — < =2~
" e (cor)) A D(0)

Moreover, we observe that from ¢ < v, taking (f1) into account, we obtain /874 (%)3(5 < 7.

In fact, arguing by a contradiction, if we assume 6 < y < 1/87* (3 ) J, we obtain

Fr_1(3 3 [ F(x,0) dx
72—714(4> -

and this is an absurd by (f;). Therefore, we have ®(3) = 475> (%)3 < 772 = r and the
condition (a1) of Theorem 2.2 is verified.
Moreover, since
@) r [
a(0) supgy < ¥au(u) |7

Theorem 2.2 guarantees the existence of a local minimum point u, for the functional I, such
that

AE A(5,’y -

(
Ap

0<®(uy) <r

and so u, is a nontrivial classical solution of problem (P, ,) such that [|u; ||eo, [t} ]| <. O

Remark 3.2. We observe that in Theorem 3.1 we read 72;5& * = 400 when G7 = 0.

By reversing the roles of A and p, we obtain the following result.
Theorem 3.3. Assume that

(g1) thereexist 6,y € Rwith0 < 6 < 7:

G 1 (3)3’6(5»

2 T8t \2 52

Then for each y € T, = ]47r (3 )3 GO(Z(S), oy [, and for each f: [0,1] x R — R L!-Carathéodory

function verifying condition (f2) of Theorem 3.1, there exists 8, > 0, where

o .. Y2 —2uG7
wiT TR

such that for each A €]0,0, ¢[ the problem (P, ,) admits at least one non-zero solution u such that
oo [l lloo < -
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Proof. Fix p € T, and A €]0,6, ¢[. Put

Prulu) = ;\/01 F(x,u(x))dx+ G(u(1)), Lu(u) =@ (u) — u¥n,(u),

for all u € X. Clearly, one has Iy, = I ;.

Now, let 7 the function as given in (3.2) and r = A’; Arguing as in the proof of Theorem 3.1
(see (3.4) and (3.5)) we obtain

- 1
(D) % 3 F(x,6)dx+ G(9) .
P(o 2\3 (37)
('U) 47‘(4(52 (5)
and - )
" wed1(]—co]) TH T
Therefore, from (3.7) we obtain
1?/\,;1(5) G(9) - 1
(0) 47452 (2)3 H
3
and from (3.8) it follows that
1 - 20 2 1
- sup  Yiu(u) < Yy —G' =~
T 1ed-1(]—cor)) K 04

Moreover, from (g1 ), arguing as in the proof of Theorem 3.1, one has ®(7) < r. So, assumption
(a1) of Theorem 2.2 is verified and

®(2) r

HeE |3 ; /
Fu(0)" suPg (<, Fap (1)

for which ® — ¥, ,, admits a non-zero critical point and the conclusion is obtained. O
Now, we present some consequences of previous results.
Corollary 3.4. Assume that f: IR — R is a continuous and non negative function such that

(ff") limsup, o % = +oo.

Then, for each v > 0, A € }O, 3F07) { for each g: R — R continuous and nonnegative and for each

e ]0 % [, the problem
ul®@ (x) = Af(u(x)) in[0,1],
u(0) = 1(0) = 0, Pa)

2

w'(1) =0, w”(1) = pg(u(1))

admits at least one non-zero classical solution u such that ||u|eo, [|[4/||c0 < -
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Proof. Fixy >0, A € ](), = (2 ) [ g: R — R continuous and nonnegative and y € }O, 72%1(”(;))\ [

Condition (f2) of Theorem 3.1 is verified. Moreover, by (f{'), there exists 0 < § < -y such
that B
F(d) 1674(3)®
52 A

2

Taking into account that A €]0, 21;/(7) [, it results

F( F(5)

)_ 1 3\ 1
2A 02 2 1674

< < —=

and so condition (f;) of Theorem 3.1 is verified. Since g is nonnegative, 7, ; = ,ngé% and
the conclusion follows easily.

Clearly, arguing as in the proof of Corollary 3.4, from Theorem 3.3 we obtain the following
result.

Corollary 3.5. Let g: IR — R bea nonnegative continuous function such that lim; o+ @ = +oo0.

Then, for each -y > 0, for each u € } , 2G

[ for each nonnegative continuous function f R — R
and for each A € }0 L@G)U [ the problem (P, ,,) admits at least one non-zero classical solution u

such that ||ul]eo, |1 || < 7.

Remark 3.6. Theorem 1.1 in the Introduction is an immediate consequence of Corollary 3.5.

Indeed, it is enough to pick ¢(f) = /|t| for all t € R and 7 = 2, so that one has lim; .o+ & =

< 12— 8\/ 7=2uG(y)

+o0, 4 = ( ] and A < 6F(2) 2E(7)

lOF( )

Example 3.7. Let us take 6 =1/2, v =22 and f: R — R defined by

0, u <o,
fu):=<Su—u? 0<u<l,
0, u> 1.

Then, by Theorem 3.1, for each A €]1385.4,1452[ and each g: R — R continuous there exists
rg > 0 such that for each u €]0,7, [, the problem (P,,) admits at least one non-zero
solution u) with |[u||eo, ||t/ |0 < 22.
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