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Abstract

We study three internally connected Sturm-Liouville problems for nonlinear

ordinary differential equations that are motivated by the problem of aeroelastic

instability. Solutions are analyzed and asymptotic results are presented. A

numerical study using a development of simple shooting reveals the spectrum

and corresponding eigenfunctions.
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1 Introduction

The problem of instability of a wing in a supersonic flow, often known as flutter, has
already attracted the attention of many researchers in both mathematics and engi-
neering. Our project is motivated by the contributions of two distinguished authors in
this area. Graef et al. [1, 2] studied stability (with respect to twisting) of an elastic
wing in an airflow. This problem is well-known in engineering (see, e.g. [3]). The
problem of stability is reduced in [1, 2] to a nonlinear Sturm-Liouville problem (SLP)
for the angle of rotation of the wing about the point of its attachment to the airplane
with Mach number M as the spectral parameter. The Liapunov function approach is
used. A connection between the slope s of the wing at the point of attachment and the
critical Mach number M is studied. Diverse numerical experiments were conducted for
(M, s)-dependence. Comparisons between nonlinear and linear descriptions of stability
were made. It is shown that the linear approximation is insufficient for some important
ranges of the parameters.
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2 B. Belinskiy & J. Matthews

Stability of an elastic wing (or panel) in an airflow may be lost by a mechanism
other than the twisting studied by Graef et al. Librescu et al.1 studied another
sophisticated model [9, 8]. Specifics will be given below but for now we only mention
that the problem in [9, 8] is described by a nonlinear and nonlocal partial differential
equation (PDE) and that it is solved by Galerkin’s method. Again the Mach number
M appears as a parameter and the range of critical values of M represents one of the
goals of this study.

In this paper we consider Sturm-Liouville problems for nonlinear ordinary differ-
ential equations (ODE) that represent a variation of both models above. Its structure
resembles the structure of the problem considered by Graef et al. but also includes
a non-local term of the type considered by Librescu et al. We call this model fully
nonlinear. We also consider two simplified models, one of the type considered by Graef
et al. (we call it autonomous) and one without the nonlinear term but retaining the
nonlocal term of the type introduced by Librescu et al. (we call it semilinear). For
all three models we study the connection between the Mach number (i.e. the spectral
parameter) and the slope of the solution at the beginning of the interval as well as
some properties of the eigenfunctions. We make some comparisons between the results
for all three models. We view our SLP as a stability problem and hence we mostly
are interested in the first eigenvalue and the corresponding mode. Our approach is
partially analytic and partially numeric, in the style of the papers [1, 2] and [9, 8].

In Section 2 we briefly describe the models studied by Graef et al. and Librescu et
al. We further formulate the three SLPs under consideration. In Section 3 we study the
semilinear SLP. Then in Section 4 we develop results for the autonomous SLP, mostly
(but not completely) following Graef et al. from [1, 2]. In Section 5 we study the fully
nonlinear model and compare results for all three models in Section 6.

2 The Autonomous and Semilinear Models

In [1, 2], Graef et al. consider the stability of an elastic wing twisting in an airflow.
The problem is reduced to finding nontrivial solutions of the SLP LA(y, λ) = 0 where:

LA(y, λ) = y′′ + λy + 2λ3y3, y : (0, ℓ) → R (1)

such that

y(0) = y(ℓ) = 0. (2)

The alternative boundary conditions (BC)

y(0) = y′(0) = 0 (3)

1Professor Liviu Librescu died after giving his students an opportunity to escape during the Virginia

Tech shootings in Spring 2007. The first of the authors was honored to discuss the problem of

aeroelastic stability with Professor Librescu during 2005.
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are also considered. The function y(x) is proportional to the angle of rotation of
the wing and λ is proportional to the Mach number. For simplicity we will abuse
terminology below and simply refer to λ as the Mach number.

It is shown that the function

L =
(y′)2

2
+ λ

y2

2
+ λ

y4

2
(4)

is the Liapunov function for the ODE (1) and hence by (2)

L(y) =
s2
0

2
, (5)

where s0 = y′(0) is the slope of the eigenfunction at the left boundary. Solutions to
(4)-(5) may be expressed in terms of elliptic integrals.

The second of the BC (2) results in some dependence between the critical Mach
number λ and the slope s0.

Equation (1) describes the stability of a wing when third-order piston theory is used.
Graef et al. also consider a fifth-order piston theory approximation, but that case is
not considered in this work.

In [9, 8], Librescu et al. use third-order piston theory and the geometrically nonlin-
ear elastic shell theory to model the elastic stability of a cylindrical panel (e.g. a wing)
in an airflow. A (simplified) version of the governing PDE used in [9, 8] is as follows,

yxxxx − 6

(
∫ 1

0

y2
x dx

)

yxx + K
{

(λyx + ζyt) + ǫ (λyx + ζyt)
3}+ τ 4

1 ytt = 0. (6)

The boundary is assumed to be simply supported,

y(0, t) = yxx(0, t) = y(1, t) = yxx(1, t) = 0. (7)

Here x ∈ [0, 1], t ∈ [0,∞) are a dimensionless coordinate and time, y(x, t) : [0, 1] ×
[0,∞) → R is the dimensionless transverse deflection of the panel, and K, ζ, ǫ are
(positive) constants. For the sake of simulation, the values of the parameters used in
[9, 8] would produce a very small value for ǫ, of the order of 10−4 to 10−5. If we consider
the stationary problem, ∂/∂t = 0, we come up with the SLP, LS(y, λ) = 0,

LS(y, λ) = y′′′′ − 6

(
∫ 1

0

(y′)
2

dx

)

y′′ + K
(

λy′ + ǫλ3 (y′)
3
)

, (8)

y(0) = y′′(0) = y(1) = y′′(1) = 0, (9)

which is similar to the SLP (1)-(2), yet differs by an essential nonlocal term.
The parameter λ is given in terms of the Mach number M , λ = M2

√
M2−1

≈ M for
M ≫ 1. Below we will refer to λ simply as the Mach number. Librescu et al. study
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the problem (6)-(7) by Galerkin’s method and find conditions for stability in terms of
the Mach number λ.

Moreover, the physical parameter ǫ is taken as a fixed but small constant. It is not
a small parameter as might be used in perturbation theory.

The stability problems considered in [1, 2, 3, 9, 8] require that the eigenfunction
y(x) be a positive solution on x ∈ (0, 1). For this reason, we assume that y′(0) = s0 > 0
throughout this work. Further the aforementioned relationship between the spectral
parameter λ and the Mach number M requires that only eigenfunctions for which λ
is positive are considered. Though the model considered in [9, 8] was developed for
large or moderate M, mathematically it is more convenient to remove this engineering
restriction and study λ ∈ (0,∞).

Lemma 2.1 The SLP (8) has no nontrivial solutions for any values of the parameters
K, ǫ and any (positive) Mach number λ.

Proof. Multiplying (8) by y(x), integrating over (0, 1), and then integrating by parts
yields

(y′′′y − y′′y′)|10 + ‖y′′‖2 − 6 ‖y′‖2
(

y′y|10 − ‖y′‖2
)

+ K

(

λ
y2

2

∣

∣

∣

∣

1

0

+ ǫλ3 y4

4

∣

∣

∣

∣

1

0

)

= 0.

Here and below ‖ · ‖ denotes the L2(0, 1) norm. Using the boundary conditions (9)
yields

‖y′′‖2
+ 6 ‖y′‖4

= 0.

This completes the proof.

The differential operators LA(y, λ) and LS(y, λ) are different yet share some simi-
larities. This comparison moves the authors of this paper to study the following SLP,
L(y, λ) = 0,

L(y, λ) = y′′ −
(
∫ 1

0

y2 dx

)

y′ + λy + ǫλ3y3, (10)

such that

y(0) = y(1) = 0 (11)

and ǫ is a small number.

We also introduce two operators that represent some reductions of L. We first
observe that if we neglect the integral term in L we get precisely the operator studied
by Graef et al. in [1, 2],

LA(y, λ) = y′′ + λy + ǫλ3y3. (12)
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(Compare with (1) above.) And if we neglect the cubic term in L then we obtain a
semilinear operator

LSL(y, λ) = y′′ −
(
∫

y2 dx

)

y′ + λy. (13)

(Compare with the analogous, but higher order, (8) above.)
Our goal is to study the (λ, s0)-dependence, where s0 = y′(0), and to compare the

properties of the three SLPs associated with the operators L, LA, and LSL.

3 Semilinear SLP (Approximation L ≈ LSL)

We consider the semilinear SLP

LSL(y, λ) = y′′ − ‖y‖2y′ + λy = 0, x ∈ (0, 1), (14)

y(0) = y(1) = 0. (15)

If we temporarily assume ‖y‖ to be known, then the first eigenfunction of the SLP
(14)-(15) has the form

y(x) = Ce
‖y‖2

2
x sin(πx) (16)

with an arbitrary constant C while the first eigenvalue is

λ = π2 +
‖y‖4

4
. (17)

We use s0 as previously defined and introduce s1 = y′(1). Clearly C = s0

π
. Substituting

y(x) into ‖y‖2 yields

C2

∫ 1

0

e‖y‖
2x sin2 (πx) dx = ‖y‖2

or

s2
0 =

‖y‖4 (‖y‖4 + 4π2)

2 (e‖y‖2 − 1)
. (18)

Equations (17)-(18) provide a parametric representation of the (λ, s0)-dependence we
seek. The (positive) parameter ‖y‖2 may be eliminated from (17)-(18) to produce an
explicit representation s0 = S(λ).

Below we use the standard asymptotic notation from [4]. In particular if ζ is a
small parameter, then η = o(ζ) means that η/ζ → 0 as ζ → 0 and f(ζ) ∼ g(ζ) means
that f(ζ)−g(ζ) = o(ζ). The following result follows from such an asymptotic analysis.
Additionally, we introduce the notation (x̂, ŷ) to refer to the single maximum of the
first mode.

Lemma 3.1
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(i) If ‖y‖ → 0, then s0 → 0, λ ∼ π2 +
s4

0

16π4 , y(x) ∼ s0

π
sin (πx), ŷ ∼ s0

π
.

(ii) If ‖y‖ → ∞, then s0 → 0, λ → ∞, s0 ∼
4(λ−π2)√

2
e−

√
λ−π2

, ŷ ∼ 4
√

λ−π2√
2e

.

(iii) The function s0 = S(λ) has a single maximum, s∗ = S(λ∗) in the neighborhood
of which λ ∼ λ∗ ± C1

√
s∗ − s0 with some constant C1.

To complement, and extend, the results obtained by the analysis above, solutions
of the SLP (14)-(15) were obtained numerically. The numerical results agree with the
analytical results in the lemma above.

For a standard second order, linear boundary value problem, a standard simple
shooting method [12] would suffice to obtain numerical solutions. However to account
for the nonlocal first-order term in (14) we suggest a development of this approach.
A standard simple shooting method rewrites the boundary value problem (BVP) as
an initial value problem (IVP) and then defines a nonlinear function F whose zeros
are solutions of the IVP which also satisfy the boundary conditions in the BVP. More
precisely, if we denote by y ≡ y(x; s0) the solution of (14) with the initial conditions

y(0) = 0, y′(0) = s0

then we define F by F (s0) ≡ y(1; s0). Therefore F has a root when y satisfies (14)
and the boundary conditions (15) also hold. Those roots can be found relatively
easily with a standard nonlinear solver such as Newton’s method with finite difference
approximation of F ′ (as an explicit formula for F ′ is not typically available).

The key innovation here is to rewrite the problem slightly to accommodate the
nonlocal nature of (14). We introduce an unknown scalar C and solve the related BVP

y′′ − Cy′ + λy = 0, x ∈ (0, 1) (19)

with the same boundary conditions (15). Then the nonlinear function becomes

F

([

s0

C

])

=

[

y(1; s0)
C − ‖y(x; s0)‖2

]

. (20)

Again Newton’s method with finite difference Jacobians can find the roots of F and
thereby numerical solutions of (14)-(15).

The lemma above gives some indication of the complex interplay between s0 and λ
(which are also connected with ‖y‖), and the numerical resolution of (14)-(15) provides
a convenient means to visualize that relationship. The graph on the left in Figure 1
shows a curve in the (λ, s0)-plane for which solutions of (14)-(15) exist. The value of
‖y‖ is monotonic increasing along this curve moving from left to right. Notice that
for a given value of y′(0) = s0 there may exist a pair of values of λ for which the SLP
(14)-(15) has a solution. A pair of such values has been highlighted in the left graph
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Figure 1: (left) A curve in the (λ, s0)-plane for which (14)-(15) has a positive solution.
(right) The solutions corresponding to the two points highlighted in the graph on the
left. For both solutions y′(0) = s0 ≈ 1.5, so they share the same slope at the left
boundary. However the value of ‖y‖ is obviously different for each, and in fact they
also correspond to different eigenvalues λ.

of Figure 1 and the corresponding solutions of (14)-(15) for those values of s0 and λ
are shown in the right graph.

The spectrum shown on the left in Figure 1 corresponds to the first mode. The
solutions y corresponding to the points along the curve in the (λ, s0)-plane are positive
solutions of the given semilinear SLP. With further analysis we can describe similar
curves in the (λ, s0)-plane corresponding to higher modes, none of which are positive
solutions. We note in passing that the (λ, s0)-curve for one mode intersects the (λ, s0)-
curve for the next highest mode.

Finally, the solutions in the right graph of Figure 1 fit well with the asymptotic
results of Lemma 3.1. In particular, the maximum of each eigenfunction is easily
observed to be in line with the estimates given above.

4 Autonomous SLP (Approximation L ≈ LA)

We consider the autonomous SLP

LA(y, λ) = y′′ + λy + ǫλ3y3 = 0, x ∈ (0, 1), (21)

y(0) = y(1) = 0 (22)

following mostly the approach used by Graef et al. in [1, 2], where almost the same
SLP is considered. We introduce the Liapunov function for this model

L =
(y′)2

2
+ λ

y2

2
+ ǫλ3 y4

4
. (23)
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Then using the first of the boundary conditions in (22) and y′(0) = s0(> 0), we arrive
at

(y′)
2
+ λy2 +

ǫλ3

2
y4 = s2

0. (24)

The following results follow from a similar analysis in [1, 2].

Lemma 4.1

(i) The first eigenfunction of SLP (21)-(22) has a single maximum at x = 1
2
, y
(

1
2

)

=
ŷ, such that

s2
0 = λŷ2 +

ǫλ3ŷ4

2
. (25)

(ii) |y′(1)| = s0.

We may directly combine the results above into a single relation for y′ as follows

y′ = ±
√

λ
√

ŷ2 − y2

√

1 +
ǫλ2

2
(ŷ2 + y2), (26)

where the “+” is taken for x ≤ 1
2

and the “−” is taken for x ≥ 1
2
. If we utilize the

right boundary condition in (22) and make the substitution y = ŷ sin (θ) , then we may
integrate (26) to obtain

∫ π

2

0

dθ
√

1 +
ǫλ2ŷ2

2

(

1 + sin2 (θ)
)

=

√
λ

2
. (27)

Equations (25) and (27) give a parametric representation of the (λ, s0)-dependence that
we seek. The parameter ŷ2 may be eliminated to produce a single implicit relation
between λ and s0. For the lemma below, recall that the positive solutions we seek
require s0 > 0.

Lemma 4.2 (i) For a given ŷ > 0 there exists a unique couple (λ, s0) that satisfies
(25) and (27).

(ii) λ < π2; π2 − λ ∼ s2
0 as s0 → 0 and λ ∼ s

−2/3
0 as s0 → ∞.

(iii) ŷ ∼ s0

π
as s0 → 0.

Proof. For (i) see [1, 2].
To prove (ii) we first estimate the denominator of the left hand side of (27). The

inequality 0 ≤ sin2 (θ) ≤ 1 implies the following inclusion

√
λ

2
∈





π
2

√

1 + ǫλ2ŷ2
,

π
2

√

1 + 1
2
ǫλ2ŷ2




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or after simplification
π2 − λ

ǫλ3ŷ2
∈
[

1

2
, 1

]

, (28)

which immediately implies that λ < π2. Equation (25) implies that

ǫλ2ŷ2 = −1 +
√

1 + 2ǫλs2
0. (29)

Combining (28) and (29) yields the inclusion

π2 − λ

λ
(

−1 +
√

1 + 2ǫλs2
0

) ∈
[

1

2
, 1

]

. (30)

Let s0 → 0. Since λ is bounded the quantity π2−λ
λ2s2

0

is bounded above which implies

λ ∼ π2 and hence π2 − λ ∼ s2
0. Now let s0 → ∞. Since λ is bounded the quantity

π2−λ
λ
√

λs0

is bounded below which implies that λ ∼ s
−2/3
0 . This establishes all of (ii).

Finally letting s0 → 0 in (25) and using (ii) immediately implies (iii). This com-
pletes the proof.

We note the similarity between the estimates for the maximum of the first mode,
ŷ, given for the semilinear problem in Section 3 and here for the autonomous problem.

As with the semilinear problem, a numerical treatment fills in the part of the curve
in the (λ, s0)-plane between the limiting cases described by the asymptotic results
of Lemma 4.2. Using the fixed value ǫ = 10−4 and an approach similar to the one
described in Section 3, numerical solutions to the autonomous SLP (21)-(22) can be
found. The corresponding (λ, s0)-curve is shown in Figure 2. We note that for each
s0 > 0 there exists a unique λ on the spectrum for the autonomous SLP (21)-(22).
This is not the case for the other two models – semilinear and fully nonlinear – that
we consider in this work.

5 Fully Nonlinear SLP (Operator L)

We consider the SLP

L(y, λ) = y′′ − ‖y‖2y′ + λy + ǫλ3y3 = 0, x ∈ (0, 1), (31)

y(0) = y(1) = 0. (32)

The Liapunov function for the SLP above is

L =
(y′)2

2
− ‖y‖2

∫ x

0

(y′)
2
dη + λ

y2

2
+ ǫλ3 y4

4
(33)
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Figure 2: (left) The curve in the (λ, s0)-plane for which (21)-(22) has a positive solution.
(right) The solutions corresponding to the two points shown in the graph on the left.

and along with the slope s0 = y′(0) we obtain

(y′)
2 − 2‖y‖2

∫ x

0

(y′)
2
dη + λy2 +

ǫλ3

2
y4 = s2

0. (34)

This last identity, evaluated at x = 1 and using s1 = y′(1), yields

s2
1 − 2‖y‖2‖y′‖2 = s2

0. (35)

For the point where the first eigenfunction has a maximum, (x̂, ŷ), identity (34) allows
us to obtain

λŷ2 +
ǫλ3

2
ŷ4 = s2

0 + 2‖y‖2‖y′‖2. (36)

We also introduce the following SLP

L(y, λ) = y′′ + ‖y‖2y′ + λy + ǫλ3y3 = 0, x ∈ (0, 1), (37)

y(0) = y(1) = 0 (38)

which is similar to (31)-(32), differing only in the sign of the first-order term.
Some properties of the first eigenfunctions for (31)-(32), as well as (37)-(38), are

given by the following Lemma.

Lemma 5.1

(i)

s0 < |s1| < s0e
‖y‖2

. (39)

In particular the eigenfunction y(x) is asymmetric.
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(ii)
|y′(x)| ≤ s1, ∀x ∈ [0, 1]. (40)

(iii)

s2
0 < λŷ2 +

ǫλ3

2
ŷ4 = s2

1. (41)

(iv)
y(x) = y(1 − x). (42)

Proof. The first of the inequalities, i.e. s0 < |s1|, follows immediately from (35).
Denoting z(x) = (y′)2 (x) and f(x) = s2

0−λy2(x)− ǫλ3

2
y4(x) in (34) yields the following

integral equation

z(x) − 2 ‖y‖2

∫ x

0

z(η) dη = f(x), (43)

which may be reduced to the Cauchy problem

z′(x) − 2 ‖y‖2 z(x) = f ′(x), z(0) = s2
0(= f(0)). (44)

The solution of this Cauchy problem is found in the standard way. Integrating by parts
and utilizing the definition of f(x) in the expression for the solution, we obtain

z(x) = s2
0e

2‖y‖2x +

∫ x

0

e2‖y‖2(x−η)f ′(η) dη

= s2
0 − λy2(x) − ǫλ3

2
y4(x) + 2 ‖y‖2

∫ x

0

e2‖y‖2(x−η)

(

s2
0 − λy2(η) − ǫλ3

2
y4(η)

)

dη.

Now evaluating the above expression at x = 1, recalling the notation s1 = y′(1),
evaluating the first term in the integral, and estimating two other terms by zero yields

s2
1 = s2

0e
2‖y‖2 − 2 ‖y‖2

∫ 1

0

e2‖y‖2(1−η)

(

s2
0 − λy2(η) − ǫλ3

2
y4(η)

)

dη

< s2
0e

2‖y‖2

.

This establishes the right half of (i).
To prove inequality (ii) above, we subtract (35) from (34) to find

(y′)
2

= s2
1 −

[(

λy2 +
ǫλ3

2
y4

)

+ 2 ‖y‖2

∫ 1

x

(y′)
2

dη

]

< s2
1.

The left-hand side of (iii) immediately follows from (36) and the very same identity
along with (35) further shows that

λŷ2 +
ǫλ3

2
ŷ4 = s2

0 + 2 ‖y‖2 ‖y′‖2
= s2

1,
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12 B. Belinskiy & J. Matthews

Figure 3: (left) A curve in the (λ, s0)-plane for which (31)-(32) has a positive solution.
(right) The solutions corresponding to the two points shown in the graph on the left.

completing the right-hand side of (iii).

We finally observe that the substitution of x̄ = 1 − x transforms (31)-(32) into
(37)-(38). This completes the proof.

We note that for the autonomous SLP (21)-(22) the inequalities in (i) and (iii) of
the lemma above become equalities. (See Section 4.)

For the semilinear SLP (14)-(15) all statements of Lemma 5.1 remain the same if
we let ǫ = 0. Yet for the semilinear SLP we may sharpen (39) into

|s1| = s0e
1

2
‖y‖2

.

As with the semilinear model of Section 3 and the autonomous model of Section
4, we obtain numerical solutions to the fully nonlinear SLP (31)-(32) using a similar
numerical technique. The first mode of the spectrum of the fully nonlinear SLP and
two particular solutions are shown in Figure 3.

One key observation we make about the three models presented here – semilinear,
autonomous, and fully nonlinear – is that the first mode for each model is distinct. As
seen in Figure 4, the first modes all agree near the point (π2, 0), but as ‖y‖ increases
the spectra diverge. This shows that while all of these models share some character-
istics, notably near the point on the spectrum corresponding to the trivial solution
of the respective SLP, the terms unique to each model are essential in determining
the dynamics of the spectrum and, therefore, the solutions. We note that the funda-
mental difference between the (λ, s0)-curves for the autonomous model and its linear
counterpart was recognized by Graef et al. in [1, 2].
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Figure 4: Each of the three models – semilinear, autonomous, and fully nonlinear –
has a distinct first mode. All agree near (π2, 0).

6 Unsolved Problems

There are two unsolved problems that the authors would like to briefly mention in
connection with the fully nonlinear SLP, (31)-(32).

Problem 6.1 – The (λ, s0)-dependence for the fully nonlinear SLP (31)-(32) has been
studied numerically. How can the same problem be tackled analytically?

Moreover, if we temporarily assume ‖y‖ to be known, we may invert the linear
(actually semilinear) operator L and reduce the SLP (31)-(32) to the following integral
equation,

y(x) = ǫλ3

∫ 1

0

K(x, t, ‖y‖, λ)y3(t) dt (45)

where the kernel K has the following representation

K (x, t, ‖y‖, λ) =
K1 (x, ‖y‖, λ)

K1 (1, ‖y‖, λ)
K1 (1 − t, ‖y‖, λ)− K1 (x − t, ‖y‖, λ)χ(0,x)(t),

K1 (x, ‖y‖, λ) =
1

2πi

∫

C

epx 1

p2 − ‖y‖2p + λ
dp,

with χ(0,x)(t) the characteristic function and C the standard contour in the complex
plane that appears in the Laplace transform. So more specifically, Problem 6.1 has the
the form

Problem 6.1 (revised) – Is it possible to embed the nonlinear integral equation (45) in
the well-developed theory of nonlinear integral equations based on Krasnosel’skii’s fixed
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point theorem [6, 5, 7]?

The SLP for the nonlinear differential equation

y′′ + q(x)y + λ [a(x) − f(x, y, y′)] y = 0, x ∈ (0, 1) (46)

subject to standard BC is studied in a series of papers [10, 11]. It is assumed there
that

f(x, ξ, η) ≥ 0 (47)

for x ∈ [0, 1], 0 < |ξ| , |η| < ρ for some constant ρ > 0. The dependence (λ, j), where j
is the number of zeros of the corresponding eigenfunction, is studied extensively.

Scaling y(x) in the autonomous SLP (21)-(22) (see [1, 2]) yields the ODE

y′′ + λ
[

1 + 2y2
]

y = 0 (48)

so that f(x, ξ, η) = −2ξ2 which obviously fails to satisfy the requirement (47).

Problem 6.2 – Is it possible to develop the results of the current paper in terms of the
(λ, j)-dependence?

7 Conclusion

We have studied analytically and numerically three Sturm-Liouville problems. The
main SLP is fully nonlinear and nonlocal and has a structure similar to the SLP which
describes the stability of a wing (or panel) in an airflow. In that case, the spectral
parameter λ is proportional to the Mach number. Two other Sturm-Liouville problems
represent simplifications of the main model, in particular when we neglect either the
nonlocal term or the higher order nonlinear term. Some information about the first
eigenfunction y(x) and the corresponding curve (λ, s0) is presented (where s0 is the
slope of y(x) at one endpoint). It is established to what extent the two approximations
of the main model produce similar (λ, s0)-dependencies. A robust numerical simulation
is used to illuminate in detail the parts of the spectrum between the limiting cases given
in the asymptotic analyses.
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