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1 Introduction

In this paper we consider the following ordinary differential equation

x′ = f (t, x) (1.1)

with the nonlocal condition

h

( ∫ 1

0
x(s) dg(s)

)
= 0, (1.2)

where f : [0, 1]×Rk → Rk is continuous, g = (g1, . . . , gk) : [0, 1]→ Rk has bounded variation,
h : Rk → Rk is continuous and∫ 1

0
x(s) dg(s) =

( ∫ 1

0
x1(s) dg1(s), . . . ,

∫ 1

0
xk(s) dgk(s)

)
.

The subject of nonlocal boundary conditions for ordinary differential equations has been
a topic of various studies in mathematical articles for many years. The multi-point conditions
were studied at first and this kind of conditions has been initiated in [15], then also the
significantly nonlocal conditions with the values of the unknown function occurring over the
entire domain (integral) became the subject of interest. An important survey on boundary
conditions involving Stieltjes measures is [20]. It is easy to see that the conditions in which
there is the Stieltjes integral with respect to any function with the total variation involve also
multi-point problems.
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Usually the matter of consideration are the second-order differential equations because of
their supposed applications but sometimes also the first-order differential equations are being
considered as in the present paper [2,3,5,13,14,23]. And with our level of generality the second
order differential equations can be treated as the first-order systems. The methods are typical:
searching for the fixed point of integral operator using contraction principle, Schauder’s fixed-
point theorem, topological-order methods, e.g. basing on the cone expansion and compression
theorem, or finally the Leray–Schauder degree of compact mappings or the Mawhin degree
of coincidence (for the multi-point boundary value problem in [16]).

In this paper both differential equations and boundary conditions are nonlinear which
somehow forces to the use of the degree of coincidence – the linear part x′ has the nontrivial
kernel. Using this method and with such a generality of assumptions the theorems that can
be obtained are the ones in which the Brouwer degree of the nonlinear part being not zero on
the kernel of the linear part is the main assumption. In this paper there is only the degree of
“the half” of the nonlinear operator, i.e. h and the assumptions regarding the other half of the
nonlinear part are different.

Nonlinear boundary conditions have occurred before in works [3,7,8,21,22] but they were
of different nature than here: under Stieltjes integral there was the assumption of the unknown
function with the nonlinear function. Therefore, the obtained results are not comparable with
the previous works; these results present a new direction of research. It is possible only to
notice the compatibility with the conventional results regarding the existence of the periodic
solutions [12]. This problem will be explained further in Section 4.

Let us present a few problems that are similar though different to (1.1), (1.2). Our problem
includes the linear nonlocal condition

∫ 1
0 x(s) dg(s) = 0. There are many papers investigating

BVPs with linear nonlocal conditions (compare with [1, 9–11, 13, 14, 18, 19] and the references
therein). Our result includes the BVP in [11], namely

x′′ = f (t, x, x′), x(0) = 0,
∫ 1

0
x′(s) dg(s) = 0,

which is at resonance, then g(1)− g(0) = 0.
In [7] and [21], the authors considered the existence of positive solutions of a nonlinear

nonlocal BVP of the form −x′′(t) = q(t) f (t, x(t)) with integral boundary conditions. G. In-
fante studied a similar problem with nonlinear integral boundary conditions (see [7])

x′(0) + H1

( ∫ 1

0
x(s) dA(s)

)
= 0, σx′(1) + x(η) = H2

( ∫ 1

0
x(s) dB(s)

)
.

In [21], the authors considered another kind of boundary conditions, namely

x(0) =
∫ 1

0
(x(s))a dA(s), x(1) =

∫ 1

0
(x(s))b dB(s),

where a, b ≥ 0.

2 Some preliminaries

In this section we recall some facts about Fredholm operators and Mawhin’s coincidence
theory. This section is based on [6, page 10–40].
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Let (X, ‖·‖X) and (Y, ‖·‖Y) be a Banach space. A linear operator L : X ⊃ dom L → Y is
said to be a Fredholm operator if dim ker L < ∞, im L is closed in Y and codim im L < ∞. The
index of the Fredholm operator is defined as

ind L := dim ker L− codim im L.

If L is the Fredholm operator, then continuous projections P : X → X, Q : Y → Y such
that im P = ker L, ker Q = im L exist. Thus X = ker L ⊕ ker P and Y = im L ⊕ im Q. It is
apparent that ker L ∩ ker P = {0}, therefore we can consider the restriction LP := L|ker P :
dom L ∩ ker P → Y which is invertible. A nonlinear operator N : X → Y is called L-compact
if N maps bounded sets into bounded ones and KP,Q = L−1

P (IY − Q) (by IY we denote the
identity on Y) is completely continuous.

Let L : X ⊃ dom L → Y be a Fredholm operator of index zero. Since dim ker L =

codim im L, there exists an isomorphism J : im Q→ ker L.
To obtain the results of the existence we use the following theorem by Mawhin.

Theorem 2.1 (Mawhin’s continuation theorem). Let Ω be a bounded open set in X. Assume that
L : X ⊃ dom L→ Y is a Fredholm operator with index zero and N is L-compact. Assume that

1. equations Lx = λN(x) have no solutions x ∈ dom L ∩ ∂Ω for all λ ∈ (0, 1];

2. Brouwer degree [4, p. 1–17] deg(JQN, ker L ∩Ω, 0) 6= 0, which is called coincidence degree
of L and N.

Then the equation Lx = N(x) has a solution in Ω.

Now we return to the main problem and present our notations. Usually we use the Eu-
clidean norm in Rk, denoted by

|x|Rk :=

√√√√ k

∑
j=1

x2
j

and the inner product in Rk corresponding to the Euclidean norm

〈x, y〉 :=
k

∑
j=1

xjyj.

We set X := C([0, 1], Rk) with the norm ‖x‖C([0,1],Rk)=supt∈[0,1]|x(t)|Rk , dom L := C1([0, 1], Rk),
Y := C([0, 1], Rk)×Rk with the norm

‖(z, x)‖C([0,1],Rk)×Rk = ‖z‖C([0,1],Rk) + |x|Rk

and define mappings L : X ⊃ dom L → Y, N : X → Y: Lx := (x′, 0) for x ∈ dom L,
(∀t ∈ [0, 1]) N(x) = (F(x), h(

∫ 1
0 x(s) dg(s))) for x ∈ X, where F is the Nemytskii operator, i.e.

(F(x))(t) = f (t, x(t)) for t ∈ [0, 1]. Thus, we obtain

Lx = N(x). (2.1)

It is clear that
ker L = {x ∈ C1([0, 1], Rk) : x = const.},

hence dim ker L = k < ∞. Also observe that im L = C([0, 1], Rk)× {0}, so codim im L = k.
Consequently, L is a Fredholm operator of index zero and we can use Mawhin’s theory.
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3 The existence of solutions

We know that our operator L is a Fredholm operator with index zero. Our purpose is to use
Mawhin’s theory. In the first step we define projections P : X → X by

(∀t ∈ [0, 1]) (Px)(t) := x(0) for x ∈ X,

and Q : Y → Y by
Q(z, α) := (−α, α) for (z, α) ∈ Y.

The description of P makes it evident that ker P = {x ∈ X : x(0) = 0}, hence

dom L ∩ ker P = {x ∈ C1([0, 1], Rk) : x(0) = 0}.

Then the inverse operator is defined as

L−1
P (z, 0)(t) =

∫ t

0
z(s) ds for z ∈ C([0, 1], Rk)

and we have

KP,Q(z, α)(t) = L−1
P (I −Q)(z, α)(t) =

∫ t

0
z(s) ds + tα for (z, α) ∈ Y.

Therefore

(KP,QN)(x)(t) =
∫ t

0
f (s, x(s)) ds + th

( ∫ 1

0
x(s) dg(s)

)
.

Since the first term is a composition of a Nemytskii operator and a Volterra integral operator
and the second term is a finite rank we get the following lemma.

Lemma 3.1. The operator KP,QN : X → Y is completely continuous. Therefore, the operator N : X →
Y is L-compact.

Our main result is given in the following theorem.

Theorem 3.2. Let us assume that g(0+) 6= g(0) and limε→0+var(g, [ε, 1]) ≤ minj≤k |gj(0+)−gj(0)|.
Then the BVP (1.1), (1.2) has at least one solution if there exists R > 0 such that the following
conditions hold.

(i) 〈 f (t, x), x〉 ≤ 0 for t ∈ (0, 1], |x|Rk = R.

(ii) Let

r− := R
(

min
j≤k
|gj(0+)− gj(0)| − lim

ε→0+
var(g, [ε, 1])

)
,

r+ := R
(
|g(0+)− g(0)|Rk + lim

ε→0+
var(g, [ε, 1])

)
.

Then h(x) 6= 0 for r− < |x|Rk ≤ r+ and the Brouwer degree deg(h, BRk(0, r), 0) is defined and
does not vanish for some r ∈ (r−, r+].

Before we proceed to the proof we recall some notions regarding the Riemann–Stieltjes
integral [17, pp. 9–11; 105–123]. Let g : [a, b]→ Rk and consider the sum

n

∑
i=1
|g(si)− g(si−1)|Rk ,

where a = s0 < . . . < sn = b. The supremum taken over the set of all partitions of the interval
[a, b] is called the total variation of the function g on [a, b], which is denoted by var(g, [a, b]).
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Lemma 3.3. For any continuous function ϕ : [0, 1]→ Rk,∫ 1

0
ϕ(s) dg(s) = ϕ(0)(g(0+)− g(0)) + lim

ε→0+

∫ 1

ε
ϕ(s) dg(s)

and the norm of the integral is bounded∣∣∣∣∣
∫ 1

ε
ϕ(s) dg(s)

∣∣∣∣∣
Rk

≤ sup
s∈[ε,1]

|ϕ(s)|Rk · var(g, [ε, 1]).

Proof. Recall that expressions on both sides are vectors, which means that the first summand
has coordinates

ϕ(0)(g(0+)− ϕ(0)) =
(

ϕ1(0)
(

g1(0+)− g1(0
))

, . . . , ϕk(0)
(

gk(0+)− gk(0)
))

.

The proof follows from the form of Riemann–Stieltjes sums which converge to the integrals:∣∣∣∣∣ k

∑
j=1

ϕj(sj)(gj(tj)− gj(tj−1))

∣∣∣∣∣ ≤ k

∑
j=1
|ϕj(sj)| · |gj(tj)− gj(tj−1)|

≤ sup
s∈[ε,1]

|ϕ(s)|Rk ·
k

∑
j=1
|gj(tj)− gj(tj−1)| ≤ sup

s∈[ε,1]
|ϕ(s)|Rk · var(g, [ε, 1]).

Proof of Theorem 3.2. The proof is carried out in two steps. In step 1, we prove that BVP (1.1),
(1.2) has the solution under stronger assumptions: limε→0+ var(g, [ε, 1]) < |g(0+) − g(0)|Rk

and 〈 f (t, x), x〉 < 0 for t ∈ (0, 1], |x|Rk = R.
Step 1. We know that the BVP (1.1), (1.2) is equivalent to (2.1). A linear operator L is

a Fredholm operator with index zero and nonlinearity N is L-compact. If we verify other
assumptions of Mawhin’s theorem we get the assertion.

Let us consider the family of equations Lx = λN(x), where λ ∈ (0, 1]. Thus we have the
family of problems 

x′ = λ f (t, x),

h
(∫ 1

0
x(s) dg(s)

)
= 0.

(3.1)

Now, we shall show that BVPs (3.1) have no solution in ∂Ω = ∂BC([0,1],Rk)(0, R) for λ ∈ (0, 1].
Let us suppose that there exists a solution ϕ of the (3.1) such that ‖ϕ‖C([0,1],Rk) = R. We
consider then a function ψ(t) := |ϕ(t)|2

Rk . Let us assume that ψ(t0) = R2 for some t0 ∈
(0, 1]. Then, by the assumption (i), since ϕ is a solution of (3.1) and |ϕ(t0)|Rk = R, we get a
contradiction. Indeed, we obtain

0 ≤ ψ(t0)− ψ(t) = ψ′(ξ)(t0 − t) = 2λ 〈 f (ξ, ϕ(ξ)), ϕ(ξ)〉 · (t0 − t) < 0

for every t ∈ [0, t0) and some ξ ∈ (t, t0). Thus, we assume that ψ(0) = R2. Furthermore, we
estimate ∣∣∣∣ ∫ 1

0
ϕ(s) dg(s)

∣∣∣∣
Rk

=

∣∣∣∣ϕ(0)(g(0+)− g(0)) + lim
ε→0+

∫ 1

ε
ϕ(s) dg(s)

∣∣∣∣
Rk

> r−.

Similarly, we obtain that ∣∣∣∣ ∫ 1

0
ϕ(s) dg(s)

∣∣∣∣
Rk
≤ r+,
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so the Riemann–Stieltjes integral
∫ 1

0 ϕ(s) dg(s) satisfies the estimates in (ii). Then
h
( ∫ 1

0 ϕ(s) dg(s)
)
6= 0. Since ϕ is the solution of (3.1), we have a contradiction.

According to the description of projections P and Q we have

(QN)(x)(t) =
(
−h
( ∫ 1

0
x(s) dg(s)

)
, h
( ∫ 1

0
x(s) dg(s)

))
.

Since dim ker L = dim im Q, there exists an isomorphism J : im Q→ ker L. Let us define J by

J(−α, α) = α (−α, α) ∈ im Q.

Then (JQN)(x) = h
( ∫ 1

0 x(s) dg(s)
)
. By the assumption (ii) we get that the topological

Brouwer degree deg(JQN, ker L ∩Ω, 0) 6= 0. Hence Mawhin’s theorem gives us the existence
of the solution for (1.1), (1.2) in the ball BC([0,1],Rk)(0, R). This completes the proof.

Step 2. Now, we assume limε→0+ var(g, [ε, 1]) ≤ minj≤k |gj(0+)− gj(0)| and 〈 f (t, x), x〉 ≤ 0
for t ∈ (0, 1], |x|Rk = R where R > 0 is a constant.

We consider the following BVP
x′ = f (t, x)− 1

n
x,

h
(∫ 1

0
x(s) dgn(s)

)
= 0, n ∈N,

(3.2)

where gn = (g1
n, . . . , gk

n) : [0, 1] → R is such that gn(s) = g(s) for s ∈ (0, 1], gj
n(0) =

gj(0) for j 6= j0 and gj0
n (0) = gj0(0) − 1

n sgn(gj0(0+) − gj0(0)), where |gj0(0+) − gj0(0)| =
maxj≤k |gj(0+) − gj(0)|. Then, functions f (t, x) − 1

n x and gn satisfy assumptions of Theo-
rem 3.2, so for every n ∈ N we get a solution of (3.2). We denote it by ϕn. Moreover,
‖ϕn‖C([0,1],Rk) ≤ R and sequence (ϕ′n)n∈N is bounded in C([0, 1], Rk). Basing on the Ascoli–
Arzelà theorem we can see that the sequence (ϕn)n∈N has a convergent subsequence in
C([0, 1], Rk). We shall prove that the limit function ϕ is solution of (1.1), (1.2). Furthermore,
since ϕnm is a solution of (3.2), we have

ϕ′nm
(t) = f (t, ϕnm(t))−

1
n

ϕnm(t)→ f (t, ϕ(t))

uniformly as m → ∞. Hence the limit function ϕ is differentiable and ϕ′(t) = f (t, ϕ(t)). Let
us observe that∫ 1

0
ϕ

j0
nm(s) dgj0

nm(s) = ϕ
j0
nm(0)(gj0

nm(0
+)− gj0

nm(0)) + lim
ε→0+

∫ 1

ε
ϕ

j0
nm(s) dgj0

nm(s)

= ϕj0 nm(0)
(

gj0(0+)− gj0(0)
)
+

1
nm

sgn(gj0(0+)− gj0(0)) · ϕj0
nm(0)

+ lim
ε→0+

∫ 1

ε
ϕ

j0
nm(s) dgj0

nm(s)

=
∫ 1

0
ϕ

j0
nm(s) dgj0(s) +

1
nm

sgn(gj0(0+)− gj0(0)) · ϕj0
nm(0).

Therefore
∫ 1

0 ϕnm(s) dgnm(s) →
∫ 1

0 ϕ(s) dg(s) as m → ∞. By the continuity of h : Rk → Rk we
obtain that h

( ∫ 1
0 ϕ(s) dg(s)

)
= 0. Consequently ϕ is a solution of (1.1), (1.2).
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Remark 3.4. Assume g(1−) 6= g(1) and limε→0+ var(g, [0, 1− ε]) ≤ minj≤k |gj(1)− gj(1−)|. By
similar arguments the BVP (1.1), (1.2) has at least one solution if there exists R̂ > 0 such that
the following conditions hold.

(i’) 〈 f (t, x), x〉 ≥ 0 for t ∈ [0, 1), |x|Rk = R̂.

(ii’) Let

r̂− := R̂
(

min
j≤k
|gj(1)− gj(1−)| − lim

ε→0+
var(g, [0, 1− ε])

)
,

r̂+ := R̂
(
|g(1)− g(1−)|Rk + lim

ε→0+
var(g, [0, 1− ε])

)
.

Then h(x) 6= 0 for r̂− < |x|Rk ≤ r̂+ and the Brouwer degree deg(h, BRk(0, r̂), 0) is defined
and does not vanish where r̂ ∈ (r̂−, r̂+].

4 Applications

Here we show the application of our results in the case of the second-order ordinary differen-
tial equation. We consider the following BVP

x′′ = f (t, x, x′),

h1

(∫ 1

0
x(s) dg1(s),

∫ 1

0
x′(s) dg2(s)

)
= 0,

h2

(∫ 1

0
x(s) dg1(s),

∫ 1

0
x′(s) dg2(s)

)
= 0,

(4.1)

where f : [0, 1] ×Rk ×Rk → Rk, h1 : Rk ×Rk → Rk, h2 : Rk ×Rk → Rk are continuous
functions and g1 = (g1, . . . , gk) : [0, 1] → Rk, g2 = (gk+1, . . . , g2k) : [0, 1] → Rk. It is obvious
that problem (4.1) is equivalent to BVP

x′ = f(t, x),

h
(∫ 1

0
x(s) dg(s)

)
= 0,

(4.2)

where x = (x, y), f(t, x) = (y, f (t, x, y)), h = (h1, h2), y = x′, g = (g1, . . . , gk, gk+1, . . . , g2k).
The problem (4.1) has at least one solution if there exists R > 0 such that

〈x + f (t, x, y), y〉 ≤ 0

for t ∈ (0, 1], |x|2
Rk + |y|2Rk = R2, h1(x, y) 6= 0, h2(x, y) 6= 0 for r2

− < |x|2
Rk + |y|2Rk ≤ r2

+

where r−, r+ are defined in Theorem 3.2, Brouwer degree deg
(
(h1, h2), BRk(0, r)× BRk(0, r), 0

)
is defined and does not vanish for some r ∈ (r−, r+] and a function g is an arbitrary function
satisfying the assumptions of Theorem 3.2.

We will now discuss some special cases. When h1 depends only on x and h2 − y, the
condition of the function h is as follows: degrees deg(h1, BRk(0, r), 0), deg(h2, BRk(0, r), 0) are
defined and do not vanish. This is due to the following property [4, p. 33]

deg((h1, h2), BRk(0, r)× BRk(0, r), 0) = deg(h1, BRk(0, r), 0) · deg(h2, BRk(0, r), 0).
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From now on we assume that h1(x, y) = x and h2(x, y) = y. Moving away from the full
generality, we assume that g1 = (g1, . . . , g1), g2 = (g, . . . , g), where

g1(s) =

{
1 for s = 0,

0 for s ∈ (0, 1],

and g : [0, 1] → R is an arbitrary function such that g = (g1, g2) satisfies the assumptions of
Theorem 3.2. Hence we obtain result for the problem [10]

x′′ = f (t, x, x′), x(0) = 0,
∫ 1

0
x′(s) dg(s) = 0,

which is at resonance, then g(1)− g(0) = 0.
We now give another special case of BVP that we have generalized. Namely, let us assume

that g1 = (g̃, . . . , g̃), g2 = g1 + g3, where

g̃(s) =

{
1 for s = 0,

0 for s ∈ (0, 1],

and g3 = g = (g1, . . . , gk) : [0, 1] → Rk is an arbitrary function such that g = (g1, g2) satisfies
the assumptions of Theorem 3.2. Hence we obtain result for the problem

x′′ = f (t, x, x′), x(0) = 0, x′(0) =
∫ 1

0
x′(s) dg(s). (4.3)

Similar problem was considered in [18], with the difference that in second condition of (4.3)
we have x′(1) =

∫ 1
0 x(s) dg(s).

According to the introduction if h1(x, y) = x, h2(x, y) = y and g1 = g2 = (g, . . . , g), where

g(s) =

{
−1 for s = 0, 1,

0 for s ∈ (0, 1),

we obtain the result for classical periodic BVP [12]: x(0) = x(1), x′(0) = x′(1). However, it
should be emphasized that our results do not embrace other classic BVPs such as the Dirich-
let’s problem and Neumann’s problem.
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