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Abstract

We establish two criteria for the existence of convex solutions to a bound-

ary value problem for weakly coupled systems arising from the Monge-Ampère

equations. We shall use fixed point theorems in a cone.
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1 Introduction

In this paper we consider the existence of convex solutions to the Dirichlet problem
for the weakly coupled system

(

(

u′
1(t)

)N
)′

= NtN−1f(−u2(t)) in 0 < t < 1,
(

(

u′
2(t)

)N
)′

= NtN−1g(−u1(t)) in 0 < t < 1,

u′
1(0) = u′

2(0) = 0, u1(1) = u2(1) = 0,

(1.1)

where N ≥ 1. A nontrivial convex solution of (1.1) is negative on [0,1). Such a problem
arises in the study of the existence of convex radial solutions to the Dirichlet problem
for the system of the Monge-Ampère equations







detD2u1 = f(−u2) in B,

detD2u2 = g(−u1) in B,

u1 = u2 = 0 on ∂B,

(1.2)

where B = {x ∈ R
N : |x| < 1} and detD2ui is the determinant of the Hessian matrix

( ∂2ui

∂xm∂xn
) of ui. For how to reduce (1.2) to (1.1), one may see Hu and the author [5].
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The Dirichlet problem for a single unknown variable Monge-Ampère equations
{

detD2u = f(−u) in B,

u = 0 on ∂B,
(1.3)

in general domains in R
n may be found in Caffarelli, Nirenberg and Spruck [1]. Kutev

[7] investigated the existence of strictly convex radial solutions of (1.3) when f(−u) =
(−u)p. Delano [3] treated the existence of convex radial solutions of (1.3) for a class of
more general functions, namely λ exp f(|x|, u, |∇u|).

The author [10] and Hu and the author [5] showed that the existence, multiplicity
and nonexistence of convex radial solutions of (1.3) can be determined by the asymp-

totic behaviors of the quotient f(u)
uN at zero and infinity.

In this paper we shall establish the existence of convex radial solutions of the weakly
coupled system (1.1) in superlinear and sublinear cases. First, introduce the notation

f0 = lim
x→0+

f(x)

xN
, f∞ = lim

x→∞

f(x)

xN
,

and

g0 = lim
x→0+

g(x)

xN
, g∞ = lim

x→∞

g(x)

xN
.

We shall show that if (1.1) is superlinear, or f0 = g0 = 0 and f∞ = g∞ = ∞, (1.1) is
sublinear, or f0 = g0 = ∞ and f∞ = g∞ = 0, then (1.1) has a convex solution.

Our main results are:

Theorem 1.1 Assume f, g : [0,∞) → [0,∞) are continuous.
(a). If f0 = g0 = 0 and f∞ = g∞ = ∞, then (1.1) has a convex solution.
(b). If f0 = g0 = ∞ and f∞ = g∞ = 0, then (1.1) has a convex solution.

2 Preliminaries

With a simple transformation vi = −ui, i = 1, 2 (1.1) can be brought to the following
equation















(

(

− v′
1(r)

)N
)′

= NrN−1f(v2), 0 < r < 1,
(

(

− v′
2(r)

)N
)′

= NrN−1g(v1), 0 < r < 1,

v′
i(0) = vi(1) = 0, i = 1, 2.

(2.4)

Now we treat positive concave classical solutions of (2.4).
The following well-known result of the fixed point index is crucial in our arguments.

Lemma 2.1 ([2, 4, 6]). Let E be a Banach space and K a cone in E. For r > 0,
define Kr = {u ∈ K : ‖x‖ < r}. Assume that T : K̄r → K is completely continuous
such that Tx 6= x for x ∈ ∂Kr = {u ∈ K : ‖x‖ = r}.
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(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then

i(T, Kr, K) = 0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then

i(T, Kr, K) = 1.

In order to apply Lemma 2.1 to (2.4), let X be the Banach space C[0, 1] × C[0, 1]
and, for (v1, v2) ∈ X,

‖(v1, v2)‖ = ‖v1‖ + ‖v2‖

where ‖vi‖ = supt∈[0,1]|vi(t)|. Define K to be a cone in X by

K = {(v1, v2) ∈ X : vi(t) ≥ 0, t ∈ [0, 1], min
1

4
≤t≤ 3

4

vi(t) ≥
1

4
‖vi‖, i = 1, 2}.

Also, define, for r a positive number, Ωr by

Ωr = {(v1, v2) ∈ K : ‖(v1, v2)‖ < r}.

Note that ∂Ωr = {(v1, v2) ∈ K : ‖(v1, v2)‖ = r}.
Let T : K → X be a map with components (T 1, T 2), which are defined by

T 1(v1, v2)(r) =

∫ 1

r

(

∫ s

0

NτN−1f(v2(τ))dτ
)

1

n

ds, r ∈ [0, 1],

T 2(v1, v2)(r) =

∫ 1

r

(

∫ s

0

NτN−1g(v1(τ))dτ
)

1

n

ds, r ∈ [0, 1].

(2.5)

It is straightforward to verify that (2.4) is equivalent to the fixed point equation

T(v1, v2) = (v1, v2) in K.

Thus, if (v1, v2) ∈ K is a positive fixed point of T, then (−v1,−v2) is a convex
solution of (1.1). Conversely, if (u1, u2) is a convex solution of (1.1), then (−u1,−u2)
is a fixed point of T in K.

The following lemma is a standard result due to the concavity of u. We prove it
here only for completeness.

Lemma 2.2 Let u ∈ C1[0, 1] with u(t) ≥ 0 for t ∈ [0, 1]. Assume that u′(t) is nonin-
creasing on [0, 1]. Then

u(t) ≥ min{t, 1 − t}||u||, t ∈ [0, 1],

where ||u|| = supt∈[0,1] u(t). In particular,

min
1

4
≤t≤ 3

4

u(t) ≥
1

4
||u||.
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Proof Since u′(t) is nonincreasing, we have for 0 ≤ t0 < t < t1 ≤ 1,

u(t) − u(t0) =

∫ t

t0

u′(s)ds ≥ (t − t0)u
′(t)

and

u(t1) − u(t) =

∫ t1

t

u′(s)ds ≤ (t1 − t)u′(t),

from which, we have

u(t) ≥
(t1 − t)u(t0) + (t − t0)u(t1)

t1 − t0
.

Considering the above inequality on [0, σ] and [σ, 1], we have

u(t) ≥ t||u|| for t ∈ [0, σ],

and
u(t) ≥ (1 − t)||u|| for t ∈ [σ, 1],

where σ ∈ [0, 1] such that u(σ) = ||u||. Hence,

u(t) ≥ min{t, 1 − t}||u||, t ∈ [0, 1].

�

Lemma 2.3 can be verified by the standard procedures.

Lemma 2.3 Assume f, g : [0,∞) → [0,∞) are continuous. Then T(K) ⊂ K and
T : K → K is a compact operator and continuous.

Let

Γ =
1

4

∫ 3

4

1

4

(

∫ s

1

4

NτN−1dτ
)

1

N

ds > 0.

Lemma 2.4 Let (v1, v2) ∈ K and η > 0. If

f(v2(t)) ≥ (ηv2(t))
N for t ∈ [

1

4
,
3

4
],

or

g(v1(t)) ≥ (ηv1(t))
N for t ∈ [

1

4
,
3

4
],

then
‖T(v1, v2)‖ ≥ Γη‖v2‖,

or
‖T(v1, v2)‖ ≥ Γη‖v1‖,

respectively.
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Proof Note, from the definition of T(v1, v2), that T i(v1, v2)(0) is the maximum value
of T i(v1, v2) on [0,1]. It follows that

‖T(v1, v2)‖ ≥ sup
t∈[0,1]

|T 1(v1, v2)(t)|

≥

∫ 3

4

1

4

(

∫ s

1

4

NτN−1f(v2(τ))dτ
)

1

N

ds

≥

∫ 3

4

1

4

(

∫ s

1

4

NτN−1(ηv2(τ))Ndτ
)

1

N

ds

≥

∫ 3

4

1

4

(

∫ s

1

4

NτN−1(
η

4
‖v2‖)

Ndτ
)

1

N

ds

= Γη‖v2‖.

Similarly,

‖T(v1, v2)‖ ≥ sup
t∈[0,1]

|T 2(v1, v2)(t)| ≥ Γη‖v1‖.

�

We define new functions f̂(t), ĝ(t) : [0,∞) → [0,∞) by

f̂(t) = max{f(v) : 0 ≤ v ≤ t}, ĝ(t) = max{g(v) : 0 ≤ v ≤ t}.

Note that f̂0 = limt→0
f̂(t)
tN

, f̂∞ = limt→∞
f̂(t)
tN

and ĝ0, ĝ∞ can be defined similarly.

Lemma 2.5 [9] Assume f, g : [0,∞) → [0,∞) are continuous. Then

f̂0 = f0, f̂∞ = f∞,

and

ĝ0 = g0, ĝ∞ = g∞.

Lemma 2.6 Assume f, g : [0,∞) → [0,∞) are continuous. Let r > 0. If there exists
an ε > 0 such that

f̂(r) ≤ (εr)N , ĝ(r) ≤ (εr)N ,

then

‖T(v1, v2)‖ ≤ 2ε‖(v1, v2)‖ for (v1, v2) ∈ ∂Ωr.
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Proof From the definition of T , for (v1, v2) ∈ ∂Ωr, we have

‖T(v1, v2)‖ =
2

∑

i=1

sup
t∈[0,1]

|T i(v1, v2)(t)|

≤ (

∫ 1

0

NτN−1f(v2(τ))dτ)
1

N + (

∫ 1

0

NτN−1g(v1(τ))dτ)
1

N

≤ (

∫ 1

0

NτN−1f̂(r)dτ)
1

N + (

∫ 1

0

NτN−1ĝ(r)dτ)
1

N

≤ (

∫ 1

0

NτN−1dτ)
1

N εr + (

∫ 1

0

NτN−1dτ)
1

N εr

≤ 2ε‖(u1, u2)‖.

�

3 Proof of Theorem 1.1

Proof Part (a). It follows from Lemma 2.5 that f̂0 = 0, ĝ0 = 0. Therefore, we
can choose r1 > 0 so that f̂ i(r1) ≤ (εr1)

N , ĝi(r1) ≤ (εr1)
N where the constant ε > 0

satisfies

ε <
1

2
.

We have by Lemma 2.6 that

‖T(v1, v2)‖ ≤ 2ε‖(v1, v2)‖ < ‖(v1, v2)‖ for (v1, v2) ∈ ∂Ωr1
.

Now, since f∞ = ∞, g∞ = ∞, there is an Ĥ > 0 such that

f(v) ≥ (ηv)N , g(v) ≥ (ηv)N

for v ≥ Ĥ , where η > 0 is chosen so that

1

2
Γη > 1.

Let r2 = max{2r1, 8Ĥ}. If (v1, v2) ∈ ∂Ωr2
, there exists one of i = 1 or i = 2 such that

supt∈[0,1] vi ≥
1
2
r2. Without loss of generality, assume that supt∈[0,1] v1 ≥

1
2
r2. Then

min
1

4
≤t≤ 3

4

v1(t) ≥
1

4
sup

t∈[0,1]

v1 ≥
1

8
r2 ≥ Ĥ,

which implies that

g(v1(t)) ≥ (ηv1(t))
N for t ∈ [

1

4
,
3

4
].
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It follows from Lemma 2.4 that

‖T(v1, v2)‖ ≥ Γη‖v1‖ >
1

2
Γηr2 ≥ r2 = ‖(v1, v2)‖.

By Lemma 2.1,
i(T, Ωr1

, K) = 1 and i(T, Ωr2
, K) = 0.

It follows from the additivity of the fixed point index that

i(T, Ωr2
\ Ω̄r1

, K) = −1.

Thus, i(T, Ωr2
\ Ω̄r1

, K) 6= 0, which implies T has a fixed point (v1, v2) ∈ Ωr2
\ Ω̄r1

by
the existence property of the fixed point index. The fixed point (−v1,−v2) ∈ Ωr2

\ Ω̄r1

is the desired positive solution of (1.1).
Part (b). since f0 = ∞, g0 = ∞, there is an H > 0 such that

f(v) ≥ (ηv)N , g(v) ≥ (ηv)N

for 0 < v ≤ H , where η > 0 is chosen so that

Γη > 1.

If (v1, v2) ∈ ∂Ωr1
, then

f(v2(t)) ≥ (ηv2)
N , g(v1(t)) ≥ (ηv1)

N for t ∈ [0, 1].

Lemma 2.4 implies that

‖T(v1, v2)‖ ≥ Γη‖(v1, v2)‖ > ‖(v1, v2)‖ for (v1, v2) ∈ ∂Ωr1
.

We now determine Ωr2
. It follows from Lemma 2.5 that f̂∞ = 0 and ĝ∞ = 0. Therefore

there is an r2 > 2r1 such that

f̂ i(r2) ≤ (εr2)
N , ĝi(r2) ≤ (εr2)

N ,

where the constant 1
2

> ε > 0. Thus, we have by Lemma 2.6 that

‖T(v1, v2)‖ ≤ 2ε‖(v1, v2)‖ < ‖(v1, v2)‖ for (v1, v2) ∈ ∂Ωr2
.

By Lemma 2.1,
i(T, Ωr1

, K) = 0 and i(T, Ωr2
, K) = 1.

It follows from the additivity of the fixed point index that i(T, Ωr2
\Ω̄r1

, K) = 1. Thus,
T has a fixed point (v1, v2) in Ωr2

\ Ω̄r1
. And (−v1,−v2) is the desired convex solution

of (1.1). �
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