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Abstract. In this paper, we investigate the existence of weak quasi-periodic solutions
for the second order Hamiltonian system with damped term:

ü(t) + q(t)u̇(t) + DW(u(t)) = 0, t ∈ R, (HSD)

where u : R→ Rn, q : R→ R is a quasi-periodic function, W : Rn → R is continuously
differentiable, DW denotes the gradient of W, W(x) = −K(x) + F(x) + H(x) for all
x ∈ Rn and W is concave and satisfies the Lipschitz condition. Under some reasonable
assumptions on q, K, F, H, we obtain that system has at least one weak quasi-periodic
solution. Motivated by Berger et al. (1995) and Blot (2009), we transform the problem
of seeking a weak quasi-periodic solution of system (HSD) into a problem of seeking
a weak solution of some partial differential system. We construct the variational func-
tional which corresponds to the partial differential system and then by using the least
action principle, we obtain the partial differential system has at least one weak solution.
Moreover, we present two propositions which are related to the working space and the
variational functional, respectively.

Keywords: weak quasi-periodic solution, second order Hamiltonian system, damped
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1 Introduction

Assume that ω = (ω1, . . . , ωm) is a list of linearly independent real numbers over the rationals.

Definition 1.1 ([20]). u : R→ Rn is said to be quasi-periodic with m basic frequencies if there exists
a function x → Φ(x) ∈ Rn which is Lipschitz continuous for x ∈ Rm and periodic of period 1 in
each of its arguments, and m real numbers ω1, . . . , ωm linearly independent over the rationals, such
that u(t) = Φ(ω1t, . . . , ωmt). Any such choice of ω1, . . . , ωm will be called a set of basic frequencies
for u(t).
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In this paper, we are concerned with the second order Hamiltonian system with damped
term:

ü(t) + q(t)u̇(t) + DW(u(t)) = 0, t ∈ R, (HSD)

where DW denotes the gradient of W, q : R→ R is a quasi-periodic function with module of
frequencies generated by ω = (ω1, . . . , ωm), and satisfies the following condition:

(Q) q(t) = ∑m
j=1 qj(t), where qj(t) is continuous on R and 1

ωj
-periodic, j = 1, . . . , m;

and W : Rn → R, W(x) = −K(x) + F(x) + H(x) for all x ∈ Rn and satisfies the following
condition:

(W) W ∈ C1(Rn, R), and there exists a positive constant L such that

|DW(x)− DW(y)| ≤ L|x− y|, for all x, y ∈ Rn.

? Next, we present the definition of weak ω-quasi-periodic solution for system (HSD).
For the purpose, we need to recall some function spaces which can be seen in [15], [16],

[6] and [7] for more details.
Define

AP0(Rn) = {u : R→ Rn | u is Bohr almost periodic}
endowed with the norm ‖u‖∞ = supt∈R |u(t)|. Then AP0(Rn) is a Banach space. Let
f ∈ L1

loc(R, Rn), that is f is locally Lebesgue-integrable from R to Rn. Then the mean
value of f is the limit (when it exists) limT→∞

1
2T

∫ T
−T f (t)dt. A fundamental property of

Bohr almost periodic function u is that such function has convergent mean, that is, the limit
limT→∞

1
2T

∫ T
−T u(t)dt exists. When u ∈ AP0(Rn), define

a(u, λ) := lim
T→∞

1
2T

∫ T

−T
e−iλtu(t)dt

which is a complex vector and is called Fourier–Bohr coefficient of u. Let

Λ(u) = {λ ∈ R | a(u, λ) 6= 0}

and Mod(u) the Z-module generated by Λ(u). Denote Z〈ω〉 by the Z-module generated by
ω in R.

Define
QP0

ω(R
n) := {u | u ∈ AP0(Rn) and Mod(u) ⊂ Z〈ω〉}.

B2
ω(R

n) is the completion of QP0
ω(R

n) with respect to the inner product

(u, v)B2 := lim
T→∞

1
2T

∫ T

−T
u(t)v(t)dt.

For u ∈ B2
ω(R

n), if limr→0
u(t+r)−u(t)

r exists, then define ∇u = limr→0
u(t+r)−u(t)

r and ∇2u =

∇(∇u). Define
B1,2

ω (Rn) := {u | u ∈ B2
ω(R

n) and ∇u ∈ B2
ω(R

n)}
endowed with the inner product

(u, v)B1,2 := (u, v)B2 + (∇u,∇v)B2 .

Then B1,2
ω (Rn) is a Hilbert space. Define

B2,2
ω (Rn) := {u | u ∈ B1,2

ω (Rn) and ∇2u ∈ B2
ω(R

n)}.
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Definition 1.2. If u ∈ B2,2
ω (Rn) and satisfies

∇2u(t) + q(t)∇u(t) + DW(u(t)) = 0, t ∈ R.

Then u is a weak ω-quasi-periodic solution of system (HSD).

Hamiltonian system is a very important model in physics and it has also extensively ap-
peared in other subjects such as life science, social science, bioengineering, space science and
so on. Hence, the theory of Hamiltonian system has been focused on for a long time by math-
ematicians and physicists. Especially, over the past 40 years, the existence and multiplicity
of various solutions have attracted lots of mathematicians. Since Hamiltonian system pos-
sesses the variational structure, variational method becomes a very effective tool to deal with
those problems on the existence and multiplicity of solutions for Hamiltonian systems. There
have been many contributions on periodic solutions, subharmonic solutions and homoclinic
solutions (for example, see [10, 14, 17, 21–25, 30] and reference therein). For the investigation
about almost periodic solutions of Hamiltonian system, there are less works. Joël Blot and
co-authors made some important contributions and had a list of papers (see [1–7]). We refer
the reader to [8, 9, 11–13, 18, 28, 29] for some other known results. Next we only recall two
works which have a direct relationship with our problem investigated in this paper.

In 1995, via a PDE approach and the least action principle, Berger and Zhang [11] inves-
tigated the existence of quasi-periodic solutions of fixed frequencies for the nondissipative
second order Duffing equation:

ü(t) + au(t)− bu3(t) = f (t),

where u : R→ R, a > 0, b > 0 and f : R→ R is a quasi-periodic function with frequencies ω.
For system case, in 2009, Blot [7] investigated the existence of ω-quasi-periodic solution

for the second order Hamiltonian system without the damped term:

ü(t) + DW(u(t)) = e(t), t ∈ R, (HS)

via a PDE viewpoint which is partially similar to [11], where u : R→ Rn, W ∈ C2(Rn) and is
concave, and

‖D2W‖∞ := sup
z∈Rn
|D2W(z)| < min

{
1

C∗
,

1
C2
∗

}
, (1.1)

C∗ is defined by (2.3) below and e ∈ B1,2
ω (Rn) which satisfies ∑ν∈Zm |a(e, ν ·ω)|2(1+ |ν|2) < ∞.

In order to obtain the ω-quasi-periodic solution of system (HS), the author first investigated
the existence of weak ω-quasi-periodic solution for system (HS) via a PDE approach. To
be precise, the author transformed the problem into seeking a weak solution of the partial
differential system: 

m
∑

j=1

m
∑

i=1
ωiωj

∂2U
∂xi∂xj

+ DW(U(x)) = E(x), on Ω

U = 0, on ∂Ω
(1.2)

where Ω := (−π, π)m ⊂ Rm, U : Rm → Rn, E : Rm → Rn and E(tω) = e(t). Furthermore,
in order to obtain weak solution of system (1.2), the author first investigated the existence of
weak solution for the partial differential system:

m
∑

j=1

m
∑

i=1
ωiωj

∂2U
∂xi∂xj

+
1
k

m
∑

j=1

∂2U
∂x2

j
+ DW(U(x)) = E(x), on Ω

U = 0, on ∂Ω
(1.3)
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Then by careful analysis, as k → +∞, the sequence {Uk} which consists of weak solutions of
system (1.3) converges to a weak solution of system (1.2).

Following ideas in [11] and [7], in this paper, when W satisfies some reasonable growth
conditions, we investigate the existence of weak ω-quasi-periodic solutions for system (HSD)
via a similar PDE approach.

? Next, we transform the problem of seeking a weak ω-quasi-periodic solution of (HSD)
into a problem of seeking a weak solution of partial differential system (PDS*) below.

By (Q), define q̂ : Rm → R by q̂(x) = ∑m
j=1 q̂j(xj), where q̂j : R → R defined by q̂j(xj) :=

qj(
xj

2πωj
) which satisfies

q̂j(2πωjt) = qj

(
2πωjt
2πωj

)
= qj(t).

It is easy to verify that q̂j is 2π-periodic.
Let Qj(t) =

∫ t
0 qj(t)dt. Then Qj ∈ C1(R, R) and is 1

ωj
-periodic. Define Q̂ : Rm → R by

Q̂(x) = ∑m
j=1 Q̂j(xj), where Q̂j : R → R defined by Q̂j(xj) := Qj(

xj
2πωj

) which is continuously
differentiable and satisfies

Q̂j(2πωjt) = Qj

(
2πωjt
2πωj

)
= Qj(t).

Then we have

∂Q̂(x)
∂xj

=
dQ̂j(xj)

dxj
=

dQj(
xj

2πωj
)

dxj
= qj

(
xj

2πωj

)
1

2πωj
=

1
2πωj

q̂j(xj)

and

Q̂(2πωt) =
m

∑
j=1

Q̂j(2πωjt) =
m

∑
j=1

Qj(t),

which implies that

qj(t) =
dQj(t)

dt
=

dQ̂j(2πωjt)
dt

=
dQ̂j(xj)

dxj
·

dxj

dt
=

1
2πωj

q̂j(xj) · 2πωj = q̂j(xj)

if xj = 2πωjt, j = 1, . . . , m.
Consider the second order elliptic partial differential system:

m

∑
j=1

m

∑
i=1

(2π)2ωiωj
∂2U

∂xi∂xj
+ q̂(x)

m

∑
i=1

2πωi
∂U
∂xi
−DK(U(x))+DF(U(x))+DH(U(x)) = 0, (PDS)

where U : Rm → Rn. Let U(s) := U(2πs), s ∈ Rm. Then it is easy to verify that U is 1-periodic
in each of its arguments if U is 2π-periodic in each of its arguments. Hence, if U is a weak 2π-
periodic solution of system (PDS), then u(t) = U(2πωt) = U(tω) is a weak ω-quasi-periodic
solution of system (HSD). Furthermore, in order to obtain a 2π-periodic solution of system
(PDS), following the idea of Blot [7], we seek a weak solution U of the Dirichlet boundary
value problem 

m
∑

j=1

m
∑

i=1
(2π)2ωiωj

∂2U
∂xi∂xj

+ q̂(x)
m
∑

i=1
2πωi

∂U
∂xi

−DK(U(x)) + DF(U(x)) + DH(U(x)) = 0, on Ω

U = 0, on ∂Ω

(PDS*)
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where Ω := (−π, π)m ⊂ Rm, and the solution can be extendable into a 2π-periodic solution
U of system (PDS) on Rm.

We organize our paper as follows. In Section 2, we introduce the working spaces. In Sec-
tion 3, we present the variational functional which corresponds to system (PDS*) and then by
using the least action principle, give two existence theorems. Finally, we present two proposi-
tions which are related to the working space and the variational functional, respectively.

2 Working spaces

In this section, we present the working spaces which were established in [6] and [7].
Let Tm := Rm/2πZm be the m-dimensional torus and Ω̄ := [−π, π]m ⊂ Rm. Define

L2(Tm) := {U : Rm → R | U(x + 2πν) = U(x) for all x ∈ Rm and for all ν ∈ Zm,

and |U|2 is locally Lebesgue-integrable on Rm}
and

L2 := L2(Tm)n :=

n︷ ︸︸ ︷
L2(Tm)× · · · × L2(Tm)

with the inner product

(U, V)L2 =
∫

Tm
U ·Vdx, for all U, V ∈ L2,

and
‖U‖L2 =

∫
Tm
|U|2dx, for all U ∈ L2,

where U = (U1, . . . , Un), V = (V1, . . . , Vn), U ·V = ∑n
j=1 U jV j and∫

Tm
U(x)dx =

1
(2π)m

∫
Ω̄

U(x)dx, for all U ∈ L2. (2.1)

Define

H1 :=
{

U = (U1, . . . , Un)
∣∣∣ U ∈ L2 and

∂U j

∂xk
∈ L2(Tm) for all j = 1, . . . , n, k = 1, . . . , m

}
and

H2 :=
{

U = (U1, . . . , Un)
∣∣∣ U ∈ H1 and

∂2U j

∂xl∂xk
∈ L2(Tm) for all j = 1, . . . , n, l, k = 1, . . . , m

}
.

For U ∈ H1, define

‖U‖2
H1 := ‖U‖2

L2 +
m

∑
k=1

∥∥∥∥ ∂U
∂xk

∥∥∥∥2

L2
.

For U ∈ L2, define

DωU := lim
s→0

U(x + sω)−U(x)
s

.

Then

DωU =
m

∑
j=1

ωj
∂U
∂xj

. (2.2)
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By (2.2), it is easy to obtain that

D2
ωU := Dω(DωU) =

m

∑
j=1

m

∑
i=1

ωjωi
∂2U

∂xi∂xj

if it exists. Let
H1

ω :=
{

U | U ∈ L2 and DωU ∈ L2}
with the inner product

(U, V)H1
ω
= (U, V)L2 + (DωU, DωV)L2 .

Then H1
ω is a Hilbert space and

‖U‖H1
ω
= ‖U‖L2 + ‖DωU‖L2 .

Let
H2

ω :=
{

U | U ∈ H1
ω and D2

ωU ∈ L2
}

with the inner product

(U, V)H2
ω
= (U, V)L2 + (DωU, DωV)L2 + (D2

ωU, D2
ωV)L2 .

H2
ω is also a Hilbert space.

Let

Ω := (−π, π)m =

m︷ ︸︸ ︷
(−π, π)× · · · × (−π, π) ⊂ Rm.

Define

L2(Ω) :=
{

U : Ω→ R

∣∣∣ ∫
Ω
|U(x)|2dx < +∞

}
and

L2(Ω) := L2(Ω)n :=

n︷ ︸︸ ︷
L2(Ω)× · · · × L2(Ω)

with the inner product

(U, V)L2(Ω) =
∫

Ω
U ·Vdx, for all U, V ∈ L2(Ω)

and the norm
‖U‖L2(Ω) =

∫
Ω
|U|2dx, for all U ∈ L2(Ω).

Obviously, L2(Ω) = L2.
Define

C0(Ω) := C0
0(Ω)n

= {U : Ω→ Rn | U is continuous and has a compact support included in Ω}

and for integer 1 ≤ k < +∞, define

Ck(Ω) := Ck(Ω)n =
{

U : Ω→ Rn | U is of class Ck on Ω
}

.
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Let Ck
0(Ω) = C0(Ω) ∩ Ck(Ω) and then define H1

0(Ω) = C1
0(Ω) which is the closure of C1

0(Ω)

with the inner product

(U, V)H1
0
= (U, V)L2(Ω) +

m

∑
j=1

(
∂U
∂xj

,
∂V
∂xj

)
L2(Ω)

.

Then (H1
0(Ω), (·, ·)H1

0
) is a Hilbert space. Following Blot [7], one can extend a function U ∈

H1
0(Ω) to a function Ũ ∈ H1 and by a trace theorem, one can give sense to U = 0 on ∂Ω if

U ∈ H1
0(Ω) so that H1

0(Ω) ⊂ H1 and for U ∈ H1
0(Ω), the following inequality holds: there

exists C∗ > 0 such that

‖U‖L2(Ω) ≤ C∗‖DωU‖L2(Ω), for all U ∈ H1
0(Ω). (2.3)

Let CLωH1
0(Ω) be the closure of H1

0(Ω) in H1
ω with the norm ‖ · ‖H1

ω
. Then, obviously,

(CLωH1
0(Ω), (·, ·)H1

ω
) is also a Hilbert space. We refer the reader for more details about the

above working spaces to [6] and [7].

3 Main results

In [26], Wu and Chen directly construct a variational functional which corresponds to the
second order Hamiltonian system like (HSD) in order to investigate the existence of periodic
solutions. Motivated by [26], we define a functional J : CLωH1

0(Ω)→ R by

J (U) =
∫

Ω
eQ̂(x)

1
2

(
m

∑
i=1

2πωi
∂U
∂xi

)2

−W(U(x))

 dx

=
∫

Ω
eQ̂(x)

1
2

(
m

∑
i=1

2πωi
∂U
∂xi

)2

+ K(U(x))− F(U(x))− H(U(x))

 dx.

When (Q) and (W) hold, a standard argument can be made easily so that J is of class C1 and

〈J ′(U), V〉 =
∫

Ω
eQ̂(x)

[(
m

∑
i=1

2πωi
∂U
∂xi

,
m

∑
j=1

2πωj
∂V
∂xj

)
− (DW(U(x)), V(x))

]
dx

=
∫

Ω
eQ̂(x)

[(
m

∑
i=1

2πωi
∂U
∂xi

,
m

∑
j=1

2πωj
∂V
∂xj

)
+ (DK(U(x)), V(x))

− (DF(U(x)), V(x))− (DH(U(x)), V(x))

]
dx (3.1)

for all V ∈ CLωH1
0(Ω).

Remark 3.1. When n = 1, in [19] and [27], there have been more general functionals which
correspond to more general partial differential equations. In some sense, when n = 1, the
functional J (U) can be seen as a special case of those in [19] and [27] if we choose ai,j(x, u) ≡
eQ̂(x), i, j = 1, . . . , m, where the details of ai,j(x, u) can be seen in [19] and [27].

Lemma 3.2. Assume that J ′(U∗) = 0 for some U∗ ∈ CLωH1
0(Ω). Then u∗(t) := U∗(2πωt) is a

weak ω-quasi-periodic solution of system (HSD).
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Proof. For any given V ∈ CLωH1
0(Ω), there exists a sequence {Vk} ⊂ H1

0(Ω) such that

‖Vk −V‖H1
ω
→ 0

which implies that

‖DωVk − DωV‖L2 → 0 and ‖Vk −V‖L2 → 0, as k→ ∞ (3.2)

and so Vk(x)→ V(x) for a.e. x ∈ Ω. Let

M(Vk) :=
∫

Ω
eQ̂(x)

(
m

∑
i=1

2πωi
∂U∗

∂xi
,

m

∑
j=1

2πωj
∂V
∂xj
−

m

∑
j=1

2πωj
∂Vk

∂xj

)
dx.

Then it follows from Hölder’s inequality and (3.2) that M(Vk)→ 0 as k→ ∞,

∫
Ω

eQ̂(x)

(
m

∑
j=1

m

∑
i=1

(2π)2ωjωi
∂2U∗

∂xi∂xj
, Vk(x)

)
dx

→
∫

Ω
eQ̂(x)

(
m

∑
j=1

m

∑
i=1

(2π)2ωjωi
∂2U∗

∂xi∂xj
, V(x)

)
dx

(3.3)

and ∫
Ω

eQ̂(x)

(
m

∑
j=1

q̂j(xj)
m

∑
i=1

2πωi
∂U∗

∂xi
, Vk(x)

)
dx

→
∫

Ω
eQ̂(x)

(
m

∑
j=1

q̂j(xj)
m

∑
i=1

2πωi
∂U∗

∂xi
, V(x)

)
dx.

(3.4)

By integration by parts and noting that Vk = 0 on ∂Ω, we have

∫
Ω

eQ̂(x)

(
m

∑
i=1

2πωi
∂U∗

∂xi
,

m

∑
j=1

2πωj
∂V
∂xj

)
dx

=
∫

Ω
eQ̂(x)

(
m

∑
i=1

2πωi
∂U∗

∂xi
,

m

∑
j=1

2πωj
∂V
∂xj
−

m

∑
j=1

2πωj
∂Vk

∂xj
+

m

∑
j=1

2πωj
∂Vk

∂xj

)
dx

=
∫

Ω
eQ̂(x)

(
m

∑
i=1

2πωi
∂U∗

∂xi
,

m

∑
j=1

2πωj
∂Vk

∂xj

)
dx + M(Vk)

= −
∫

Ω

(
m

∑
j=1

2πωj

m

∑
i=1

(
2πωieQ̂(x) ∂U∗

∂xi

)′
xj

, Vk(x)

)
dx + M(Vk)

= −
∫

Ω

(
m

∑
j=1

2πωj

(
m

∑
i=1

2πωieQ̂(x) ∂2U∗

∂xi∂xj

)
, Vk(x)

)
dx

−
∫

Ω

(
m

∑
j=1

2πωj

(
m

∑
i=1

2πωieQ̂(x) ∂Q̂(x)
∂xj

∂U∗

∂xi

)
, Vk(x)

)
dx + M(Vk)

= −
∫

Ω

(
m

∑
j=1

2πωj

(
m

∑
i=1

2πωieQ̂(x) ∂2U∗

∂xi∂xj

)
, Vk(x)

)
dx
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−
∫

Ω

(
m

∑
j=1

2πωj

(
m

∑
i=1

2πωieQ̂(x) 1
2πωj

q̂j(xj)
∂U∗

∂xi

)
, Vk(x)

)
dx + M(Vk)

= −
∫

Ω
eQ̂(x)

(
m

∑
j=1

m

∑
i=1

(2π)2ωjωi
∂2U∗

∂xi∂xj
, Vk(x)

)
dx

−
∫

Ω
eQ̂(x)

(
m

∑
j=1

q̂j(xj)
m

∑
i=1

2πωi
∂U∗

∂xi
, Vk(x)

)
dx + M(Vk). (3.5)

Let k→ ∞. (3.3), (3.4) and (3.5) imply that

∫
Ω

eQ̂(x)

(
m

∑
i=1

2πωi
∂U∗

∂xi
,

m

∑
j=1

2πωj
∂V
∂xj

)
dx

= −
∫

Ω
eQ̂(x)

(
m

∑
j=1

m

∑
i=1

(2π)2ωjωi
∂2U∗

∂xi∂xj
, V(x)

)
dx

−
∫

Ω
eQ̂(x)

(
m

∑
j=1

q̂j(xj)
m

∑
i=1

2πωi
∂U∗

∂xi
, V(x)

)
dx

for all V ∈ CLωH1
0(Ω). If J ′(U∗) = 0, then (3.1) and the above equality imply that

0 =−
∫

Ω
eQ̂(x)

(
m

∑
j=1

m

∑
i=1

(2π)2ωjωi
∂2U∗

∂xi∂xj
, V(x)

)
dx

−
∫

Ω
eQ̂(x)

(
m

∑
j=1

q̂j(xj)
m

∑
i=1

2πωi
∂U∗

∂xi
, V(x)

)
dx

+
∫

Ω
eQ̂(x) [(DK(U∗(x)), V(x))− (DF(U∗(x)), V(x))− (DH(U∗(x)), V(x))] dx

(3.6)

for all V ∈ CLωH1
0(Ω). Following the idea of Blot [7], (3.6) implies that

−
m

∑
j=1

m

∑
i=1

(2π)2ωjωi
∂2U∗

∂xi∂xj
−

m

∑
j=1

q̂j(xj)
m

∑
i=1

2πωi
∂U∗

∂xi

+ DK(U∗(x))− DF(U∗(x))− DH(U∗(x)) = 0 (3.7)

in D′(Ω)n, where D′(Ω) denotes the space of the distributions in the sense of Schwartz on
Ω and D′(Ω)n is the n-times product of D′(Ω). Note that DK(U∗), DF(U∗), DH(U∗), and
∑m

i=1 ωi
∂U∗
∂xi

(= DωU∗) belong to L2(Ω)(= L2) and q̂j ∈ L2(Ω), j = 1, . . . , m. Hence, D2
ωU∗ :=

∑m
j=1 ∑m

i=1 ωjωi
∂2U∗
∂xi∂xj

∈ L2(Ω)(= L2). Hence, (3.7) holds in L2, which shows that U∗ is a weak

2π-periodic solution of system (PDS) and U∗ ∈ H2
ω. Then u∗(t) := U∗(2πωt) ∈ B2,2

ω (Rn) and
u∗(t) is a weak ω-quasi-periodic solution of system (HSD).

Lemma 3.3 (see [21]). If ϕ is weakly lower semi-continuous on a reflexive Banach space X and has a
bounded minimizing sequence, then ϕ has minimum on X.

Theorem 3.4. Suppose that W is concave, (Q), (W), and the following conditions hold:

(K) there exists a positive constant b such that

K(x) ≥ b|x|2, ∀x ∈ Rn;
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(F ) there exist positive constants d1, d2 and α ∈ [0, 2) such that

F(x) ≤ d1|x|α + d2, ∀x ∈ Rn;

(H) there exists a positive constant l < 2π2

C∗ + b such that

|DH(x)− DH(y)| ≤ l|x− y|, for all x, y ∈ Rn.

Then system (HSD) has at least one weak ω-quasi-periodic solution u∗ ∈ B2,2
ω (Rn).

Proof. By (H), there exists θ ∈ (0, 1) such that

|H(x)| − |H(0)| ≤ |H(x)− H(0)|
≤ |DH(θx)||x|
≤ (|DH(0)|+ l|θx|)|x|
≤ |DH(0)||x|+ l|x|2 (3.8)

for all x ∈ Rm. Then it follows from (K), (F ), (3.8) and Hölder’s inequality that

J (U) =
∫

Ω
eQ̂(x)

1
2

(
m

∑
i=1

2πωi
∂U
∂xi

)2

+ K(U(x))− F(U(x))− H(U(x))

 dx

≥
∫

Ω
eQ̂(x)

1
2

(
m

∑
i=1

2πωi
∂U
∂xi

)2

+ b|U(x)|2 − d1|U(x)|α − d2

− |H(0)| − |DH(0)||U(x)| − l|U(x)|2
dx

≥ eM∗
[
min{2π2, b− l}‖U‖2

H1
ω
− d1(mesΩ)

2−α
2 ‖U‖α

L2

−(d2 + |H(0)|)mes Ω− |DH(0)|
√

mes Ω‖U‖L2

]
≥ eM∗

[
min{2π2, b− l}‖U‖2

H1
ω
− d1(mesΩ)

2−α
2 ‖U‖α

H1
ω

−(d2 + |H(0)|)mes Ω− |DH(0)|
√

mes Ω‖U‖H1
ω

]
(3.9)

for all U ∈ CLωH1
0(Ω), where M∗ = minx∈Ω̄ Q̂(x). Note that α ∈ [0, 2). The above inequality

implies that J (U) is coercive, that is,

J (U)→ +∞ as ‖U‖H1
ω
→ +∞. (3.10)

If {Uk} is a minimizing sequence in CLωH1
0(Ω), that is,

J (Uk)→ inf
x∈CLωH1

0(Ω)
J (U), as k→ ∞,

then there exists a positive constant C such that |J (Uk)| ≤ C, which, together with (3.10),
implies that {Uk} is bounded in CLωH1

0(Ω). Since W is concave, J is convex. Moreover, note
that J is of class C1. Hence, J is lower semi-continuous on CLωH1

0(Ω). By Theorem 1.2
in [21], J is weakly lower semi-continuous on CLωH1

0(Ω). Then Lemma 3.3 implies that J
has a critical point U∗ in CLωH1

0(Ω). Finally, by Lemma 3.2, we complete the proof.
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Example 3.5. Let K(x) = b1|x|2 with b1 ≥ b, F(x) = d(1 + |x|)3/2 with d > 0 and H(x) =

c ln(1+ |x|2) with c > 0 and −b1 + c + 3
8 d < 0. It is easy to verify that K, F and H satisfy those

assumptions in Theorem 3.1.

When α = 2, by (3.9), it is easy to obtain the following theorem.

Theorem 3.6. Suppose that W is concave, (Q), (W), (K), (H) and the following condition holds:
(F )′ there exist constants 0 < d1 < min{2π2, b− l}, and d2 > 0 such that

F(x) ≤ d1|x|2 + d2, ∀x ∈ Rn.

Then system (HSD) has at least one weak ω-quasi-periodic solution u∗ ∈ B2,2
ω (Rn).

Next, we present two propositions which are related to the working space and the varia-
tional functional, respectively.

Proposition 3.7. For U ∈ CLωH1
0(Ω), (2.3) also holds.

Proof. Since CLωH1
0(Ω) is the closure of H1

0(Ω) in H1
ω, for U ∈ CLωH1

0(Ω), there exists a
sequence {Uk} ⊂ H1

0(Ω) such that ‖U−Uk‖H1
ω
→ 0 which implies that ‖DωU−DωUk‖L2 → 0

and then by (2.1), ‖DωU − DωUk‖L2(Ω) → 0. Note that Uk ∈ H1
0(Ω). Hence, (2.3) implies that

C∗‖DωU‖L2(Ω) = C∗‖DωU − DωUk + DωUk‖L2(Ω)

≥ C∗‖DωUk‖L2(Ω) − C∗‖DωU − DωUk‖L2(Ω)

≥ ‖Uk‖L2(Ω) − C∗‖DωU − DωUk‖L2(Ω).

Let k→ ∞. We have
C∗‖DωU‖L2(Ω) ≥ ‖U‖L2(Ω).

Proposition 3.8. Assume that J ′(U∗) = 0 for some U∗ ∈ H1
0(Ω). Then U∗ is a critical point of J

in CLωH1
0(Ω), that is, 〈J ′(U∗), V〉 = 0, for all V ∈ CLωH1

0(Ω).

Proof. For an arbitrary V ∈ CLωH1
0(Ω), there exists a sequence {Vk} ⊂ H1

0(Ω) such that
‖Vk −V‖H1

ω
→ 0. Then by Hölder’s inequality and (2.1), we have

|〈J ′(U∗), V −Vk〉|

=

∣∣∣∣∣
∫

Ω
eQ̂(x)

[(
m

∑
i=1

2πωi
∂U∗

∂xi
,

m

∑
j=1

2πωj

(
∂V
∂xj
− ∂Vk

∂xj

))
− (DW(U∗(x)), V(x)−Vk(x))

]
dx

∣∣∣∣∣
≤ eM∗


∫

Ω

∣∣∣∣∣ m

∑
i=1

2πωi
∂U∗

∂xi

∣∣∣∣∣
2

dx

1/2∫
Ω

∣∣∣∣∣ m

∑
j=1

2πωj

(
∂(V −Vk)

∂xj

)∣∣∣∣∣
2

dx

1/2

+

(∫
Ω
|DW(U∗)|2dx

)1/2 (∫
Ω
|V −Vk|2

)1/2

dx


= eM∗

[
4π2‖DωU∗‖L2(Ω)‖DωV − DωVk‖L2(Ω) + ‖DW(U∗)‖L2(Ω)‖V −Vk‖L2(Ω)

]
= eM∗

[
(2π)(2m+2)‖DωU∗‖L2‖DωV − DωVk‖L2 + (2π)(2m)‖DW(U∗)‖L2‖V −Vk‖L2

]
≤ eM∗

[
(2π)(2m+2)‖DωU∗‖L2 + (2π)(2m)‖DW(U∗)‖L2

]
‖V −Vk‖H1

ω
→ 0 as k→ ∞, (3.11)
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where M∗ = maxx∈Ω̄ eQ̂(x). Note that 〈J ′(U∗), V〉 = 0 for all V ∈ H1
0(Ω). Hence, by (3.11),

we have

|〈J ′(U∗), V〉| ≤ |〈J ′(U∗), V −Vk〉|+ |〈J ′(U∗), Vk〉| = |〈J ′(U∗), V −Vk〉| → 0 as k→ ∞.

Remark 3.9. Proposition 3.7 and Proposition 3.8 are maybe useful for one to seek the critical
points of the functional J by using those abstract critical point theorems with Palais–Smale
condition. We try to do such things by using Ekeland variational principle so that the restric-
tion on concavity of W can be deleted. However, we come across a difficulty whether the
embedding CLωH1

0(Ω) ↪→ L2(Ω) is compact. Note that the embedding H1
0(Ω) ↪→ L2(Ω) is

compact. So maybe one can reduce our problem from CLωH1
0(Ω) toH1

0(Ω) by Proposition 3.8.
However, a new difficulty whether (PS) sequence of J is bounded in H1

0(Ω) appears. This is
a problem that is worthy of consideration.

Acknowledgements

The authors would like to thank the referee very much for his/her valuable suggestions.
Moreover, this work is supported by the National Natural Science Foundation of China
(No: 11301235) and Tianyuan Fund for Mathematics of the National Natural Science Foun-
dation of China (No: 11226135).

References

[1] J. Blot, Calculus of variations in mean and convex Lagrangians, J. Math. Anal. Appl.
134(1988), 312–321. MR961340; url

[2] J. Blot, Calculus of variations in mean and convex Lagrangians, II, Bull. Austral. Math.
Soc. 40(1989), 457–463. MR1037643; url

[3] J. Blot, Calculus of variations in mean and convex Lagrangians, III, Israel J. Math.,
67(1989), 337–344. MR1029907; url

[4] J. Blot, Une approche variationnelle des orbites quasi-périodiques des systèmes hamil-
toniens (in French) [A variational approach to the quasiperiodic orbits of Hamiltonian
systems], Ann. Sci. Math. Québec, 13(1989), No. 2, 7–32. MR1038364

[5] J. Blot, Almost-periodic solutions of forced second order Hamiltonian systems, Ann. Fac.
Sci. Toulouse Math. (5) 12(1991), 351–363. MR1189445

[6] J. Blot, D. Pennequin, Spaces of quasi-periodic functions and oscillations in differential
equations, Acta Appl. Math. 65(2001), 83–113. MR1843787; url

[7] J. Blot, Quasi-periodic oscillations in second-order systems via semilinear elliptic equa-
tions, in: Proceedings of the 6th International Conference on Differential Equations and Dynam-
ical Systems, DCDIS A Supplement, Watam Press, 2009, pp. 135–140.

[8] M. S. Berger, Y. Y. Chen, Forced quasiperiodic and almost periodic oscillations of non-
linear Duffing equations, Nonlinear Anal. 19(1992), 249–257. MR1176061; url

http://www.ams.org/mathscinet-getitem?mr=961340
https://doi.org/10.1016/0022-247X(88)90025-X
http://www.ams.org/mathscinet-getitem?mr=1037643
https://doi.org/10.1017/S0004972700017524
http://www.ams.org/mathscinet-getitem?mr=1029907
https://doi.org/10.1007/BF02764951
http://www.ams.org/mathscinet-getitem?mr=1038364
http://www.ams.org/mathscinet-getitem?mr=1189445
http://www.ams.org/mathscinet-getitem?mr=1843787
https://doi.org/10.1023/A:1010631520978
http://www.ams.org/mathscinet-getitem?mr=1176061
https://doi.org/10.1016/0362-546X(92)90143-3


Weak quasi-periodic solutions for a Hamiltonian system via a PDE approach 13

[9] M. S. Berger, Y. Y. Chen, Forced quasiperiodic and almost periodic solution for nonlinear
systems, Nonlinear Anal. 21(1993), 949–965. MR1249212; url

[10] G. Bonanno, R. Livrea, Existence and multiplicity of periodic solutions for second order
Hamiltonian systems depending on a parameter, J. Convex Anal. 20(2013), 1075–1094.
MR3184297

[11] M. S. Berger, L. Zhang, New method for large quasiperiodic nonlinear oscillations with
fixed frequencies for the nondissipative second type duffing equation, Topol. Method Non-
linear Anal. 6(1995), 283-293. MR1399541

[12] C. Carminati, Forced systems with almost periodic and quasiperiodic forcing term, Non-
linear Anal. 32(1998), 727–739. MR1612110; url

[13] P. Cieutat, Bounded and almost periodic solutions of convex Lagrangian systems, J. Dif-
ferential Equations 190(2003), 108–130. MR1970958; url

[14] Y. Ding, Variational methods for strongly indefinite problems, Singapore, Interdisciplinary
Mathematical Sciences, Vol. 7, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2007. MR2389415; url

[15] A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377,
Springer, Berlin, Germany, 1974. MR0460799

[16] C. Y. He, Almost periodic differential equations, Higher Education Publishing House, Beijing,
China, 1992.

[17] M. Izydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamil-
tonian systems, J. Differential Equations, 219(2005), 375–389. MR2183265; url

[18] J. Kuang, Variational approach to quasi-periodic solution of nonautonomous second-
order Hamiltonian systems, Abstr. Appl. Anal. 2012, Art. ID 271616, 14 pp. MR2889075;
url

[19] X. Q. Liu, J. Q. Liu, Z. Q. Wang, Quasilinear elliptic equations via perturbation method,
Proc. Amer. Math. Soc. 141(2013), 253–263. MR2988727; url

[20] M. Y. Li , J. S. Muldowney, Poincaré’s stability condition for quasi-periodic orbits, Canad.
Appl. Math. Quart. 6(1998), 367–381. MR1668038

[21] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Applied Mathemat-
ical Sciences, Vol. 74, Springer-Verlag, New York, 1989. MR982267; url

[22] P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math.
31(1978), 157–184. MR0467823

[23] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential
equations, CBMS Regional Conference Series in Mathematics, Vol. 65, American Mathe-
matical Society, Providence, RI, 1986. MR845785; url

[24] M. Schechter, Minimax systems and critical point theory, Birkhäuser, Boston, 2009.
MR2512303; url

http://www.ams.org/mathscinet-getitem?mr=1249212
https://doi.org/10.1016/0362-546X(93)90118-C
http://www.ams.org/mathscinet-getitem?mr=3184297
http://www.ams.org/mathscinet-getitem?mr=1399541
http://www.ams.org/mathscinet-getitem?mr=1612110
https://doi.org/10.1016/S0362-546X(97)00513-0
http://www.ams.org/mathscinet-getitem?mr=1970958
https://doi.org/10.1016/S0022-0396(03)00018-4
http://www.ams.org/mathscinet-getitem?mr=2389415
https://doi.org/10.1142/9789812709639
http://www.ams.org/mathscinet-getitem?mr=0460799
http://www.ams.org/mathscinet-getitem?mr=2183265
https://doi.org/10.1016/j.jde.2005.06.029
http://www.ams.org/mathscinet-getitem?mr=2889075
https://doi.org/10.1155/2012/271616
http://www.ams.org/mathscinet-getitem?mr=2988727
https://doi.org/10.1090/S0002-9939-2012-11293-6
http://www.ams.org/mathscinet-getitem?mr=1668038
http://www.ams.org/mathscinet-getitem?mr=982267
https://doi.org/10.1007/978-1-4757-2061-7
http://www.ams.org/mathscinet-getitem?mr=0467823
http://www.ams.org/mathscinet-getitem?mr=845785
https://doi.org/10.1090/cbms/065
http://www.ams.org/mathscinet-getitem?mr=2512303
https://doi.org/10.1007/978-0-8176-4902-9


14 X. Zhang and L. Wang

[25] M. Schechter, Homoclinic solutions of nonlinear second-order Hamiltonian systems,
Ann. Mat. Pura Appl. 195(2016), 1665–1683. MR3537968; url

[26] X. Wu, J. Chen, Existence theorems of periodic solutions for a class of damped vibration
problems, Appl. Math. Comput. 207(2009), 230–235. MR2492737; url

[27] X. Wu, K. Wu, Existence of positive solutions, negative solutions and high energy solu-
tions for quasi-linear elliptic equations on RN , Nonlinear Anal. Real World Appl. 16(2014),
48–64. MR3123800; url

[28] X. Zhang, Existence and multiplicity of weak quasi-periodic solutions for second order
Hamiltonian system with a forcing term, Electron. J. Qual. Theory Differ. Equ. 2014, No. 63,
1–19. MR3296524; url

[29] S. F. Zakharin, I. O. Parasyuk, Generalized and classical almost periodic solutions of
Lagrangian systems, Funkcial. Ekvac. 42(1999), 325–338. MR1745307

[30] X. Zhang, X. Tang, Subharmonic solutions for a class of non-quadratic second order
Hamiltonian systems, Nonlinear Anal. Real World Appl. 13(2012), 113–130. MR2846824; url

http://www.ams.org/mathscinet-getitem?mr=3537968
https://doi.org/10.1007/s10231-015-0538-3
http://www.ams.org/mathscinet-getitem?mr=2492737
https://doi.org/10.1016/j.amc.2008.10.020
http://www.ams.org/mathscinet-getitem?mr=3123800
https://doi.org/10.1016/j.nonrwa.2013.09.005
http://www.ams.org/mathscinet-getitem?mr=3296524
https://doi.org/10.14232/ejqtde.2014.1.63
http://www.ams.org/mathscinet-getitem?mr=1745307
http://www.ams.org/mathscinet-getitem?mr=2846824
https://doi.org/10.1016/j.nonrwa.2011.07.013

	Introduction
	Working spaces
	Main results

