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Abstract

In this paper, we prove the existence of extremal positive, concave
and pseudo-symmetric solutions for a general three-point second order
p—Laplacian integro-differential boundary value problem by using an abstract
monotone iterative technique.
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1 Introduction

The subject of multi-point second order boundary value problems, initiated by Il'in
and Moiseev [9, 10], has been extensively addressed by many authors, for instance,
see [6, 7, 13, 16, 17]. There has also been a considerable attention on p—Laplacian
boundary value problems [3, 8 12, 19] as p—Laplacian appears in the study of
flow through porous media (p = 3/2), nonlinear elasticity (p > 2), glaciology (1 <
p < 4/3), etc. Recently, Sun and Ge [18] discussed the existence of positive pseudo-
symmetric solutions for a second order three-point boundary value problem involving
p—Laplacian operator given by

(Up (' (1)) + q() f (¢, u(t), u'(t)) = 0, t € (0,1),
u(0) =0, u(n) =u(l), 0<n<l.

Ahmad and Nieto [1] studied a three-point second order p—Laplacian integro-
differential boundary value problem with the non-integral term of the form f(t, z(t)).
In this paper, we allow the nonlinear function f to depend on 2’ along with x and
consider a more general three-point second order p—Laplacian integro-differential
boundary value problem of the form

(1+n)/2
(ol (1)) +al?) (f(t,x<t>,as'<t>>+ / K(t,c,x@))dc) 0, te(0,1), (11)
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H0)=0,  a()=2(1), 0<n<l, (1.2
where p > 1, ¢,(s) = s|s|P™2. Let 1, be the inverse of 1, .

We apply an abstract monotone iterative technique due to Amann [2] to prove
the existence of extremal positive, concave and pseudo-symmetric solutions for (1.1)-
(1.2). For the details of the abstract monotone iterative method, we refer the reader
to the papers [1, 4-5, 14-15, 18]. The importance of the work lies in the fact that
integro-differential equations are encountered in many areas of science where it
is necessary to take into account aftereffect or delay. Especially, models possess-
ing hereditary properties are described by integro-differential equations in practice.
Also, the governing equations in the problems of biological sciences such as spread-
ing of disease by the dispersal of infectious individuals, the reaction-diffusion models
in ecology to estimate the speed of invasion, etc. are integro-differential equations.

2 Preliminaries

Let¢ £ = C'0,1] be the Banach space equipped with norm |z|| =
maxo<i<1 [72(t) + (2/(¢))?]'/? and let P be a cone in E defined by P = {z € F :
x is nonnegative, concave on [0, 1] and pseudo-symmetric about (1 +7)/2 on [0, 1]}.
Further, for 6 > 0, let Py = {x € P : ||z|| < 6}.

A functional ~ is said to be concave on [0, 1] if

y(tx + (1 =t)y) > ty(x) + (1 —t)y(y), Vo,y € [0,1] and t € [0,1].

A function z is said to be pseudo-symmetric about (1 + 7)/2 on [0,1] if = is
symmetric on the interval [n, 1], that is, z(t) = x(1 — (¢t — n)) for t € [n, 1].

Throughout the paper, we assume that

(A1) f(t,z,y) : [0,1] x [0,00) X R — [0,00) is continuous with f(¢,z1,y;) <
f(t,l‘g,yg), for any 0 <t <1, 0 <z <ap < 07 0< |y1| < |y2| <40 (f
is nondecreasing in x and |y|) and f(¢,x,y) is pseudo-symmetric in ¢ about
(14mn)/2 on (0,1) for any fixed = € [0,00), y € R. Moreover, f(t,0,0) is not
identically equal to zero on any subinterval of (0, 1).

(Ag) K(t,¢,z) :1]0,1] x [0,1] x [0,00) — [0,00) is continuous, nondecreasing in x
and for any fixed (¢,z) € [0,1] x [0,00), K(t,(,x) is pseudo-symmetric in ¢
and ¢ about (1 +7n)/2 on (0,1). Further, K(¢,(,0) is not identically equal to
zero for 0 <t,( < 1.

(As) a(t) € L(0,1) is nonnegative on (0,1) and pseudo-symmetric in ¢ about (1 +

n)/2 on (0, 1). Further, a(t) is not identically zero on any nontrivial compact
subinterval of (0,1).

EJQTDE, 2010 No. 3, p. 2



(Ay) maxoei< { £(,0,0) + [0 K(t,g,e)dg} < 4,(0/0),
where © = max{\/ﬁ@l, \/5@2},

(14+n)/2 (14+n)/2 (14+n)/2
O, = / ¢q</ a(y)dl/> dw, Oy = @Dq(/ a(l/)dl/).
0 w 0

Definition 2.1. Let us define an operator G : P — E as follows

fé%[fi,”")”a(v)(f(v,x<u>,xf<u>>+fj”"”2 <u ¢z <o>dg)du dw,
€0, (L+n)/2;
(Ga)(t) = fowq[f;”"”z a(v) <f(v,x(V),x’(V))+ffl+")/2 K(v, ¢, 2(C) >d§)du

+ft d’q{fun)/z a(v) (f(l/,:l:(l/),x’(u)) +f(l{+n)/2 (V ¢ z(¢ dC d’/ dw,
\ [(1+mn)/2,1].
By the definition of G, it follows that Gz € C'[0,1] and is nonnegative for each
x € P, and is a solution of (1.1) and (1.2) if and only if Gz = z.

In order to develop the iteration schemes for (1.1) and (1.2), we establish some
properties of the operator Gz.

Since
¥, [ﬂ”" 2 a(v) (f(u, 2(v), 7' W) + [{P K (v, x<<>>d<) du] ,
(Ga)'(t) = t €[0,(1+mn)/2];
| sy a0 (F0 20, 00) 4 S0 K G0l ],
\ tel(1+n)/21],

is continuous and nonincreasing on [0, 1] with (Gz)' ((1 + n)/2) = 0, therefore, it
follows that Gz is concave. The nondecreasing nature of Gz in = and |z'| follows
from the assumptions (A;) and (As). Now, we show that Gz is pseudo-symmetric
about (14 7)/2 on [0, 1]. For that, we note that (1 — (t —n)) € [(1 +n)/2, 1] for all
ten, (1+n)/2]. Thus,

(91~ (1 =) .
- [ [ / T ) (f(u,:c@), o)+ [ K, <,x<<>>d<) du] dw

v f i(t_n) | [ aw (7000 + [ K o()iC o
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o (Gx) is pseudo-symmetric about (1 4+ 1)/2 on [0,1]. Hence we conclude that
G : P — P. Also, it follows by the standard arguments [1, 18] that G : P — P is
completely continuous.

Next, we show that G : Py — Py. For u € Py, it follows that |u| < @ and

<u(t) < < lul| < < < < lul| < 6.
0 <u(t) < max [u(t)] < [lull <6, 0<[u'(t)] < max [u'(t)] < [|ull <6

By the assumptions (A;), (Az) and (Ay), we have
(1+n)/2
0< ftalt T ®)+ [ Kl alo)c
(1+n)/2
Sf(t,0,9)+/ K(t,¢,60)d¢

(1+n)/
< max {f(t,@,@) +/ K(t, g,e)dg} < ,(0/0), t € [0,1].

(2.1)
Clearly

G2l = max[(G)* (1) + ((G=) (1)) 2
< V2 max{|g=(t)], [(G2) (O]} = V2max{(Gx)((1+n)/2), max|(Gz)|(1)}

By the definition of Gz and (2.1), we obtain

Gr((1+n)/2)
/lerW2 < (v,z(v),2'(v)) + /V(HW2 K(v, g,x(g))dg) d]/:| dw

1+n)/2
= {
lem v)dviy 9/@>} dw = 00,/0 < 0/v2,

1+n

IA

max |(Ga)' ()] = max{(Gz) (0), () (1)}

0<t<1

— max {% [ / T ) (f(v, o))+ [ T ke as(@)dg) du] ,

vy [ /( ). ) + /()/ K., x<<>>d<}dv] }

1+n)/2

max {zpq {/O(HWQ a(u)duiﬁp(@/@)], Vq [/(; o a(v)dmﬁp(@/@)]}
— 00,/0 < 0/V2. ”

IN

Consequently, we have ||Gz|| < 6. Hence we conclude that G : Py — P.
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3 Existence of extremal solutions

Theorem 3.1 Assume that (A1) — (A4) hold. Then there exist extremal positive,
concave and pseudo-symmetric solutions o, 5* of (1.1) and (1.2) with 0 < o* <
01/v2, 0 < |(*)| < 6:/v2 and lim, o a, = limy, oo G"p = a*, lim,_oo(,) =
lim,, o (G"ap) = (a*)’, where

N = 01t /\/2, if0<t<(1+n)/2,
0‘0“‘{ Bl — (t—nm)|/VE, it (1tm/2<t<l,

and 0 < B < 61, 0 < |(BY)] < 6 with lim, .5, = lim, ..G"F =
5%, 1ityns(Bo) = litya (G7B0)' = (B, where fot) = 0, ¢ € [0, 1],

Proof. We define the iterative schemes
a1 = Gag, i1 =Goy, =G ag, n=1,2,...,

Bi =GBy =G0, Buy1 =GB, =G"" By, n=1,2,....

In view of the fact that G : Py — Py, it follows that a,, € GPp C Py forn=1,2, ....
As G is completely continuous, therefore {a,}5° , is sequentially compact. By the
assumption (Ajz), it easily follows that a;(t) = Gag(t) < ap(t), t € [0,1]. Also

4] = [(Gao) ()] < max{(G(61t/v2))(0), —(G (61 (1 — (t —n))/v2)) (1)}
< 0,/V2=a(t)], telo,1].

Now, by the nondecreasing nature of (Gz), we obtain
as(t) = Gan(t) < Gaolt) = ar(t),  lh(t)] = |(Gar (D] < (Gao) (B)] = (&),
for ¢ € [0,1]. Thus, by induction, we have
1) < an(t), ol (O] < lab(®)], n=1,2,..., te[0,1]

Hence there exists a* € Py such that o, — a*. Applying the continuity of G and
Qi1 = Gay,, we get Ga* = o* [18]. In view of the fact that f(¢,0,0) and K(t,¢,0)
are not identically equal to zero for 0 < ¢, ( < 1, we find that the zero function is
not the solution of (1.1) and (1.2). Thus, ||a*|| > 0 and hence o* > 0, t € (0,1).
Now, let 31 = GBy = GO, Ba = G*By = G0 = GBy. Since G : Py — Py, it follows
that (3, € GPy C Py for n=1,2,.... As G is completely continuous, therefore {£3,}>
is sequentially compact. Since 8; = GBy = GO € GPy, we have B,(t) = GBy(t) =
(GO)(#) = 0 and |31 ()] = [(GG)'(t) = [(GO)(H)] = 0, t € [0,1]. Thus, 55(t) =
Go1(t) = (G0)(t) = Bu(t) and |5 (2)] = [(G61)'(1)] = [(G0) ()] = [BL(8)], t € [0, 1].
As before, by induction, it follows that

ﬁnJrl(t) Z ﬁn@)v ‘ﬁ':L+1(t)‘ Z |ﬁ1/1<t)‘7 n = 1727 tery te [07 1]'
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Hence there exists 3* € Py such that 5, — (* and GB* = [* with
G*(t) >0, t € (0,1).

Now, using the well known fact that a fixed point of the operator G in P must be a
solution of (1.1) and (1.2) in P, it follows from the monotone iterative technique [11]

that o* and * are the extremal positive, concave and pseudo-symmetric solutions
of (1.1) and (1.2). This completes the proof.

Example. Consider the boundary value problem
%
S0+ Fe(0,50) + [T KCal)dc =0, 1€ 0.1, ()
t

2(0) =0, x(%) = 2(1), (3.2)

where a(t) =1, f(t,z,2') = —?t2+8t+ﬁx+%(:p')2, K(t, ¢, x) = =362+ 2t +a.
Clearly the functions f(t,x,2") and K(t,(,x) satisfy the assumptions (A;) and
(A3). In relation to (As), we choose # = 642 so that © = 3/(2v/2) and
maxo<;<1{f(t,0,0) + ft(H")/Z K(t,(,0)d(} = 8 = »(0/0©). Hence the conclusion
of Theorem 3.1 applies to the problem (3.1)-(3.2).

4 Conclusions

The extremal positive, concave and pseudo-symmetric solutions for a nonlocal
three-point p—Laplacian integro-differential boundary value problem are obtained
by applying an abstract monotone iterative technique. The consideration of
p—Laplacian boundary value problems is quite interesting and important as it
covers a wide range of problems for various values of p occurring in applied
sciences (as indicated in the introduction). The nonlocal three-point boundary
conditions further enhance the scope of p—Laplacian boundary value problems
as such boundary conditions appear in certain problems of thermodynamics and
wave propagation where the controller at the end t = 1 dissipates or adds energy
according to a censor located at a position ¢ = 7 (0 < n < 1) where as the other
end ¢ = 0 is maintained at a constant level of energy. The results presented in this
paper are new and extend some earlier results. For p = 2, our results correspond to
a three-point second order quasilinear integro-differential boundary value problem.
The results of [1] are improved as the nonlinear function f is allowed to depend on
«’ together with x in this paper whereas it only depends on x in [1].
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