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1 Introduction

The subject of multi-point second order boundary value problems, initiated by Il’in
and Moiseev [9, 10], has been extensively addressed by many authors, for instance,
see [6, 7, 13, 16, 17]. There has also been a considerable attention on p−Laplacian
boundary value problems [3, 8, 12, 19] as p−Laplacian appears in the study of
flow through porous media (p = 3/2), nonlinear elasticity (p ≥ 2), glaciology (1 ≤
p ≤ 4/3), etc. Recently, Sun and Ge [18] discussed the existence of positive pseudo-
symmetric solutions for a second order three-point boundary value problem involving
p−Laplacian operator given by

(ψp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(η) = u(1), 0 < η < 1.

Ahmad and Nieto [1] studied a three-point second order p−Laplacian integro-
differential boundary value problem with the non-integral term of the form f(t, x(t)).
In this paper, we allow the nonlinear function f to depend on x′ along with x and
consider a more general three-point second order p−Laplacian integro-differential
boundary value problem of the form

(ψp(x
′(t)))′ +a(t)

(

f(t, x(t), x′(t))+

∫ (1+η)/2

t

K(t, ζ, x(ζ))dζ

)

= 0, t ∈ (0, 1), (1.1)
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x(0) = 0, x(η) = x(1), 0 < η < 1, (1.2)

where p > 1 , ψp(s) = s|s|p−2 . Let ψq be the inverse of ψp .

We apply an abstract monotone iterative technique due to Amann [2] to prove
the existence of extremal positive, concave and pseudo-symmetric solutions for (1.1)-
(1.2). For the details of the abstract monotone iterative method, we refer the reader
to the papers [1, 4-5, 14-15, 18]. The importance of the work lies in the fact that
integro-differential equations are encountered in many areas of science where it
is necessary to take into account aftereffect or delay. Especially, models possess-
ing hereditary properties are described by integro-differential equations in practice.
Also, the governing equations in the problems of biological sciences such as spread-
ing of disease by the dispersal of infectious individuals, the reaction-diffusion models
in ecology to estimate the speed of invasion, etc. are integro-differential equations.

2 Preliminaries

Let E = C1[0, 1] be the Banach space equipped with norm ‖x‖ =
max0≤t≤1[x

2(t) + (x′(t))2]1/2 and let P be a cone in E defined by P = {x ∈ E :
x is nonnegative, concave on [0, 1] and pseudo-symmetric about (1 + η)/2 on [0, 1]}.
Further, for θ > 0, let P θ = {x ∈ P : ‖x‖ ≤ θ}.
A functional γ is said to be concave on [0, 1] if

γ(tx+ (1 − t)y) ≥ tγ(x) + (1 − t)γ(y), ∀x, y ∈ [0, 1] and t ∈ [0, 1].

A function x is said to be pseudo-symmetric about (1 + η)/2 on [0, 1] if x is
symmetric on the interval [η, 1], that is, x(t) = x(1 − (t− η)) for t ∈ [η, 1].

Throughout the paper, we assume that

(A1) f(t, x, y) : [0, 1] × [0,∞) × R → [0,∞) is continuous with f(t, x1, y1) ≤
f(t, x2, y2), for any 0 ≤ t ≤ 1, 0 ≤ x1 ≤ x2 ≤ θ, 0 ≤ |y1| ≤ |y2| ≤ θ (f
is nondecreasing in x and |y|) and f(t, x, y) is pseudo-symmetric in t about
(1 + η)/2 on (0, 1) for any fixed x ∈ [0,∞), y ∈ R. Moreover, f(t, 0, 0) is not
identically equal to zero on any subinterval of (0, 1).

(A2) K(t, ζ, x) : [0, 1] × [0, 1] × [0,∞) → [0,∞) is continuous, nondecreasing in x
and for any fixed (ζ, x) ∈ [0, 1] × [0,∞), K(t, ζ, x) is pseudo-symmetric in t
and ζ about (1 + η)/2 on (0, 1). Further, K(t, ζ, 0) is not identically equal to
zero for 0 ≤ t, ζ ≤ 1.

(A3) a(t) ∈ L(0, 1) is nonnegative on (0, 1) and pseudo-symmetric in t about (1 +
η)/2 on (0, 1). Further, a(t) is not identically zero on any nontrivial compact
subinterval of (0, 1).
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(A4) max0≤t≤1

{

f(t, θ, θ) +
∫ (1+η)/2

t
K(t, ζ, θ)dζ

}

≤ ψp(θ/Θ),

where Θ = max{
√

2Θ1,
√

2Θ2},

Θ1 =

∫ (1+η)/2

0

ψq

(
∫ (1+η)/2

w

a(ν)dν

)

dw, Θ2 = ψq

(
∫ (1+η)/2

0

a(ν)dν

)

.

Definition 2.1. Let us define an operator G : P → E as follows

(Gx)(t) =















































∫ t

0
ψq

[

∫ (1+η)/2

w
a(ν)

(

f(ν, x(ν), x′(ν)) +
∫ (1+η)/2

ν
K(ν, ζ, x(ζ))dζ

)

dν

]

dw,

t ∈ [0, (1 + η)/2];
∫ η

0
ψq

[

∫ (1+η)/2

w
a(ν)

(

f(ν, x(ν), x′(ν)) +
∫ (1+η)/2

ν
K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+
∫ 1

t
ψq

[

∫ w

(1+η)/2
a(ν)

(

f(ν, x(ν), x′(ν)) +
∫ ν

(1+η)/2
K(ν, ζ, x(ζ))dζ

)

dν

]

dw,

t ∈ [(1 + η)/2, 1].

By the definition of G, it follows that Gx ∈ C1[0, 1] and is nonnegative for each
x ∈ P , and is a solution of (1.1) and (1.2) if and only if Gx = x.
In order to develop the iteration schemes for (1.1) and (1.2), we establish some
properties of the operator Gx.
Since

(Gx)′(t) =































ψq

[

∫ (1+η)/2

t
a(ν)

(

f(ν, x(ν), x′(ν)) +
∫ (1+η)/2

ν
K(ν, ζ, x(ζ))dζ

)

dν

]

,

t ∈ [0, (1 + η)/2];

−ψq

[

∫ t

(1+η)/2
a(ν)

(

f(ν, x(ν), x′(ν)) +
∫ ν

(1+η)/2
K(ν, ζ, x(ζ))dζ

)

dν

]

,

t ∈ [(1 + η)/2, 1],

is continuous and nonincreasing on [0, 1] with (Gx)′((1 + η)/2) = 0, therefore, it
follows that Gx is concave. The nondecreasing nature of Gx in x and |x′| follows
from the assumptions (A1) and (A2). Now, we show that Gx is pseudo-symmetric
about (1 + η)/2 on [0, 1]. For that, we note that (1 − (t− η)) ∈ [(1 + η)/2, 1] for all
t ∈ [η, (1 + η)/2]. Thus,

(Gx)(1 − (t− η))

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ 1

1−(t−η)

ψq

[
∫ w

(1+η)/2

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw
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=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

−
∫ η

t

ψq

[
∫ 1−(w−η)

(1+η)/2

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ t

η

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ 1−(ν−η)

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ t

η

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ t

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

= (Gx)(t).
Now, ∀t ∈ [(1 + η)/2, 1], we have (1 − (t− η)) ∈ [η, (1 + η)/2]. Thus,

(Gx)(1 − (t− η))

=

∫ 1−(t−η)

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ 1−(t−η)

η

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ 1

t

ψq

[
∫ (1+η)/2

1−(w−η)

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ 1

t

ψq

[
∫ w

(1+η)/2

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

1−(ν−η)

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

=

∫ η

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

+

∫ 1

t

ψq

[
∫ w

(1+η)/2

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

= (Gx)(t).
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So (Gx) is pseudo-symmetric about (1 + η)/2 on [0, 1]. Hence we conclude that
G : P → P . Also, it follows by the standard arguments [1, 18] that G : P → P is
completely continuous.

Next, we show that G : P θ → P θ. For u ∈ P θ, it follows that |u| ≤ θ and

0 ≤ u(t) ≤ max
0≤t≤1

|u(t)| ≤ ‖u‖ ≤ θ, 0 ≤ |u′(t)| ≤ max
0≤t≤1

|u′(t)| ≤ ‖u‖ ≤ θ.

By the assumptions (A1), (A2) and (A4), we have

0 ≤ f(t, x(t), x′(t)) +

∫ (1+η)/2

t

K(t, ζ, x(ζ))dζ

≤ f(t, θ, θ) +

∫ (1+η)/2

t

K(t, ζ, θ)dζ

≤ max
0≤t≤1

{

f(t, θ, θ) +

∫ (1+η)/2

t

K(t, ζ, θ)dζ

}

≤ ψp(θ/Θ), t ∈ [0, 1].

(2.1)

Clearly

‖Gx‖ = max
0≤t≤1

[(Gx)2(t) + ((Gx)′)2(t)]1/2

≤
√

2 max
0≤t≤1

{|Gx(t)|, |(Gx)′(t)|} =
√

2max{(Gx)((1 + η)/2), max
0≤t≤1

|(Gx)′|(t)}.

By the definition of Gx and (2.1), we obtain

Gx((1 + η)/2)

=

∫ (1+η)/2

0

ψq

[
∫ (1+η)/2

w

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

dw

≤
∫ (1+η)/2

0

ψq

[
∫ (1+η)/2

w

a(ν)dνψp(θ/Θ)

]

dw = θΘ1/Θ ≤ θ/
√

2,

max
0≤t≤1

|(Gx)′(t)| = max{(Gx)′(0),−(Gx)′(1)}

= max

{

ψq

[
∫ (1+η)/2

0

a(ν)

(

f(ν, x(ν), x′(ν)) +

∫ (1+η)/2

ν

K(ν, ζ, x(ζ))dζ

)

dν

]

,

ψq

[
∫ 1

(1+η)/2

a(ν){f(ν, x(ν), x′(ν)) +

∫ ν

(1+η)/2

K(ν, ζ, x(ζ))dζ}dν
]}

≤ max

{

ψq

[
∫ (1+η)/2

0

a(ν)dνψp(θ/Θ)

]

, ψq

[
∫ 1

(1+η)/2

a(ν)dνψp(θ/Θ)

]}

= θΘ2/Θ ≤ θ/
√

2.

Consequently, we have ‖Gx‖ ≤ θ. Hence we conclude that G : P θ → P θ.
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3 Existence of extremal solutions

Theorem 3.1 Assume that (A1) − (A4) hold. Then there exist extremal positive,
concave and pseudo-symmetric solutions α∗, β∗ of (1.1) and (1.2) with 0 < α∗ ≤
θ1/

√
2, 0 < |(α∗)′| ≤ θ1/

√
2 and limn→∞ αn = limn→∞ Gnα0 = α∗, limn→∞(αn)′ =

limn→∞(Gnα0)
′ = (α∗)′, where

α0(t) =

{

θ1t/
√

2, if 0 ≤ t ≤ (1 + η)/2,

θ1|1 − (t− η)|/
√

2, if (1 + η)/2 ≤ t ≤ 1,

and 0 < β∗ ≤ θ1, 0 < |(β∗)′| ≤ θ1 with limn→∞ βn = limn→∞ Gnβ0 =
β∗, limn→∞(βn)′ = limn→∞(Gnβ0)

′ = (β∗)′, where β0(t) = 0, t ∈ [0, 1].

Proof. We define the iterative schemes

α1 = Gα0, αn+1 = Gαn = Gn+1α0, n = 1, 2, ...,

β1 = Gβ0 = G0, βn+1 = Gβn = Gn+1β0, n = 1, 2, ....

In view of the fact that G : P θ → P θ, it follows that αn ∈ GP θ ⊆ P θ for n = 1, 2, ....
As G is completely continuous, therefore {αn}∞n=1 is sequentially compact. By the
assumption (A3), it easily follows that α1(t) = Gα0(t) ≤ α0(t), t ∈ [0, 1]. Also

|α′
1(t)| = |(Gα0)

′(t)| ≤ max{(G(θ1t/
√

2))′(0),−(G(θ1(1 − (t− η))/
√

2))′(1)}
≤ θ1/

√
2 = |α′

0(t)|, t ∈ [0, 1].

Now, by the nondecreasing nature of (Gx), we obtain

α2(t) = Gα1(t) ≤ Gα0(t) = α1(t), |α′
2(t)| = |(Gα1)

′(t)| ≤ |(Gα0)
′(t)| = |α′

1(t)|,

for t ∈ [0, 1]. Thus, by induction, we have

αn+1(t) ≤ αn(t), |α′
n+1(t)| ≤ |α′

n(t)|, n = 1, 2, ...., t ∈ [0, 1].

Hence there exists α∗ ∈ P θ such that αn → α∗. Applying the continuity of G and
αn+1 = Gαn, we get Gα∗ = α∗ [18]. In view of the fact that f(t, 0, 0) and K(t, ζ, 0)
are not identically equal to zero for 0 ≤ t, ζ ≤ 1, we find that the zero function is
not the solution of (1.1) and (1.2). Thus, ‖α∗‖ > 0 and hence α∗ > 0, t ∈ (0, 1).
Now, let β1 = Gβ0 = G0, β2 = G2β0 = G20 = Gβ1. Since G : P θ → P θ, it follows
that βn ∈ GP θ ⊆ P θ for n=1,2,.... As G is completely continuous, therefore {βn}∞n=1

is sequentially compact. Since β1 = Gβ0 = G0 ∈ GP θ, we have β1(t) = Gβ0(t) =
(G0)(t) ≥ 0 and |β ′

1(t)| = |(Gβ0)
′(t) = |(G0)′(t)| ≥ 0, t ∈ [0, 1]. Thus, β2(t) =

Gβ1(t) ≥ (G0)(t) = β1(t) and |β ′
2(t)| = |(Gβ1)

′(t)| = |(G0)′(t)| = |β ′
1(t)|, t ∈ [0, 1].

As before, by induction, it follows that

βn+1(t) ≥ βn(t), |β ′
n+1(t)| ≥ |β ′

n(t)|, n = 1, 2, ...., t ∈ [0, 1].
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Hence there exists β∗ ∈ P θ such that βn → β∗ and Gβ∗ = β∗ with
β∗(t) > 0, t ∈ (0, 1).
Now, using the well known fact that a fixed point of the operator G in P must be a
solution of (1.1) and (1.2) in P, it follows from the monotone iterative technique [11]
that α∗ and β∗ are the extremal positive, concave and pseudo-symmetric solutions
of (1.1) and (1.2). This completes the proof.

Example. Consider the boundary value problem

x′′(t) + f(t, x(t), x′(t)) +

∫ 3

4

t

K(t, ζ, x(ζ))dζ = 0, t ∈ (0, 1), (3.1)

x(0) = 0, x(
1

2
) = x(1), (3.2)

where a(t) = 1, f(t, x, x′) = −16
3
t2 +8t+ 1

2
√

2
x+ 1

36
(x′)2, K(t, ζ, x) = −4

3
t2 +2t+x.

Clearly the functions f(t, x, x′) and K(t, ζ, x) satisfy the assumptions (A1) and
(A2). In relation to (A3), we choose θ = 6

√
2 so that Θ = 3/(2

√
2) and

max0≤t≤1{f(t, θ, θ) +
∫ (1+η)/2

t
K(t, ζ, θ)dζ} = 8 = ψ2(θ/Θ). Hence the conclusion

of Theorem 3.1 applies to the problem (3.1)-(3.2).

4 Conclusions

The extremal positive, concave and pseudo-symmetric solutions for a nonlocal
three-point p−Laplacian integro-differential boundary value problem are obtained
by applying an abstract monotone iterative technique. The consideration of
p−Laplacian boundary value problems is quite interesting and important as it
covers a wide range of problems for various values of p occurring in applied
sciences (as indicated in the introduction). The nonlocal three-point boundary
conditions further enhance the scope of p−Laplacian boundary value problems
as such boundary conditions appear in certain problems of thermodynamics and
wave propagation where the controller at the end t = 1 dissipates or adds energy
according to a censor located at a position t = η (0 < η < 1) where as the other
end t = 0 is maintained at a constant level of energy. The results presented in this
paper are new and extend some earlier results. For p = 2, our results correspond to
a three-point second order quasilinear integro-differential boundary value problem.
The results of [1] are improved as the nonlinear function f is allowed to depend on
x′ together with x in this paper whereas it only depends on x in [1].

Acknowledgement. The authors are grateful to the anonymous referee for his/her
valuable comments.
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