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On the viscous Burgers equation in unbounded domain
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Abstract

In this paper we investigate the existence and uniqueness of global solutions, and

a rate stability for the energy related with a Cauchy problem to the viscous Burgers

equation in unbounded domain R× (0,∞). Some aspects associated with a Cauchy

problem are presented in order to employ the approximations of Faedo-Galerkin in

whole real line R. This becomes possible due to the introduction of weight Sobolev

spaces which allow us to use arguments of compactness in the Sobolev spaces.
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1 Introduction and Formulation of the Problem

We are concerned with the existence of global solutions – precisely, global weak

solutions, global strong solutions and regularity of the strong solutions –, uniqueness

of the solutions and the asymptotic stability of the energy for the nonlinear Cauchy

problem related to the classic viscous Burgers equation

ut + uux − uxx = 0

established in R × (0, T ), for an arbitrary T > 0. More precisely, we consider the real

valued function u = u(x, t) defined for all (x, t) ∈ R× (0, T ) which is the solution of the

Cauchy problem
{
ut + uux − uxx = 0 in R × (0, T ),

u(x, 0) = u0(x) in R.
(1.1)

1Universidade Federal Fluminense, IM, RJ, Brasil
2Corresponding author: hclark@vm.uff.br
3Universidade Federal do Rio de Janeiro, IM, RJ, Brasil, lmedeiros@abc.org.br

EJQTDE, 2010 No. 18, p. 1



The Burgers equation has a long history. We briefly sketch this history by citing

one of the pioneer work by Bateman [2] about an approximation of the flux of fluids.

Later, Burgers published the works [5] and [6] which are also about flux of fluids or

turbulence. In the classic fashion the Burgers equation has been studied by several

authors, mainly in the last century, and excellent papers and books can be found in

the literature specialized in PDE. One can cite, for instance, Courant & Friedrichs [8],

Courant & Hilbert [9], Hopf [10], Lax [13] and Stoker [17].

Today, the equation (1.1)1 ((1.1)1 refers to the first equation in (1.1)) is known as

viscous Burgers equations and perhaps it is the simplest nonlinear equation associating

the nonlinear propagation of waves with the effect of the heat conduction.

The existence of global solutions for the Cauchy problem (1.1) will be obtained

employing the Faedo-Galerkin and Compactness methods. The Faedo-Galerkin method

is probably one of the most effective methods to establish existence of solutions for non-

linear evolution problems in domains whose spatial variable x lives in bounded sets. To

spatial unbounded sets, there exist few results about existence of solutions established

by the referred method. Thus, as the non-linear problem (1.1) is defined in R, in order

to reach our goal through this method we will also need to use compactness’ argument,

as in Aubin [1] or Lions [15]. In order to apply the Compactness method we employ

a suitable theory on weight Sobolev spaces to be set as follows. In fact, in the sequel

Hm(R) represents the Sobolev space of order m in R, with m ∈ N. The space L2(R)

is the Lebesgue space of the classes of functions u : R → R with square integrable on

R. Assuming that X is a Banach space, T is a positive real number or T = +∞ and

1 ≤ p ≤ ∞, we will denote by Lp(0, T ;X) the Banach space of all measurable mapping

u :]0, T [−→ X, such that t 7→ ‖u(t)‖X belongs to Lp(0, T ). For more details on the

functional spaces above cited the reader can consult, for instance, the references [3] and

[15]. In this work we will also use the following weight vectorial spaces

L2(K) =
{
φ ∈ L2(R);

∫

R

|φ(y)|2RK(y)dy <∞
}
,

Hm(K) =
{
φ ∈ Hm(R); Diφ ∈ L2(K)

}
with i = 1, 2, . . . ,m, m ∈ N,

where K is a weight function given for

K(y) = exp{y2/4}, y ∈ R. (1.2)

EJQTDE, 2010 No. 18, p. 2



The inner product and norm of L2(K) and Hm(K) are defined by

(φ,ψ) =

∫

R

φ(y)ψ(y)K(y)dy, |φ|2 =

∫

R

|φ(y)|2RK(y)dy,

((φ,ψ))m =
m∑

i=1

∫

R

Diφ(y)Diψ(y)K(y)dy, ‖φ‖2
m =

m∑

i=1

∣∣Diφ
∣∣2 ,

respectively. The vector spaces L2(K) and Hm(K) are Hilbert spaces with the above

inner products. By D(R) it denotes the class of C∞ functions in R with compact

support and convergence in the Laurent Schwartz sense, see [16].

We will also use the functional structure of the spaces Lp(0, T ;H) with 1 ≤ p ≤ ∞,

where H is one of the spaces: L2(K) or Hm(K).

Some properties of the spaces L2(K) and Hm(K) as the compactness of the inclu-

sion Hm(K) →֒ L2(K) and Poincaré inequality with the weight (1.2) has been proven

in Escobedo-Kavian [11]. Results on compactness of space of spherically symmetric

functions that vanishes at infinity were proven by Strauss [18]. In this direction one

can see some results in Kurtz [12].

The method used to prove the existence of solutions for the Cauchy problem (1.1)

is to transform it to another equivalent one proposed in the suitable functional spaces

by using a change of variables defined by

z(y, s) = (t+ 1)1/2u(x, t) where y =
x

(t+ 1)1/2
and s = ln(t+ 1). (1.3)

The changing of variable (1.3) defines a diffeomorphism σ : Rx × (0, T ) → Ry × (0, S)

with σ(x, t) = (y, s) and S = ln(T + 1). From (1.3) we have t = es − 1 and x = es/2y.

Therefore,

z(y, s) = es/2u(es/2y, es − 1) and u(x, t) = (t+ 1)−1/2z
(
x/(t+ 1)1/2, ln(t+ 1)

)
.

Differentiating u with respect to t, it yields

ut =
−1

2
(t+ 1)−3/2z + (t+ 1)−1/2

(∂z
∂y

∂y

∂t
+
∂z

∂s

∂s

∂t

)

= (t+ 1)−3/2
(
− z

2
− yzy

2
+ zs

)

= e−3s/2
(
− z

2
− yzy

2
+ zs

)
.
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Differentiating u with respect to x, it yields

ux = (t+ 1)−1/2 ∂z

∂y

∂y

∂x
= (t+ 1)−1/2 ∂z

∂y

1

(t+ 1)1/2
= (t+ 1)−1zy = e−szy.

Differentiating again with respect to x, it yields

uxx = (t+ 1)−1 ∂
2z

∂y2

∂y

∂x
= (t+ 1)−3/2zyy = e−3s/2zyy.

Inserting the three last identities in (1.1)1, we obtain

zs − zyy −
yzy
2

− z

2
+ zzy = 0 in R × (0, S). (1.4)

Moreover, for t = 0, we have by definition of y that x = y. Thus the initial data

becomes

u0(x) = u(x, 0) = z(y, 0) = z0(y). (1.5)

For use later and a better understanding we will modify the equation (1.4) as follows:

one defines the operator L : H2(K) −→ R by φ 7−→ Lφ = −φyy − yφy

2 , which satisfies:

Lφ = − 1

K
(Kφy)y and (Lφ,ψ) = (φy, ψy) = ((φ,ψ))2 (1.6)

for all φ ∈ H2(K) and ψ ∈ H1(K). Therefore, from (1.4), (1.5) and (1.6)1 the Cauchy

problem (1.1) is equivalent by σ to




zs + Lz − z

2
+ zzy = 0 in R × (0, S),

z(y, 0) = u0(y) in R.
(1.7)

The purpose of this work is: in Section 2, we investigate the existence of global weak

solutions of (1.1), its uniqueness and as well as analysis of the decay of these solutions.

In Section 3 we establish the same properties of Section 2 for the strong solutions. In

Section 4, we study the regularity of the strong solutions.

2 Weak Solution

Setting the initial data u0 ∈ L2(K) we are able to show that the Cauchy problem

(1.1) has a unique global weak solution u = u(x, t) defined in R×(0,∞) with real values

and the energy associated with this solution is asymptotically stable.

The concept of the solutions for (1.1) is established in the following sense
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Definition 2.1. A global weak solution for the Cauchy problem (1.1) is a real valued

function u = u(x, t) defined in R × (0,∞) such that

u ∈ L2
loc(0,∞;H1(R)), ut ∈ L2

loc

(
0,∞; [H1(R)]′

)
,

the function u satisfies the identity integral

−
∫ T

0

∫

R

[uv]ϕtdxdt +

∫ T

0

∫

R

[uuxv]ϕdxdt +

∫ T

0

∫

R

[uxvx]ϕdxdt = 0, (2.1)

for all v ∈ H1(R) and for all ϕ ∈ D(0, T ). Moreover, u satisfies the initial condition

u(x, 0) = u0(x) for all x ∈ R.

The existence of solution of (1.1) in the precedent sense is guaranteed by the fol-

lowing theorem

Theorem 2.1. Suppose u0 ∈ L2(K), then there exists a unique global solution u of

(1.1) in the sense of Definition 2.1. Moreover, energy E(t) = 1
2 |u(t)|2 associated with

this solution satisfies

E(t) ≤ E(0)(t + 1)−3/4. (2.2)

The following proposition, whose proof has have been done in Escobedo & Kavian

[11], will be useful throughout this paper.

Proposition 2.1. One has the results

(1)

∫

R

|y|2|v(y)|2RKdy ≤ 16

∫

R

|vy(y)|2RKdy for all v ∈ H1(K);

(2) The immersion H1(K) →֒ L(K) is compact;

(3) L : H1(K) −→ [H1(K)]′ is an isomorphism;

(4) The eigenvalues of L are positive real numbers λj = j/2 for j = 1, 2 . . . , and

the related space with λj is N(L− λjI) =
[
Djω1

]
with

ω1(y) =
1

(4π)1/4
[K(y)]−1 =

1

(4π)1/4
exp{−y2/4}.

(5) Finally, one has the Poincaré inequality |v| ≤
√

2 |vy| for v ∈ H1(K)

As the two Cauchy problems (1.1) and (1.7) are equivalent the Definition 2.1 and

Theorem 2.1 are also equivalent to Definition 2.2 and Theorem 2.2.
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Definition 2.2. A global weak solution for the Cauchy problem (1.7) is a real valued

function z = z(y, s) defined in R × (0,∞) such that

z ∈ L2
loc(0,∞;H1(K)), zs ∈ L2

loc

(
0,∞; [H1(K)]′

)
,

the function z satisfies the identity integral

−
∫ S

0

∫

R

[zv]ϕsKdyds+

∫ S

0

∫

R

[zzyv]ϕKdyds+

∫ S

0

∫

R

[zyvy]ϕKdyds−
1

2

∫ S

0

∫

R

[zv]ϕKdyds = 0, (2.3)

for all v ∈ H1(K) and for all ϕ ∈ D(0, S). Moreover, z satisfies the initial condition

z(y, 0) = z0(y) for all y ∈ R.

The existence of solutions for system (1.7) will be shown by means of Faedo-Galerkin

method. In fact, as L2(K) is a separable Hilbert space there exists a orthogonal hilber-

tian basis (ωj)j∈N of L2(K). Moreover, since H1(K) →֒ L2(K) is compactly imbedding

there exist ωj solutions of the spectral problem associated with the operator L in H1(K).

This means that

(Lωj, v) = λj(ωj , v) for all v ∈ H1(K) and j ∈ N. (2.4)

Fixed the first eigenfunction ω1 of L we set {ω1}⊥ =
{
v ∈ L2(K); (ω1, v) = 0

}
.

In these conditions one defines VN as the subspace of L2(K) spanned by the N−
eigenfunction ω1, ω2, . . . , ωN of (ωj)j∈N, being ωj with j ∈ N defined by (2.4).

Now, we are ready to state the following result.

Theorem 2.2. Suppose z0 ∈ L2(K) ∩ {ω1}⊥, then there exists a unique solution

z of (1.7) in the sense of Definition 2.2, provided |z0| < 1
4
√

3C1

holds, where C1 is

a positive real constant defined below in the Proposition 2.2-item (b). Moreover, the

energy E(s) = 1
2 |z(s)|2 satisfies

E(s) ≤ E(0) exp [−s/4] . (2.5)

Since Theorems 2.1 and 2.2 are equivalent, it suffices to prove the Theorem 2.2.

Before this, we first introduce the following property, which will be useful later:
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Proposition 2.2. Considering v in H1(K) we have

(a) K1/2v ∈ L∞(R) and
∣∣K1/2v

∣∣
L∞(R)

≤ C1‖v‖1;

(b) |v|L∞(R) ≤ C1‖v‖1;

(c) ‖v‖1 ≤
√

3|vy|,
where C1 = 4C and C > 0 is defined by

∣∣K1/2v
∣∣
L∞(R)

≤ C
∣∣K1/2v

∣∣
H1(R)

.

Moreover, if v ∈ H2(K) then

(d) |vy| ≤
√

2|Lv|;
(e) ‖v‖2 ≤ C̃1|Lv|,

for some C̃1 > 0 established to follow at the end of the proof below.

Proof - As
∣∣∣K1/2v

∣∣∣
2

H1(R)
≤

∫

R

|v(y)|2RKdy +

∫

R

[ |y|2
8

|v(y)|2RK + 2|vy(y)|2RK
]
dy,

then from Proposition 2.1 one has
∣∣∣K1/2v

∣∣∣
2

H1(R)
≤
∫

R

|v(y)|2RKdy + 4

∫

R

|vy(y)|2RKdy ≤ 4‖v‖2
1.

As the continuous immersion H1(R) →֒ L∞(R) holds, we have K1/2v ∈ L∞(R) and

there exists C > 0 such that
∣∣K1/2v

∣∣
L∞(R)

≤ C
∣∣K1/2v

∣∣
H1(R)

. This proves the statement

(a). As K1/2 ≥ 1, then from (a) one gets (b). The statement (c) is an immediate

consequence from Proposition 2.1-item (5). Notice that for all v ∈ H2(K) one has

(vy, vy) = (Lv, v) . From this and Proposition 2.1-item (5) one gets (d). Finally, let

v ∈ H2(K) and Lv = f with f ∈ L2(K). Defining w = K1/2v one can write

wyy =

(
1

4
+
y2

16

)
w −K1/2Lv.

From this, Proposition 2.1-item (5) and Proposition 2.2-item (c), one has
∫

R

[
|wyy|2R +

1

16
|w|2R +

y4

256
|w|2R +

y2

32
|w|2R +

1

2
|wy|2R +

y2

8
|wy|2R

]
dy =

∫

R

[
K|Lv|R − 1

4
ywyw

]
dy ≤ 3

2
|Lv|.

On the other hand, one has

|vyy|2R ≤ C2

[
|w|2R + y2|w|2R + y4|w|2R + y2|wy|2R + |wyy|2R

]
K−1.

From these two above inequalities, Proposition 2.1-item (5) and (d) one obtains (e)
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Proof of Theorem 2.2 - We will employ the Faedo-Galerking approximate method

to prove the existence of solutions. In fact, the approximate system is obtained from

(2.4) and this consists in finding zN (s, y) =
N∑

i=1
giN (s)ωi(y) ∈ VN , the solution of the

system of ordinary differential equations




(
zN
s (s), ω

)
+
(
LzN (s), ω

)
− 1/2

(
zN (s), ω

)
+
(
zN (s)zN

y (s), ω
)

= 0,

zN (0) = zN
0 =

N∑

j=1

(z0, ωj)ωj ,
(2.6)

for all ω belong to VN . The System (2.6) has local solution zN in 0 ≤ s < sN , see for

instance, Coddington-Levinson [7]. The estimates to be proven later allow us to extend

the solutions zN to whole interval [0, S[ for all S > 0 and to obtain subsequences that

converge, in convenient spaces, to the solution of (1.7) in the sense of Definition 2.2.

Estimate 1. Setting ω = zN (s) ∈ VN in (2.6)1, it yields

1

2

d

ds

∣∣zN (s)
∣∣2 +

∣∣zN
y (s)

∣∣2 − 1

2

∣∣zN (s)
∣∣2 +

∫

R

zN (s)zN
y (s)zN (s)Kdy = 0.

The integral above is upper bounded. In fact, by using Hölder inequality, Proposition

2.1-item (5) and Proposition 2.2-item (b) we can write
∣∣∣
∫

R

zN (s)zN
y (s)LzN (s)Kdy

∣∣∣
R

≤
√

3C1

∣∣zN
y (s)

∣∣2 ∣∣zN (s)
∣∣ .

From this and from precedent identity we get

1

2

d

ds

∣∣zN (s)
∣∣2 +

1

2

∣∣zN
y (s)

∣∣2 +
1

2

( ∣∣zN
y (s)

∣∣2 −
∣∣zN (s)

∣∣2
)
≤

√
3C1

∣∣zN
y (s)

∣∣2 ∣∣zN (s)
∣∣ . (2.7)

By using (1.6)2, the fact that basis (ωj) is orthonormal and (2.4) we have

∣∣zN
y (s)

∣∣2 =

N∑

j=1

(gjN (s))2 λj and |zN (s)|2 =

N∑

j=1

(gjN (s))2 .

By using these two identities we are able to prove that

1

2

(
|zN

y (s)|2 − |zN (s)|2
)
≥ 0 for all N ∈ N. (2.8)

In fact, note that

1

2

(
|zN

y (s)|2 − |zN (s)|2
)

=
1

2
(g1N (s))2 (λ1 − 1) +

1

2

N∑

j=2

(gjN (s))2 (λj − 1) .
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Next one can prove that

g1N (s) = 0 and

N∑

j=2

(gjN (s))2 (λj − 1) ≥ 0 for all s and N. (2.9)

From Proposition 2.1-item (4) the second statement in (2.9) is obvious. Therefore, it

suffices to prove that g1N (s) = 0 for all s and N. In fact, first, note that

g1N (s) =
( N∑

j=1

gjN (s)ωj , ω1

)
= (zN (s), ω1) .

Thus, we will show that (zN (s), ω1) = 0. Setting ω = ω1 ∈ VN in (2.6)1, it yields

(
zN
s (s), ω1

)
+
(
LzN (s), ω1

)
− 1

2

(
zN (s), ω1

)
+
(
zN (s)zN

y (s), ω1

)
= 0. (2.10)

By using (2.4) and Proposition 2.1-item (4) one can writes

(
LzN (s), ω1

)
=

1

2

(
zN (s), ω1

)
.

The non-linear term of (2.10) is null, because

(
zN (s)zN

y (s), ω1

)
=

1

2

1

(4π)1/4

∫

R

[(
zN (s)

)2]

y
dy.

we have used above Proposition 2.1-item (4), that is,

ω1(y) =
1

(4π)1/4
exp{−y2/4}.

From this, as ωj ∈ H1(K) then
(
zN
)2

and
(
zN
y

)2
belong to L1(R) and consequently

lim
|y|−→∞

zN (y, t) = 0. Thus,
(
zN (s)zN

y (s), ω1

)
= 0 for all N and s. Taking into account

these facts in (2.10), it yields
(
zN
s (s), ω1

)
= 0. Thus, by using (2.6)2 and hypothesis

on z0 we get
(
zN (s), ω1

)
=
(
zN (0), ω1

)
= 0. Therefore, this completes the proof of

statement of (2.9)

Since (2.8) is true, the inequality (2.7) is reduced to

1

2

d

ds

∣∣zN (s)
∣∣2 +

1

4

∣∣zN
y (s)

∣∣2 +
∣∣zN

y (s)
∣∣2
(1

4
−

√
3C1

∣∣zN (s)
∣∣
)
≤ 0. (2.11)

Next, we will prove that

|zN (s)| < 1

4
√

3C1

for all s ≥ 0. (2.12)
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In fact, suppose it is not true. Then there exists s∗ such that

|zN (s)| < 1

4
√

3C1

for all 0 ≤ s < s∗ and |zN (s∗)| =
1

4
√

3C1

.

Integrating (2.11) from 0 to s∗, it yields

1

2
|zN (s∗)|2 +

1

4

∫ s∗

0
|zN

y (s)|2ds +

∫ s∗

0
|zN

y (s)|2
(1

4
−

√
3C1|zN (s)|

)
ds ≤ 1

2
|z0|2.

From hypothesis on z0 we have

|zN (s∗)| < 1/4
√

3C1.

This contradicts
∣∣zN (s∗)

∣∣ = 1/4
√

3C1. Thus, (2.12) it is true. Therefore, integrating

(2.11) from 0 to s and by using (2.4) and (2.6)2, it yields

|zN (s)|2 +
1

2

∫ s

0
|zN

y (τ)|2dτ ≤ |z0|2 ≤ 1

4
√

3C1

. (2.13)

Estimate 2. In this estimate we will use the projection operator

PN : L2(K) −→ VN defined by v 7−→ PN (v) =

N∑

i=1

(v, ωi)ωi.

Thus, from (2.6)1 we have

N∑

i=1

(zN
s , ωi)ωi +

N∑

i=1

(LzN , ωi)ωi −
1

2

N∑

i=1

(zN , ωi)ωi +

N∑

i=1

(zN (s)zN
y (s), ωi)ωi = 0.

From this and definition of PN one can write

PN

(
zN
s

)
+ PN

(
LzN

)
− 1

2
PN

(
zN
)

+ PN

(
zN (s)zN

y (s)
)

= 0.

As PNVN ⊂ VN and zN ; zN
s ; LzN ∈ VN , then

zN
s = −LzN +

1

2
zN − PN

(
zN (s)zN

y (s)
)
. (2.14)
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The identity (2.14) is verified in the L∞
(
0, S;

[
H1(K)

]′)
sense. In fact, analyzing each

term on the right-hand side of (2.14) we prove this statement as one can see:

|LzN (s)|[H1(K)]′ = sup
v∈H1(K)
||v||1≤1

∣∣∣
(
zN
y (s), vy

)
L2(K)

∣∣∣
R

≤
∣∣zN

y (s)
∣∣ . (2.15)

|zN (s)|[H1(K)]′ = sup
v∈H1(K)
||v||1≤1

∣∣∣
(
zN (s), v

)
L2(K)

∣∣∣
R

≤
∣∣zN (s)

∣∣ . (2.16)

∣∣PN

(
zN (s)zN

y (s)
)∣∣

[H1(K)]′
≤ C1 sup

v∈H1(K)
||v||1≤1

∣∣zN (s)
∣∣ ∣∣zN

y (s)
∣∣ ‖(PNv)‖H1(K)

≤
∣∣zN (s)

∣∣ ∣∣zN
y (s)

∣∣ . (2.17)

As the proof of the three identities (2.15), (2.16) and (2.17) are similar, we will just

make the last one. In fact,

∣∣PN

(
zN (s)zN

y (s)
)∣∣

[H1(K)]′
= sup

v∈H1(K)
||v||≤1

∣∣∣
〈
PN

(
zN (s)zN

y (s)
)
, v
〉
[H1(K)]′×H1(K)

∣∣∣
R

= sup
v∈H1(K)
||v||≤1

∣∣∣
(
PN

(
zN (s)zN

y (s)
)
, v
)
L2(K)

∣∣∣
R

= sup
v∈H1(K)
||v||≤1

∣∣∣
(
zN (s)zN

y (s), PNv
)
L2(K)

∣∣∣
R

≤ C1 sup
v∈H1(K)
||v||≤1

∣∣zN (s)
∣∣ ∣∣zN

y (s)
∣∣ ‖(PNv)‖H1(K) .

On the other hand,

‖(PNv)‖2
H1(K) =

∥∥∥
N∑

i=1

(v, ωi)ωi

∥∥∥
2

=

N∑

i=1

(v, ωi)
2(ωiy, ωiy)

=

N∑

i=1

(v, ωi)
2(Lωi, ωi) =

N∑

i=1

(v, ωi)
2λi

=

N∑

i=1

(
v,
Lωi√
λi

)2

=

N∑

i=1

(
vy,

ωiy√
λi

)2

≤
∞∑

i=1

(
vy,

ωiy√
λi

)2

= ‖v‖2
H1(K) ≤ 1.
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Inserting this inequality in the precedent one we get (2.17). By using (2.15)-(2.17) in

(2.14), we get

|zN
s (s)|2

[H1(K)]′
≤

[
1

2
|zN (s)| +

(
1 + C1|zN (s)|

)
|zN

y (s)|
]2

≤
[(√

2

2
+ 1 +C1|zN (s)|

)
|zN

y (s)|
]2

≤
[(√

2

2
+ 1 +

C1

2
√√

3C1

)
|zN

y (s)|
]2

,

where we have used in the two last step the Poincaré inequality and Estimate (2.13).

Integrating this inequality from 0 to S and again using Estimate (2.13), we obtain
∫ S

0
|zN

s (s)|2
[H1(K)]′

ds ≤ C, (2.18)

where

C =

(√
2

2
+ 1 +

C1

2
√√

3C1

)2
1

2
√

3C1

.

The limit in the approximate problem (2.6): By Estimates 1 and 2, more pre-

cisely, from (2.13) and (2.18) we can extract subsequences of (zN ), which one will

denote by (zN ), and a function z : R × (0, S) → R satisfying
∣∣∣∣∣∣∣∣

zN ⇀ z weak star in L∞ (0, S;L2(K)
)
,

zN ⇀ z weak in L2
(
0, S;H1(K)

)
,

zN
s ⇀ zs weak in L2

(
0, S;

[
H1(K)

]′)
.

(2.19)

From these convergence we are able to pass to the limits in the linear terms of (2.6). The

nonlinear term needs careful analysis. In fact, from (2.19)1, 3 and Aubin’s compactness

result, see Aubin [1], Browder [4], Lions [15] or Lions [14], we can extract a subsequences

of (zN ), which one will denote by (zN ), such that

zN → z strongly in L2(0, S;L2(K)). (2.20)

On the other hand, for all φ(x, s) = v(x)θ(s) with v ∈ H1(K) and θ ∈ D(0, S) we have
∫ S

0

(
zN (s)zN

y (s), φ(s)
)
ds =

∫ S

0

(
zN
y , z

Nφ
)
ds (2.21)

=

∫ S

0

(
zN
y ,
[
zN − z

]
φ
)
ds+

∫ S

0

(
zN
y , zφ

)
ds.
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Next, we will show that the last two integrals on the right-hand side of (2.21) converge.

In fact, the first one can be upper bounded as follows

∣∣∣
∫ S

0

(
zN
y ,
[
zN − z

]
φ
)
ds
∣∣∣
R

≤
∫ S

0

∣∣zN
y

∣∣ |φ|L∞(R)

∣∣zN − z
∣∣ ds ≤

C1|φ|L∞(0,S;H1(K))

∣∣zN
y

∣∣
L2(0,S;L2(K))

∣∣zN − z
∣∣
L2(0,S;L2(K))

.

From this, (2.13) and (2.20) we have

∫ S

0

(
zN
y (s),

[
zN (s) − z(s)

]
φ(s)

)
ds −→ 0 as N −→ ∞.

The second integral also converges because from (2.19)2 we have, in particular, that

zN
y ⇀ zy weak in L2

(
0, S;L2(K)

)

and because φz ∈ L2
(
0, S;L2(K)

)
. Therefore, we have

∫ S

0

(
zN
y (s), z(s)φ(s)

)
ds −→

∫ S

0
(zy(s), z(s)φ(s)) ds as N −→ ∞.

Taking these two limits in (2.21) we get

∫ S

0

(
zN (s)zN

y (s), φ(s)
)
ds −→

∫ S

0
(z(s)zy(s), φ(s)) ds as N −→ ∞

Uniqueness of solutions of (1.7): The global weak solutions of the initial value

problem (1.7) is unique for all s ∈ [0, S], S > 0. In fact, from (2.19)1 and (2.19)3 the

duality 〈zs, z〉[H1(K)]′×H1(K) makes sense. Thus, suppose z and ẑ are two solutions of

(1.7) and let ϕ = z − ẑ, then ϕ satisfies

ϕs + Lϕ− ϕ

2
= − (zzy − ẑ ẑy) , ϕ(0) = 0. (2.22)

Taking the duality paring on the both sides of (2.22)1 with ϕ we obtain

1

2

d

ds
|ϕ(s)|2 + |ϕy(s)|2 =

1

2
|ϕ(s)|2 − (z(s)ϕy(s), ϕ(s)) − (ẑy(s)ϕ(s), ϕ(s)) . (2.23)
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From Proposition 2.2-item (b) and (c) one obtains

|(z(s)ϕy(s), ϕ(s)) + (ẑy(s)ϕ(s), ϕ(s))|
R
≤

|z(s)|L∞(R) |ϕy(s)| |ϕ(s)| + |ϕ(s)|L∞(R) |ẑy(s)| |ϕ(s)| ≤

C1

√
3 |ϕy(s)|

(
|zy(s)| + |ẑy(s)|

)
|ϕ(s)| ≤

1

2
|ϕy(s)|2 + 3C2

1

(
|zy(s)|2 + |ẑy(s)|2

)
|ϕ(s)|2 .

Substituting this inequality in (2.23) yields

1

2

d

ds
|ϕ(s)|2 +

1

2
|ϕy(s)|2 ≤

[
1

2
+ 3C2

1

(
|zy(s)|2 + |ẑy(s)|2

)]
|ϕ (s)|2 .

From (2.19)2 one has that z and ẑ belong to L2
(
0, S;H1(K)

)
. Therefore, applying the

Gronwall inequality one gets ϕ(s) = 0 in [0, S]

Asymptotic behavior: The asymptotic behavior, as s → ∞, of E(s) = 1
2 |z(s)|2

given by the unique solution of the Cauchy problem (1.7) is established as a consequence

of inequality (2.11). In fact, from (2.11), (2.12) and Banach-Steinhauss theorem we get

that the limit function z defined by (2.19) satisfies the inequality

1

2

d

ds
|z(s)|2 +

1

4
|zy(s)|2 ≤ 0.

From Proposition 2.1-item (5) we obtain

d

ds
|z(s)|2 +

1

4
|z(s)|2 ≤ 0.

As a consequence from this inequality we get the inequality (2.5) directly

Remark 2.1. The inequality (2.2) is a consequence of (2.5). In fact, from (1.3) we

obtain |z(s)|2 = (t + 1)1/2|u(t)|2 and |z0|2 = |u0|2. Moreover, as s = ln(t + 1), then

exp[−s/4] = (t+ 1)−1/4. Therefore, from (2.5) we have

|u(t)|2 =
1

t+ 1
|z(s)|2 ≤ |u0|2(t+ 1)−3/4
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3 Strong Solution

Setting the initial data u0 ∈ H1(K) we are able to show that the Cauchy problem

(1.1) has a unique real valued strong solution u = u(x, t) defined in R × (0, T ) for all

T > 0. Precisely, the strong solution of (1.1) is defined as follows.

Definition 3.1. A global strong solution for the initial value problem (1.1) is a real

valued function u = u(x, t) defined in R × (0, T ) for an arbitrary T > 0, such that

u ∈ L∞
loc(0,∞;H2(R)), ut ∈ L2

loc(0,∞;H1(R)),
∫ T

0

∫

R

utϕdxdt +

∫ T

0

∫

R

uuxϕdxdt +

∫ T

0

∫

R

uxϕxdxdt = 0, (3.1)

for all ϕ ∈ L2
(
0, T ;H1(R)

)
. Moreover, u satisfies the initial condition

u(x, 0) = u0(x) for all x ∈ R.

The existence of solution of (1.1) in the precedent sense is guaranteed by the fol-

lowing theorem.

Theorem 3.1. Suppose u0 ∈ H1(K), then there exists a unique global solution u of

(1.1) in the sense of Definition 3.1. Moreover, energy E(t) = 1
2 |u(t)|2 associated with

this solution satisfies

E(t) ≤ E(0)(t + 1)−3/4.

As the Cauchy problems (1.1) and (1.7) are equivalent, the Definition 3.1 and The-

orem 3.1 are also equivalent to Definition 3.2 and Theorem 3.2.

Definition 3.2. A global strong solution of the initial-boundary value problem (1.7) is

a real valued function z = z(y, s) defined in R × (0, S) for arbitrary S > 0, such that

z ∈ L∞
loc(0,∞;H2(K)), zs ∈ L2

loc(0,∞;H1(K)) for S > 0,
∫ S

0

∫

R

zsϕKdyds +

∫ S

0

∫

R

LzϕKdyds+ (3.2)

−1

2

∫ S

0

∫

R

zϕKdyds +

∫ S

0

∫

R

zzyϕKdyds = 0,

for all ϕ ∈ L2
(
0, S;H1(K)

)
. Moreover, z satisfies the initial condition

z(y, 0) = z0(y) for all y ∈ R.
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The existence of solutions of the system (1.7) will be also shown by means of Faedo-

Galerkin method and by using the special basis defined as solutions of spectral problem

(2.4) and the first eigenfunction ω1 of L such that {ω1}⊥ =
{
v ∈ L2(K); (ω1, v) = 0

}
.

Under these conditions one defines VN as in Section 2. Now we state the following

theorem.

Theorem 3.2. Suppose z0 ∈ H1(K) ∩ {ω1}⊥, then there exists a unique solution z

of (1.7) in the sense of Definition 2.2, provided |z0y| < 1/4
√

6C1 holds. Moreover, the

energy E(s) = 1
2 |z(s)|2 satisfies

E(s) ≤ E(0) exp [−s/4] .

Since Theorems 3.1 and 3.2 are equivalent it is suffices to prove Theorem 3.2.

Proof of Theorem 3.2 - We need to establish two estimates. In fact,

Estimate 3. Setting ω = LzN (s) ∈ VN in (2.6)1, it yields

1

2

d

ds
|zN

y (s)|2 + |LzN (s)|2 ≤
1

8
|zN (s)|2 +

1

2
|LzN (s)|2 +

∣∣∣
∫

R

zN (s)zN
y (s)LzN (s)Kdy

∣∣∣
R

.

Next, we will find the upper bound of the last term on the right-hand side of the above

inequality. In fact, by using Hölder inequality, Proposition 2.2-items (b), (c) and (d)

we can write

∣∣∣
∫

R

zN (s)zN
y (s)LzN (s)Kdy

∣∣∣
R

≤ C1

√
6
∣∣zN

y (s)
∣∣ ∣∣LzN (s)

∣∣2 .

From this we have

1

2

d

ds
|zN

y (s)|2 +
1

8
|LzN (s)|2 +

1

8

(
|LzN (s)|2 − |zN (s)|2

)
+

|LzN (s)|2
(1

4
−

√
6C1|zN

y (s)|
)
≤ 0.

(3.3)

Use a similar argument as in Estimate 1 we are able to prove that

1

8

(
|LzN (s)|2 − |zN (s)|2

)
≥ 0 for all N ∈ N. (3.4)
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In fact, note that

1

8

(
|LzN (s)|2 − |zN (s)|2

)
=

1

8
(g1N (s))2

(
λ2

1 − 1
)

+
1

8

N∑

j=2

(gjN (s))2
(
λ2

j − 1
)
.

From (2.9) we have

N∑

j=2

(gjN (s))2
(
λ2

j − 1
)
≥ 0 and g1N (s) = 0 for all s and N.

From this we obtain (3.4), see Estimate 1. Since (3.4) is true, the inequality (3.3) is

reduced to

1

2

d

ds
|zN

y (s)|2 +
1

8
|LzN (s)|2 + |LzN (s)|2

(1

4
−
√

6C1|zN
y (s)|

)
≤ 0. (3.5)

Next, proceeding as (2.12) we will prove that

|zN
y (s)| < 1/4

√
6C1 for all s ≥ 0. (3.6)

Therefore, by using (3.6) in (3.5), it yields

1

2

d

ds
|zN

y (s)|2 +
1

8
|LzN (s)|2 ≤ 0.

Integrating from 0 to s and using the hypothesis on the initial data we obtain

|zN
y (s)|2 +

1

4

∫ s

0
|LzN (τ)|2dτ ≤ |z0y|2 <

1

4
√

6C1

. (3.7)

Estimate 4. Setting ω = zN
s (s) ∈ VN in (2.6)1, it yields

|zN
s (s)|2 = −

(
LzN (s), zN

s (s)
)

+
1

2

(
zN (s), zN

s (s)
)
−
(
zN (s)zN

y (s), zN
s (s)

)
.

Next, we will estimate the three inner product on the right-hand side of the above

identity. In fact, by usual inequalities and Proposition 2.2 we have

|zN
s (s)|2 ≤ C2

2

[∣∣LzN (s)
∣∣+ 1

2

∣∣zN (s)
∣∣+
∣∣zN

y (s)
∣∣2
]2

,

where C2 = max{1,
√

3C1}. From this we get a constant C > 0 independent of N and

s such that
∫ S

0

∣∣zN
s (s)

∣∣2 ds ≤ C, (3.8)
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where C depends on the constant of Estimate (3.7), that is, 1/4
√

6C1 and of the con-

stants of immersions established in Proposition 2.2.

From (3.7) and (3.8) we can take the limit on the approximate system (2.6). In

fact, the analysis of the limit as N −→ ∞ in the linear terms of (2.6) is similar to

those of Section 2. However, the nonlinear term is made as follows. From (3.7), (3.8)

and Aubin-Lions theorem one extracts subsequences of (zN ), which will be denoted by

(zN ), such that

∣∣∣∣∣∣∣∣∣∣∣

zN ⇀ z weak in L2
(
0, S;H2(K)

)
as N −→ ∞,

zN → z strong in L2
(
0, S;L2(K)

)
as N −→ ∞,

zN
y → zy strong in L2

(
0, S;L2(K)

)
as N −→ ∞,

zN
s ⇀ zs weak in L2

(
0, S;L2(K)

)
as N −→ ∞.

(3.9)

From usual inequalities and Proposition 2.2 one has

∫

R

∣∣zN
y (s)zN (s) − zy(s)z(s)

∣∣2
R
Kdy =

∫

R

∣∣[zN
y (s) − zy(s)

]
zN (s) + zy(s)

[
zN (s) − z(s)

]∣∣2
R
Kdy ≤

2
∣∣zN (s)

∣∣2
L∞(R)

∣∣zN
y (s) − zy(s)

∣∣2 + 2 |zy(s)|2
∣∣zN (s) − z(s)

∣∣2 ≤

C
[∣∣zN

y (s) − zy(s)
∣∣2 +

∣∣zN (s) − z(s)
∣∣2
]
.

Taking (3.9) in this inequality, it yields

∫ S

0

∣∣zN
y (s)zN (s) − zy(s)z(s)

∣∣2 ds ≤

C

∫ S

0

[∣∣zN
y (s) − zy(s)

∣∣2 +
∣∣zN (s) − z(s)

∣∣2
]
ds −→ 0 as N −→ ∞.

(3.10)

Therefore, one has

zN
y z

N −→ zyz strong in L2
(
0, S;L2(K)

)
as N −→ ∞

Thus, the proof of Theorem 3.2 is completed by using a similar argument as in

Section 2.

Finally, the uniqueness of solutions and the exponential decay rate of the energy are

established in a similar way as in Section 2
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4 Regularity of Strong Solutions

Our goal here is to prove a result of regularity for strong solutions established in

Section 3. We will achieve this goal by means of the following regularity result

Theorem 4.1. Let z = z(y, s) be a strong solution of problem (1.7), which is guaran-

teed by Theorem 3.2, then z ∈ C0
(
[0, T ];H1(K)

)
.

Proof: We will show that z is the limit of a Cauchy sequence. In fact, suppose

M, N ∈ N fixed with N > M and zN , zM are two solutions of (1.7). Thus, vN =

zN − zM satisfies

vN
s (s) + LvN (s) − 1

2
vN (s) = PM

(
zM (s)zM

y (s)
)
− PN

(
zN (s)zN

y (s)
)

in L2(K).

Therefore, from (2.6), one has that

(
vN
s (s), ω

)
+
(
LvN (s), ω

)
− 1/2

(
vN (s), ω

)
=

(
PM

(
zM (s)zM

y (s)
)
−
(
PN

(
zN (s)zN

y (s)
)
, ω
)
, ω
)
,

(4.1)

for all ω ∈ V N ⊂ L2(K), where PN , PM are projection operators defined in L2(K) with

values in V N , VM respectively.

Estimate 5. Setting ω = vN (s) ∈ VN in (4.1) we get

1

2

d

ds

∣∣vN (s)
∣∣2 +

∣∣vN
y (s)

∣∣2 − 1

2

∣∣vN (s)
∣∣2 ≤

∣∣∣PN

(
zN (s)zN

y (s) − z(s)zy(s)
)

+ PN (z(s)zy(s))−

PM (z(s)zy(s)) + PM

(
z(s)zy(s) − zM (s)zM

y (s)
) ∣∣∣
∣∣vN (s)

∣∣ ≤
∣∣zN (s)zN

y (s) − z(s)zy(s)
∣∣2 + |PN (z(s)zy(s)) − PM (z(s)zy(s))|2 +

∣∣z(s)zy(s) − zM (s)zM
y (s)

∣∣2 +
3

4

∣∣vN (s)
∣∣2 .

Integrating form 0 to S one has

1

2

∣∣vN (s)
∣∣2 +

∫ S

0

∣∣vN
y (s)

∣∣2 ds ≤ 1

2

∣∣vN
0

∣∣2 +

∫ S

0

∣∣zN (s)zN
y (s) − z(s)zy(s)

∣∣2 ds+
∫ S

0
|PN (z(s)zy(s)) − PM (z(s)zy(s))|2 ds+

∫ S

0

∣∣z(s)zy(s) − zM (s)zM
y (s)

∣∣2 ds+
5

4

∫ S

0

∣∣vN (s)
∣∣2 ds.

(4.2)
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The task now is to show that

∫ S

0
|PN (z(s)zy(s)) − PM (z(s)zy(s))|2 ds −→ 0 as N −→ ∞. (4.3)

In fact, as zzy ∈ L2
(
0, S;L2(K)

)
, then z(s)zy(s) ∈ L2(K) a. e. in [0, S]. Therefore,

PN (z(s)zy(s)) −→ z(s)zy(s) in a. e. in [0, S] as N −→ ∞. That is,

|PN (z(s)zy(s)) − z(s)zy(s)| −→ 0 in a. e. in [0, S] as N −→ ∞. Moreover,

|PN (z(s)zy(s)) − z(s)zy(s)| ≤ 2 |z(s)zy(s)| and |z(s)zy(s)| ∈ L2(0, S).

Thus, applying Lebesgue’s dominated convergence theorem, it yields

∫ S

0
|PN (z(s)zy(s)) − z(s)zy(s)|2 ds −→ 0 as N −→ ∞.

In other words

PN (zzy) −→ zzy in L2
(
0, S;L2(K)

)
as N −→ ∞.

Therefore, (PN (zzy))N∈N
is a Cauchy sequence in L2

(
0, S;L2(K)

)
. Hence we have

that (4.3) is true

On the other hand, from (4.2) and Granwall inequality one gets

1

2

∣∣vN (s)
∣∣2 +

∫ S

0

∣∣vN
y (s)

∣∣2 ds ≤
[1
2

∣∣vN
0

∣∣2 +

∫ S

0

∣∣zN (s)zN
y (s) − z(s)zy(s)

∣∣2 ds+
∫ S

0
|PN (z(s)zy(s)) − PM (z(s)zy(s))|2 ds+

∫ S

0

∣∣z(s)zy(s) − zM (s)zM
y (s)

∣∣2 ds
]
exp {(5/4)S} .

From this, hypothesis on the initial data, (3.10) and (4.3) one gets that
(
zN
)
N∈N

is a

Cauchy sequence in C0
(
0, S;L2(K)

)
.

To obtain the desired regularity one needs one more estimate as follows.
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Estimate 6. Setting ω = LvN (s) ∈ VN in (4.1) we get

1

2

d

ds

∣∣vN
y (s)

∣∣2 +
∣∣LvN (s)

∣∣2 − 1

2

∣∣vN
y (s)

∣∣2 ≤
∣∣∣PN

(
zN (s)zN

y (s) − z(s)zy(s)
)

+ PN (z(s)zy(s))−

PM (z(s)zy(s)) + PM

(
z(s)zy(s) − zM (s)zM

y (s)
) ∣∣∣
∣∣LvN (s)

∣∣ ≤
∣∣zN (s)zN

y (s) − z(s)zy(s)
∣∣2 + |PN (z(s)zy(s)) − PM (z(s)zy(s))|2 +

∣∣z(s)zy(s) − zM (s)zM
y (s)

∣∣2 +
3

4

∣∣LvN (s)
∣∣2 .

Integrating from 0 to S and using Granwall inequality, one gets

1

2

∣∣vN
y (s)

∣∣2 +

∫ S

0

∣∣LvN
y (s)

∣∣2 ds ≤
[1
2

∣∣vN
0y

∣∣2 +

∫ S

0

∣∣zN (s)zN
y (s) − z(s)zy(s)

∣∣2 ds+
∫ S

0
|PN (z(s)zy(s)) − PM (z(s)zy(s))|2 ds+

∫ S

0

∣∣z(s)zy(s) − zM (s)zM
y (s)

∣∣2 ds
]
exp {(5/4)S} .

From this, hypothesis on the initial data, (3.10) and (4.3) one gets that
(
zN
)
N∈N

is

a Cauchy sequence in C0
(
0, S;H1(K)

)
. Thus, we have the desired regularity. And

therefore the proof of Theorem 4.1 is ended
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