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Abstract. In the paper, a predator–prey system with Beddington–DeAngelis functional
response and constant rate harvesting is considered. Various dynamical behaviors of
the system including saddle–node points and a cusp of codimension 2 are investigated
by using the analysis of qualitative method and bifurcation theory. Also, it is shown
that the system undergoes several kinds of bifurcation such as the saddle–node bifur-
cation, the subcritical and supercritical Hopf bifurcation, Bogdanov–Takens bifurcation
by choosing the death rate of the predator and the harvesting rate of the prey as the
bifurcation parameters. Some numerical examples are illustrated in order to substan-
tiate our theoretical results. These results unveil far richer dynamics compared to the
system without harvesting.
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1 Introduction

In population dynamics, a lot of mathematical models to investigate the relationship between
preys and predators have been suggested by ecologists and mathematicians [2, 16]. In fact,
there are well-known predator–prey models such as Lotka–Volterra models [12, 13], Holling-
type models [7, 17], Michaelis–Menten-type models (so called ratio-dependent predator–prey
models) [1, 5], Ivlev-type models [10] and so on. Especially, many researchers are interested
in the following Beddington–DeAngelis predator–prey model

x′(t) = rx(1− x
K
)− γxy

βy + x + α
,

y′(t) = −dy +
δxy

βy + x + α
,

(x(0+), y(0+)) = (x0, y0),

(1.1)
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where x, y represent the population density of the prey and the predator at time t, respectively.
Usually, K is called the carrying capacity of the prey. The constant r is called the intrinsic
growth rate of the prey. The constants δ, d are the conversion rate and the death rate of the
predator, respectively. The term βy measures the mutual interference between predators. The
reason for the model is that if one take the parameter β close to 0 then the model can be
regarded as a Holling-type II predator–prey model and also one take the parameter α close to
0 then the model can be though of a ratio-dependent predator–prey model. The dynamics of
system (1.1) has been studied extensively in [3,4,6,8,9]. Research on this system (1.1) revealed
various dynamics such as deterministic extinction, existence of multiple attractors and stable
limit cycles, etc.

For mathematical simplicity, we need to rewrite system (1.1) as a dimensionless system
with following scaling

rt→ t,
x
K
→ x,

β

α
y→ y.

Then we can obtain the following dimensionless system
x′(t) = x(1− x)− bxy

y + ax + 1
,

y′(t) = −Dy +
exy

y + ax + 1
,

(1.2)

where a = K
α , b = γ

rβ , D = rd and e = δK
rα are positive constants.

From the point of view of human needs, the exploitation of biological resources and the
harvesting of populations are commonly practiced in fishery, forestry, and wildlife manage-
ment. Concerning the conservation for the long-term benefits of humanity, there is a wide
range of interest in the use of bioeconomic models to gain insight into the scientific manage-
ment of renewable resources like fisheries and forestries [18]. For the reason, it is important
to deal with mathematical models with the harvesting of populations. Thus, by taking into
account the above reasons, in the paper, we will focus on the Beddington–DeAngelis-type
predator–prey system with constant rate harvesting as follows;

x′(t) = x(1− x)− bxy
y + ax + 1

− h,

y′(t) = −Dy +
exy

y + ax + 1
.

(1.3)

The organization of this paper is as follows. In next section, we study the existence of the
equilibria and their stability in the small neighborhood for system (1.3). In Section 3 we show
that system (1.3) can display bifurcation phenomena such as a saddle-node bifurcation, super-
critical and subcritical Hopf bifurcations and Bogdanov–Takens bifurcation for a = 3, b = 1.
Finally, we give a conclusion in Section 5.

2 Equilibria and stabilities

In this section, we investigate dynamical behaviors of system (1.3) around equilibria. From
biological point of view, we shall assume that the dynamics of system (1.3) is on the positive
cone R2

+ = {(x, y) : x ≥ 0, y ≥ 0}. Also, we shall consider the biologically meaningful initial
condition x(0) ≥ 0, y(0) ≥ 0. Since the right-hand side two equations of system (1.3) are
continuous and Lipschitzian in the close first quadrant R2

+, it is easy to see that solution of
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system (1.3) exists and is unique for positive initial conditions. Also, we can see that the x-axis
is invariant under the flow. However, this is not the case on the y-axis. In fact, all solutions to
the system (1.3) touching the y-axis cross out of the first quadrant due to the harvesting rate h
of the prey. Thus the first quadrant is no longer positively invariant under the flow generated
by system (1.3), which makes the qualitative analysis of system (1.3) difficult.

In order to find out equilibria of system (1.3), we must consider the following two equa-
tions

f1(x, y) = 0, f2(x, y) = 0, (2.1)

where 
x(1− x)− bxy

y + ax + 1
− h = f1(x, y),

−Dy +
exy

y + ax + 1
= f2(x, y).

(2.2)

It is obvious that equation (2.1) has at most four equilibria as follows;

(xi, yi) and (x∗i , y∗i )(i = 1, 2),

where, for i = 1, 2, 
xi =

1 + (−1)i
√

1− 4h
2

and yi = 0,

x∗i =
A + (−1)i

√
A2 − 4B

2
and y∗i =

e− aD
D

x∗i − 1,

(2.3)

A = 1− b(e−aD)
e and B = h− bD

e .
For simplicity, let (x0, y0) = ( 1

2 , 0) and (x∗0 , y∗0) = ( A
2 , e−aD

D x∗0 − 1) when h = 1
4 and A2 = 4B,

respectively.
Now, we summarize conditions for the existence of the above equilibria.

Lemma 2.1. Let A = 1− b(e−aD)
e , B = h− bD

e , h0 = A2

4 + bD
e and h1 = De−(a+1)D2

(e−aD)2 .

(i) System (1.3) has no equilibria in R2
+ if h > max{ 1

4 , h0}.

(ii) System (1.3) has a unique equilibrium (x0, y0) in R2
+ if h0 < h = 1

4 .

(iii) System (1.3) has two equilibria (x1, y1) and (x2, y2) in R2
+ if one of the following conditions

holds:

(iii.1) 0 < h < 1
4 and e ≤ aD;

(iii.2) bD
e ≤ h < min{ 1

4 , h0} and be ≥ abD + e;

(iii.3) h0 < h < 1
4 .

(iv) System (1.3) has three equilibria (x∗0 , y∗0), (x1, y1) and (x2, y2) in R2
+ if h = h0 < 1

4 , be <

abD + e and (e− aD)(e + abD− be) > 2eD.

(v) System (1.3) has four equilibria, (x∗1 , y∗1), (x∗2 , y∗2), (x1, y1) and (x2, y2) in R2
+ if max{h1, bD

e } <
h < min{h0, 1

4}, be < abD + e and (e− aD)(abD + e− be) > 2eD.
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Proof. From equations (2.1), we have the equations x2− x + h = 0 for y = 0 and x2− Ax + B =

0 for y = e−aD
D x− 1, where A = 1− b(e−aD)

e and B = h− bD
e . Since the discriminants of x2 −

x + h = 0 and x2 − Ax + B = 0 are 1− 4h and A2 − 4B, respectively, there is no equilibrium
of system (1.3) if h > max{ 1

4 , h0}. In addition, the only equilibrium (x0, y0) = ( 1
2 , 0) exists

when h0 < h = 1
4 . In order to discuss the equilibria of the equation x2 − Ax + B = 0 for y =

e−aD
D x− 1 we must consider the nonnegative discriminant, the positiveness of the roots of x2−

Ax + B = 0 satisfying y = e−aD
D x− 1 > 0. In fact, x2− Ax + B = 0 has the double root (x∗0 , y∗0)

if h = h0 < 1
4 and it is positive if be < abD + e and (e− aD)(e + abD− be) > 2eD. Moreover,

the equation x2 − Ax + B = 0 has two distinct roots (x∗i , y∗i ), i = 1, 2 if h < min{h0, 1
4} and

these roots are positive if max{h1, bD
e } < h, be < abD + e and (e− aD)(abD + e− be) > 2eD.

Therefore, (i)∼(v) hold.

The Jacobian matrix of system (1.3) is defined by

J(x, y) =


1− 2x− by(y + 1)

(y + ax + 1)2 − bx(ax + 1)
(y + ax + 1)2

ey(y + 1)
(y + ax + 1)2 −D +

ex(ax + 1)
(y + ax + 1)2

 , (2.4)

where x and y are coordinates of equilibria, respectively. Thus elementary calculations yield,
for i = 1, 2,

J(xi, yi) =

1− 2xi − bxi

axi + 1
0 −D +

exi

axi + 1

 (2.5)

and

J(x∗i , y∗i ) =


1− 2x∗i −

bD(e− aD)

e2
y∗i
x∗i

−bD2

e2

(
a +

1
x∗i

)
D(e− aD)

e
y∗i
x∗i

−D +
D2

e

(
a +

1
x∗i

)
 , (2.6)

if equilibria exist.

Theorem 2.2. If h0 < h = 1
4 , then system (1.3) has a unique equilibrium (x0, y0) = ( 1

2 , 0). Moreover,

(i) (x0, y0) is a saddle if e = D(a + 2);

(ii) (x0, y0) is a saddle-node if e 6= D(a + 2), and it is attracting (repelling) if e < D(a + 2)
(e > D(a + 2)).

Proof. From Lemma 2.1, system (1.3) has a unique equilibrium (x0, y0) if h0 < h = 1
4 . From

(2.5), we get

J(x0, y0) =

0 − b
a + 2

0 −D +
e

a + 2

 (2.7)

and hence the determinant of the matrix J(x0, y0) is zero. Thus the equilibrium (x0, y0) is
degenerate. In order to determine the dynamics of system (1.3) in the neighborhood of the
equilibrium (x0, y0), we need to transform the equilibrium (x0, y0) of system (1.3) to the origin
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and expand the right hand side of system (1.3) as a Taylor series. Then system (1.3) can be
written as 

x′(t) = − b
2 + a

y− x2 − 4b
(2 + a)2 xy +

2b
(2 + a)2 y2

+
8ab

(2 + a)3 x2y− 4b(a− 2)
(2 + a)3 xy2 − 4b

(2 + a)3 y3 + P1(x, y),

y′(t) = (−D +
e

2 + a
)y +

4e
(2 + a)2 xy− 2e

(2 + a)2 y2

− 8ae
(2 + a)3 x2y +

4e(a− 2)
(2 + a)3 xy2 +

4e
(2 + a)3 y3 + Q1(x, y),

(2.8)

where P1(x, y) and Q1(x, y) are C∞ functions of order at least four in (x, y).
In order to show the conclusion (i), suppose that the condition e = D(a + 2) holds. Then

both eigenvalues of the matrix J(x0, y0) are zero. We use the procedure used in [22] to reduce
system via the normal form method. First, let τ = − b

2+a t in system (2.8). Then system (2.8)
becomes {

x′(τ) = y + P2(x, y),

y′(τ) = Q2(x, y),
(2.9)

where P2(x, y) and Q2(x, y) are C∞ functions of order at least two in (x, y). From y+ P2(x, y) =
0, we can obtain the implicit function

y = φ(x) = −2 + a
b

x2 +
4
b

x3 + R1(x), (2.10)

where R1(x) is a C∞ function of order at least four. And we have

ψ(x) ≡ Q(x, φ(x)) =
4e
b2 x3 +

2(4 + 4a + a2 − 8b)e
(2 + a)b3 x4 + R2(x), (2.11)

where R2(x) is a C∞ function of order at least five. Using the notation of Theorem 7.2 of
Chapter 2 in [22], we can find k = 2m + 1 = 3, m = 1, and ak =

4e
b2 > 0. Thus the equilibrium

(0, 0) of system is a saddle point. Therefore (x0, y0) is a saddle if e = D(a + 2).
In order to prove the conclusion (ii), assume that e 6= D(a + 2) hold. In fact, since the trace

of the matrix J(x0, y0) is not zero, one of the eigenvalues of the matrix J(x0, y0) is zero and the
other is nonzero. By letting x = X − b

2+a Y and y = (−D + e
2+a )Y, system (2.8) can be written

as 

X′(t) = − X2 +
2b(2 + a + 2D)

(2 + a)2 XY

− b(b(4 + 4a + a2 + 4e)− 2(e− (2 + a)D)2

(2 + a)4 Y2 + P3(X, Y),

Y′(t) = (−D +
e

2 + a
)Y +

4e
(2 + a)2 XY− 2e(2b− (2 + a)D + e)

(2 + a)3 Y2 + Q3(X, Y),

(2.12)

where P3(X, Y) and Q3(X, Y) are C∞ functions of order at least three in (X, Y). Again, let
τ = (−D + e

2+a )t. Then dτ = (−D + e
2+a )dt and hence system (2.12) becomes

X′(τ) =
2 + a

(2 + a)D− e
X2 − 2b(2 + a + 2D)

(2 + a)((2 + a)D− e)
XY

+
b(−2(−(2 + a)D + e)2 + b(4 + 4a + a2 + 4e))

(2 + a)3((2 + a)D− e)
Y2 + P4(X, Y),

Y′(τ) = Y− 4e
(2 + a)((2 + a)D− e)

XY +
2e(2b− (2 + a)D + e)
(2 + a)2((2 + a)D− e)

Y2 + Q4(X, Y),

(2.13)
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where P4(X, Y) and Q4(X, Y) are C∞ functions of order at least three in (X, Y). Now using
Theorem 7.1 of Chapter 2 in [22], we can obtain that (x0, y0) is attracting(repelling) if e <

D(a + 2) (e > D(a + 2)).

Theorem 2.3. Suppose that system (1.3) has only two equilibria (x1, y1) and (x2, y2). Then the
dynamics of system (1.3) has the following properties.

(i) (x1, y1) is a hyperbolic saddle and (x2, y2) is a hyperbolic stable node if 0 < h < 1
4 and e ≤ aD.

(ii) Assume that conditions bD
e ≤ h < min{ 1

4 , h0} and be ≥ abD + e hold.

(ii.1) (x1, y1) and (x2, y2) are hyperbolic saddles if h < h1;

(ii.2) (x1, y1) is a hyperbolic saddle and (x2, y2) is a hyperbolic stable node if h > h1 and e ≤
(a + 2)D;

(ii.3) (x1, y1) is a hyperbolic unstable node and (x2, y2) is a hyperbolic saddle if h > h1 and
(a + 2)D < e.

(iii) Assume that the conditions h0 < h < 1
4 and abD < be < abD + e hold.

(iii.1) (x1, y1) and (x2, y2) are hyperbolic saddles if h < h1;

(iii.2) (x1, y1) is a hyperbolic saddle and (x2, y2) is a hyperbolic stable node if h > h1 and aD <

e ≤ (a + 2)D;

(iii.3) (x1, y1) is a hyperbolic unstable node and (x2, y2) is a hyperbolic saddle if h > h1 and
(a + 2)D < e.

Proof. It is easy to show the existence of equilibria under given conditions due to Lemma
2.1. Thus we have only to consider their stabilities. It follows from (2.5) that the eigenvalues
of the Jacobian matrix J at the equilibria (x1, y1) and (x2, y2) are 1 − 2xi and −D + exi

axi+1

(i = 1, 2). Since 1− 2x1 =
√

1− 4h > 0 and 1− 2x2 = −
√

1− 4h < 0 if h < 1
4 , the dynamics

of system (1.3) depends on the sign of the eigenvalues −D + exi
axi+1 for i = 1, 2. Note that

−D + ex1
ax1+1 = −D + e(1−

√
1−4h)

2+a(1−
√

1−4h)
≡ E1 and −D + ex2

ax2+2 = −D + e(1+
√

1−4h)
2+a(1+

√
1−4h)

≡ E2.

(i) Since e ≤ aD, E1 = −2D+(e−aD)H−
2+aH− < 0 and E2 = −2D+(e−aD)H+

2+aH+ < 0, where H± = 1±√
1− 4h. Thus, by linear stability analysis, (x1, y1) is a hyperbolic saddle and (x2, y2) is a

hyperbolic stable node.

Now consider the following cases.

Case (I) : aD < e ≤ (a + 2)D
If aD < e ≤ (a+ 2)D, then the eigenvalue E1 = −D + e(1−

√
1−4h)

2+a(1−
√

1−4h)
= e−(a+2)D−(e−aD)

√
1−4h

2+a(1−
√

1−4h)
is negative. On the other hand, the sign of the eigenvalue E2 depends on that of e− (a+ 2)D+

(e− aD)
√

1− 4h. Elementary calculations yield that E2 > 0(< 0) if h < h1(h > h1), where
h1 = De−(a+1)D2

(e−aD)2 .

Case (II) : (a + 2)D < e
If (a + 2)D < e, then the eigenvalue E2 = −D + e(1+

√
1−4h)

2+a(1+
√

1−4h)
= e−(a+2)D+(e−aD)

√
1−4h

2+a(1+
√

1−4h)
is

positive. In addition, if h < h1(h > h1) then e− (a + 2)D − (e− aD)
√

1− 4h < 0(> 0) and
hence E1 < 0(> 0).
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(ii) Note that the condition be ≥ abD + e implies e ≥ abD.
(ii.1) From cases (I) and (II), we know that the sign of the multiplication of the eigenvalues

E1 and E2 is always negative if h < h1. Thus the equilibria (x1, y1) and (x2, y2) are hyperbolic
saddles.

(ii.2) By case (I), E1 < 0 when e ≤ (a + 2)D and E2 < 0 when h > h1 and e ≤ (a + 2)D.
Therefore (x1, y1) is a hyperbolic saddle and (x2, y2) is a hyperbolic stable node.

(ii.3) Similar to (ii.2), by using case (II), we have that (x1, y1) is a hyperbolic unstable node
and (x2, y2) is a hyperbolic saddle if h > h1 and (a + 2)D < e.

(iii) Since aD > e, we get that h0 > 1
4 . Thus if h0 < h < 1

4 , aD < e. Therefore, similar to the
proof of (ii), we can know that (iii.1), (iii.2) and (iii.3) hold.

Theorem 2.4. If h = h0 < 1
4 , be < abD + e and (e − aD)(e + abD − be) > 2eD, then system

(1.3) has three equilibria (x∗0 , y∗0) = ( A
2 , e−aD

D x∗0 − 1), (x1, y1) and (x2, y2) where A = 1− b(e−aD)
e .

Moreover,

(i) (x∗0 , y∗0) is a saddle-node if a3b2D2 + abDe(a(1− 2b−D)+ 2(1+ e))+ be2(a(b− e)− 2− e)−
De(2 + a) 6= 0;

(ii) (x∗0 , y∗0) is a cusp of codimension 2 if a3b2D2 − a2bDe(−1 + 2b + D) + ae(2bD + e(−D +

b(−1 + b + 2D))) + e2(−2D + e− b(2 + e)) = 0.

(iii) (x1, y1) is a hyperbolic unstable node and (x2, y2) is a hyperbolic saddle if h1 < h and (a+ 2)D <

e < aD + e
b .

Proof. It follows from Lemma 2.1 that three equilibria (x∗0 , y∗0), (x1, y1) and (x2, y2) of system
(1.3) exist if h = h0 < 1

4 , be < abD+ e and (e− aD)(e+ abD− be) > 2eD. In addition, similarly
to the proof of Theorem 2.3 we can easily show that (iii) holds.

It is easy to see that the determinant of the matrix J(x∗0 , y∗0) is zero. Thus the equilibrium
(x∗0 , y∗0) is degenerate and at least one of the eigenvalues of the matrix J(x∗0 , y∗0) is zero. In fact,
from elementary calculation, we obtain the eigenvalues are E1 = 0 and

E2 =
D

e2(−abD− e + be)

[
a3b2D2 − a2bDe(−1 + 2b + D)

+ ae(2bD + e(−D + b(−1 + b + 2D)))

+ e2(−2D + e− b(2 + e))
]
.

(2.14)

In order to determine the dynamics of system (1.3) in the neighborhood of the equilibrium
(x∗0 , y∗0), we need to transform the equilibrium (x∗0 , y∗0) of system (1.3) to the origin and expand
the right hand side of system (1.3) as a Taylor series. Then system (1.3) can be written as{

x′(t) = B1x + B2y + B3x2 + B4xy + B5y2 + g1(x, y),

y′(t) = C1x + C2y + C3x2 + C4xy + C5y2 + g2(x, y),
(2.15)

where g1(x, y) and g2(x, y) are C∞ functions of at least the third order with respect to (x, y)



8 J. Lee and H. Baek

and

B1 =
b(aD− e)(a2bD2 + 2De + aDe− abDe)

e2(−abD− e + be)
,

B2 =
a2b2D3 + 2bD2e + abD2e− ab2D2e)

e2(−abD− e + be)
,

B3 = −1− 2bD(−a2D + ae)(a2bD2 + 2De + aDe− 2abDe− e2 + be2)

e2(−abD− e + be)2 ,

B4 =
4b(a3bD4 + 2aD3e + a2D3e− 2a2bD3e− D2e2 − aD2e2 + abD2e2)

e2(−abD− e + be)2 ,

B5 =
2D3(a2b2D + 2be + abe− ab2e)

e2(−abD− e + be)2 ,

(2.16)

C1 =
(e− aD)(a2bD2 + 2De + aDe− 2abDe− e2 + be2)

e(−abD− e + be)
,

C2 = −D(a2bD2 + 2De + aDe− 2abDe− e2 + be2)

e(−abD− e + be)
,

C3 = −2D(a2D− ae)(a2bD2 + 2De + aDe− 2abDe− e2 + be2)

(−abD− e + be)2 ,

C4 = −4(a3bD4 + 2aD3e + a2D3e− 2a2bD3e− D2e2 − aD2e2 + abD2e2)

e(−abD− e + be)2 and

C5 = −2D3(a2bD + 2e + ae− abe)
e(−abD− e + be)2 .

(2.17)

Now, assume that the condition of (i) holds. Then it follows from (2.14) that the eigenvalue
E2 is nonzero, which means that the trace of J(x∗0 , y∗0) is nonzero. Thus B1 + C2 6= 0. Since
the determinant of the matrix J(x∗0 , y∗0) is zero, B1C2 − B2C1 = 0. Consider C∞ changes of
coordinates in a small neighborhood of (0, 0) as follows;

x = x1, y =
1
B2

(y1 − B1x1) and

x1 = x2 + y2, y1 = (B1 + C2)y2.
(2.18)

Then system (2.15) can be transformed into

x′2(t) =
(

F1 −
G2

G1

)
x2

2 +

(
2F1 + F2G1 −

2G2

G1
− G3

)
x2y2

+

(
F1 + F2G1 + F3G2

1 −
G2

G1
− G3 − G1G4

)
y2

2 + k1(x2, y2),

y′2(t) = G1y2 +
G2

G1
x2

2 +

(
2G2

G1
+ G3

)
x2y2 +

(
G2

G1
+ G3 + G1G4

)
y2

2 + k2(x2, y2),

(2.19)

where k1(x2, y2) and k2(x2, y2) are C∞ functions with at leat the third order with respect to
(x2, y2) and

F1 = B3 −
B1B4

B2
+

B2
1B5

B2
2

, F2 =
B4

B2
− 2B1B5

B2
2

, F3 =
B5

B2
2

,

G1 = B1 + C2, G2 = B1B3 −
B2

1B4

B2
+

B3
1B5

B2
2

+ B2C3 − B1C4 +
B2

1C5

B2
,

G3 =
B1B4

B2
− 2B2

1B5

B2
2

+ C4 −
2B1C5

B2
, G4 =

B1B5

B2
2

+
C5

B2
.
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Now, let τ = G1t. Then system (2.19) becomes



x′2(τ) =
F1G1 − G2

G2
1

x2
2 +

2F1G1 + F2G2
1 − 2G2 − G1G3

G2
1

x2y2

+

(
F2 + F3G1 − G4 +

F1G1 − G2 − G1G3

G2
1

)
y2

2 + l1(x2, y2),

y′2(τ) = y2 +
G2

G2
1

x2
2 +

2G2 + G1G3

G2
1

x2y2 +

(
G2

G2
1
+

G3

G1
+ G4

)
y2

2 + l2(x2, y2),

(2.20)

where l1(x2, y2) and l2(x2, y2) are C∞ functions with at leat the third order with respect to
(x2, y2).

Let ϕ(x2, y2) =
F1G1−G2

G2
1

x2
2 +

2F1G1+F2G2
1−2G2−G1G3

G2
1

x2y2 + (F2 + F3G1 − G4 +
F1G1−G2−G1G3

G2
1

)y2
2 +

l1(x2, y2). Since x∗0 is a double root of equation (2.1), the coefficient F1G1−G2
G2

1
of x2

2 in the equation

ϕ(x2, 0) = F1G1−G2
G2

1
x2

2 + l1(x2, 0) is a nonzero constant depending on the parameter (a, b, D, e, h)

and l1(x2, 0) is a C∞ function with at least the third order with respect to x2. Thus it follows
from Theorem 7.1 of Chapter 2 in [22] that the equilibrium (x∗0 , y∗0) is a saddle-node.

For the conclusion (ii), assume that a3b2D2 + abDe(a(1− 2b− D) + 2(1 + e)) + be2(a(b−
e) − 2− e) − De(2 + a) = 0 is satisfied. Then the trace of the matrix J(x∗0 , y∗0) is zero. i.e.
B1 + C2 = 0 in (2.15). Thus system (2.15) can be transformed into

X′(t) = Y +

(
B3 −

B1B4

B2
+

B2
1B5

B2
2

)
X2 + K3(X, Y),

Y′(t) =
(

B1B3 −
B2

1B4

B2
+

B3
1B5

B2
2

+ B2C3 − B1C4 +
B2

1C5

B2

)
X2 + K4(X, Y),

(2.21)

where K3(X, Y) and K4(X, Y) are C∞ functions with at least the second order with respect to

(X, Y). By taking X1 = X and Y1 = Y + (B3 − B1B4
B2

+
B2

1 B5

B2
2
)X2 + K3(X, Y), system (2.21) can be

changed into {
X′1(t) = Y1,

Y′1(t) = H1X2
1 + H2X1Y1 + K5(X1, Y1),

(2.22)

where H1 = B1B3− B2
1 B4
B2

+
B3

1 B5

B2
2
+ B2C3− B1C4 +

B2
1C5
B2

, H2 = 2(B3− B1B4
B2

+
B2

1 B5

B2
2
) and K5(X1, Y1)

is C∞ function with at leat the third order with respect to (X1, Y1). Elementary calculations
yield that H2 = −2 and

H1 = − 1
(e3(−abD + (−1 + b)e)3)

bD(aD− e)(2a5b2D5(−1 + e) + a4bD3(b2 + 4D(−1 + e)

− 6bD(−1 + e))e + 2(−1 + b)2e4 + a3D2e(8bD(D− e)(−1 + e)− 3b3e

+ 3b2(1 + 2D(−1 + e))e + 2D(−1 + e)e) + ae2(8D3(−1 + e)− 4(−1 + b)bDe

+ 4(−1 + b)D2(−1 + e)e− (−1 + b)3e2) + a2De2(2D(4D− e)(−1 + e) + 3b3e

+ b(−12D2(−1 + e) + 3e + 4D(−1 + e)e) + 2b2(−3e + D(1 + e− e2)))).

If H1 = 0, then be = abD + e, which contradicts to the condition be < abD + e. Hence H1

is a nonzero constant. Using the notation of Theorem 7.3 of Chapter 2 in [22], we can find
k = 2m = 2, m = 1, and ak = H1 6= 0 and b1 = H2 6= 0. Hence the equilibrium (0, 0) of system
(1.3) is a cusp of codimension 2. Therefore (x∗0 , y∗0) is a cusp of codimension 2.
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Theorem 2.5. If max{h1, bD
e } < h < min{h0, 1

4}, be < abD + e and (e− aD)(abD + e− be) >

2eD, then system (1.3) has four equilibria as shown in Lemma 2.1 and the dynamics of system (1.3) are
as follows:

(i) (x1, y1) is a hyperbolic saddle and (x2, y2) is a hyperbolic stable node if aD < e ≤ (a + 2)D;

(ii) (x1, y1) is a hyperbolic unstable node and (x2, y2) is a hyperbolic saddle if (a + 2)D < e <

aD + e
b ;

(iii) (x∗1 , y∗1) is a hyperbolic saddle;

(iv) (x∗2 , y∗2) is a focus(or a center or a node). In particular, if h∗ = bD
e + Φ(A−Φ), then

(iv.1) (x∗2 , y∗2) is a hyperbolic stable focus (or a node) if h < h∗,

(iv.2) (x∗2 , y∗2) is a weak focus (or a center) if h = h∗,

(iv.3) (x∗2 , y∗2) is a hyperbolic unstable focus (or a node) if h∗ < h,

where A = 1− b(e−aD)
e , Φ = 1

4e2 (θ +
√

θ2 + 8e2(bD(e− aD) + D2e)) and θ = −a2bD2 +

aD(2b + D)e− (−1 + b + D)e2.

Proof. By Theorem 2.4, (i) and (ii) can be easily obtained. Next, let us think about the sign
of the determinant of the matrix J(x∗i , y∗i ) (i = 1, 2) in equation (2.6). Since y∗i = e−aD

D x∗i − 1
(i = 1, 2), straightforward computation shows that for i = 1, 2,

detJ(x∗i , y∗i ) =
D((e− aD)x∗i − D)(2ex∗i + eb− e− abD)

e2x∗i
.

From the hypotheses, we have y∗i > 0(i = 1, 2) which implies x∗i > D
e−aD > 0, i = 1, 2. Thus

the sign of the determinant detJ(x∗i , y∗i ) depends on the value 2ex∗i + eb − e − abD. By the
proof of Lemma 2.1 we know that x∗1 and x∗2 are roots of equation F(x) = x2 − Ax + B = 0,
where A = 1− b(e−aD)

e > 0 and B = h − bD
e > 0. Since x∗1 < x∗2 , (−1)iF′(x∗i ) > 0, i = 1, 2.

Now, from simple calculations, we obtain F′(x∗i ) = 2x∗i − A =
2ex∗i −e+b(e−aD)

e , i = 1, 2. Thus
the inequalities 2ex∗1 + eb − e − abD < 0 and 2ex∗2 + eb − e − abD > 0 hold, which implies
that det(J(x∗1 , y∗1)) < 0 and det(J(x∗2 , y∗2)) > 0. Therefore, (x∗1 , y∗1) is a hyperbolic saddle and
(x∗2 , y∗2) is a focus(or a center or a nod). One can easily check that tr(J(x∗2 , y∗2)) = 0 if h = h∗.
Thus we can get (iii) and (iv) from linear stability analysis.

3 Bifurcations of system (1.3)

3.1 Saddle-node bifurcation

From Lemma 2.1 and Theorem 2.2 and 2.3, we can easily see that

SN1 = {(a, b, D, e) | h = 1
4 , e < aD, a > 0, b > 0, D > 0, e > 0} (3.1)

is a saddle-node bifurcation surface. In fact, the number of equilibria of system (1.3) changes
from zero to two, and the two equilibria which are axial equilibrium points are the hyperbolic
saddle and node when the parameters pass through the surface SN. Ecologically speaking,
the system collapses for h > 1

4 and the prey population becomes extinct if h = 1
4 , but the prey
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population does not go to extinction for some initial value if 0 < h < 1
4 . From Theorem 2.4

and 2.5, we can know that the surface

SN2 = {(a, b, D, e) | h = h0 < 1
4 , (e− aD)(abD + e− be) > 2eD,

be < abD + e, a > 0, b > 0, D > 0, e > 0, (3.2)

a3b2D2 + abDe(a(1− 2b− D) + 2(1 + e)) + be2(a(b− e)− 2− e)− De(2 + a) 6= 0}

is also saddle-node bifurcation surface. This saddle–node bifurcation yields two positive equi-
librium points. This means that the predator goes either extinct or out of R2

+ in finite time
when h > h0, and both the predator and prey populations coexist in the form of a positive in-
terior equilibrium for some initial values when h < h0, be < abD + e, (e− aD)(abD + e− be) >
2eD, a3b2D2 + abDe(a(1− 2b− D) + 2(1 + e)) + be2(a(b− e)− 2− e)− De(2 + a) 6= 0.

3.2 Hopf bifurcation

It follows from Theorem 2.5 that system (1.3) has two equilibria (x∗1 , y∗1) and (x∗2 , y∗2), (x∗1 , y∗1)
is a hyperbolic saddle and (x∗2 , y∗2) is a weak focus or a center if max{h1, bD

e } < h = h∗ <

min{h0, 1
4}, be < abD + e and (e − aD)(abD + e − be) > 2eD, where h∗ is given in Theo-

rem 2.5. Hence, system (1.3) may undergo Hopf bifurcation. Thus, we discuss conditions
under which the stability of the equilibrium (x∗2 , y∗2) will change in such a way that system
(x∗2 , y∗2) undergoes an Hopf bifurcation. For simplicity, let (x∗2 , y∗2) = (x∗, y∗).

In order to determine the stability of the equilibrium (x∗, y∗), we need to compute the
Lyapunov coefficients of the equilibrium (x∗, y∗). For this, we first translate (x∗, y∗) of system
(1.3) to the origin by making a transformation of X = x − x∗, Y = y− y∗. And then, using
Taylor expansions, system (1.3) can be rewritten as

X′(t) = a10X + a01Y + a20X2 + a11XY + a02Y2

+ a30X3 + a21X2Y + a12XY2 + a03Y3 + O1(X, Y),

Y′(t) = b10X + b01Y + b20X2 + b11XY + b02Y2

+ b30X3 + b21X2Y + b12XY2 + b03Y3 + O2(X, Y),

(3.3)

where

a10 = 1− 2x∗ −
by∗(1 + y∗)

(1 + ax∗ + y∗)2 , a01 = − bx∗(1 + ax∗)
(1 + ax∗ + y∗)2 , a20 = −1 +

aby∗ + aby2
∗

(1 + ax∗ + y∗)3 ,

a11 = −b(1 + ax∗ + y∗ + 2ax∗y∗)
(1 + ax∗ + y∗)3 , a02 =

bx∗(1 + ax∗)
(1 + ax∗ + y∗)3 , a30 =

−a2by∗ − a2by2
∗

(1 + ax∗ + y∗)4 ,

a21 =
ab + a2bx∗ + 2a2bx∗y∗ − aby2

∗
(1 + ax∗ + y∗)4 , a12 =

b(1− a2x2
∗ + y∗ + 2ax∗y∗)

(1 + ax∗ + y∗)4 ,

a03 = − bx∗(1 + ax∗)
(1 + ax∗ + y∗)4 , b10 =

ey∗(1 + y∗)
(1 + ax∗ + y∗)2 , b01 = −D +

ex∗(1 + ax∗)
(1 + ax∗ + y∗)2 , (3.4)

b20 =
−aey∗ − aey2

∗
(1 + ax∗ + y∗)3 , b11 =

e(1 + ax∗ + y∗ + 2ax∗y∗)
(1 + ax∗ + y∗)3 , b02 = − ex∗(1 + ax∗)

(1 + ax∗ + y∗)3 ,

b30 =
a2ey∗ + a2ey2

∗
(1 + ax∗ + y∗)4 , b21 =

−ae− a2ex∗ − 2a2ex∗y∗ + aey2
∗

(1 + ax∗ + y∗)4 ,

b12 = − e(1− a2x2
∗ + y∗ + 2ax∗y∗)

(1 + ax∗ + y∗)4 , b03 =
ex∗(1 + ax∗)

(1 + ax∗ + y∗)4 ,
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and Ok(X, Y) are C∞ functions with at least the fourth order with respect to (X, Y) for k = 1, 2.
It is clear from Theorem 2.5 that a10b01 − a01b10 6= 0 and a10 + b01 = 0 if max{h1, bD

e } < h =

h∗ < min{ 1
4 , h0} and be < abD + e. Hence using the formula of the first Lyapunov number σ

at the origin of (3.3) in [15, p. 353], we have, after a tedious computation,

σ = − 3π

2a01∆
3
2

{
[a10b10(a2

11 + a11b02 + a02b11) + a10a01(b2
11 + a20b11 + a11b02)

+ b2
10(a11a02 + 2a02b02)− 2a10b10(b2

02 − a20a02)− 2a10a01(a2
20 − b20b02)

− a2
01(2a20b20 + b11b20) + (a01b10 − 2a2

10)(b11b02 − a11a20)]

− (a2
10 + a01b10)[3(b10b03 − a01a30)

+ 2a10(a21 + b12) + (b10a12 − a01b21)]
}

,

(3.5)

where

∆ =
D((e− aD)x∗ − D)(2ex∗ + eb− e− abD)

e2x∗
. (3.6)

With the aid of numerical calculation, we can see that the sign of σ is not determined.
For instance, when (a, b, D, e) = (1.1, 0.8, 0.1, 3.1), σ = 1608.6. On the other hand, when
(a, b, D, e) = (3.2, 0.2, 0.1, 3.2), σ = −366.0. Therefore, there exist surfaces Hb and Hp in the
parameter space (a, b, D, e, h) which satisfy

Hb =
{
(a, b, D, e, h) |max{h1, bD

e } < h = h∗ < min{h0, 1
4}, be < abD + e,

(e− aD)(abD + e− be) > 2eD, σ > 0
}

,

Hp =
{
(a, b, D, e, h) |max{h1, bD

e } < h = h∗ < min{h0, 1
4}, be < abD + e,

(e− aD)(abD + e− be) > 2eD, σ < 0
}

.

(3.7)

Thus, if the parameter (a, b, D, e, h) is in Hb(Hp), the equilibrium (x∗, y∗) of system (1.3) is a
weak focus of multiplicity 1 and is unstable(stable) (see [11, 19–21]). In this case, the surfaces
Hb and Hp are called the subcritical and supercritical Hopf bifurcation surface of system (1.3),
respectively.

Now, assume that conditions max{h1, bD
e } < h∗ < min{ 1

4 , h0}, be < abD + e and (e −
aD)(abD + e − be) > 2eD hold. Then, from Theorem 2.5, we know that the equilibrium
(x∗, y∗) is a hyperbolic stable focus if max{h1, bD

e } < h < h∗ and is a hyperbolic unstable
focus if h∗ < h < min{ 1

4 , h0}.
Summarizing the above discussion, we have the following theorem.

Theorem 3.1. Suppose that the conditions max{h1, bD
e } < h∗ < min{ 1

4 , h0}, be < abD+ e and (e−
aD)(abD + e− be) > 2eD hold and let Vb = {(a, b, D, e)|max{h1, bD

e } < h < min{h0, 1
4}, be <

abD + e, (e − aD)(abD + e − be) > 2eD, σ > 0} and Vp = {(a, b, D, e)|max{h1, bD
e } < h <

min{h0, 1
4}, be < abD + e, (e − aD)(abD + e − be) > 2eD, σ < 0}. Then (i) system (1.3) has at

least one unstable limit cycle if max{h1, bD
e } < h < h∗, |h− h∗| << 1 and (a, b, D, e) in Vb and (ii)

system (1.3) has at least one stable limit cycle if h∗ < h < min{ 1
4 , h0}, |h− h∗| << 1 and (a, b, D, e)

in Vp.
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3.3 Bogdanov–Takens bifurcation

From Theorem 2.4, we can see that system (1.3) could have a positive equilibrium which is a
saddle-node or a cusp. Especially, the part (ii) of Theorem 2.4 shows that the positive equi-
librium (x∗0 , y∗0) is a cusp of codimension 2 under some conditions, which implies that there
may exist a Bogdanov–Takens bifurcation. In order to discuss such bifurcation phenomena
of system (1.3) we need to fix some values of parameters for system (1.3) since the condi-
tion given in Theorem 2.4 are too complicated to analyze the number of codimension of the
unique positive equilibrium. For the reason, in this section, we fix a = 3, b = 1 to investigate
a Bogdanov-Takens bifurcation of system (1.3) in the parameter space (D, e, h). Although we
will deal with the special case a = 3, b = 1, the procedure of investigating for bifurcations of
system (1.3) can be used to discuss bifurcations for general cases.

It follows from Theorem 2.4 that (x∗0 , y∗0) = ( 3D
2e , e−9D

2e ) is a cusp of codimension 2 if h =

h0 < 1
4 , e > 9D and D = D0 > 0, where D0 = e(e−3)+e

√
e2−78e+225

18(e−3) . Thus there exists a
parameter space

BT =
{
(D, e, h) | h = h0 < 1

4 , e > 9D and D = D0 > 0
}

.

In order to show that system (1.3) undergoes a Bogdanov–Takens bifurcation the values D
and h can be chosen as bifurcation parameters. We need to find the universal unfolding of
(x∗0 , y∗0). To do this let h = h0 − µ1 and D = D0 − µ2 in system (1.3), where µ1 and µ2 are very
small parameters. Then for (D, e, h) ∈ BT we can have the following system

x′(t) = x(1− x)− xy
y + 3x + 1

− h0 + µ1,

y′(t) = −(D0 − µ2)y +
exy

y + 3x + 1
,

(3.8)

where D0 = e(e−3)+e
√

e2−78e+225
18(e−3) , h0 = D0(9D0+4e)

4e2 and e > 9D0. Translating (x∗0 , y∗0) to the origin
by letting x1 = x− x∗0 and y1 = y− y∗0 in (3.8). Using the Taylor expansion system (3.8) can be
written as {

x′1(t) = α0 + α1x1 + α2y1 + α3x2
1 + α4x1y1 + α5y2

1 + p1(x1, y1),

y′1(t) = β0 + β1x1 + β2y1 + β3x2
1 + β4x1y1 + β5y2

1 + q1(x1, y1),
(3.9)

where p1 and q1 are C∞ functions of x1, y1 of order of at least three and

α0 = µ1, α1 =
2
3
− 9D2

0
e2 +

D0

e
, α2 = −3D2

0
e2 −

2D0

3e
, α3 = −1

3
+

18D2
0

e2 − 8D0

e
,

α4 = −4
9
+

12D2
0

e2 − 4D0

3e
, α5 =

2D2
0

e2 +
4D0

9e
, β0 = µ2

(
1
2
− 9D0

2e

)
,

β1 = −4D0 +
9D2

0
e

+
e
3

, β2 = −D0

3
+

3D2
0

e
+ µ2, β3 = 8D0 −

18D2
0

e
− 2e

3
,

β4 =
4D0

3
− 12D2

0
e

+
4e
9

, and β5 = −4D0

9
− 2D2

0
e

.

Consider C∞ changes of coordinates in a small neighborhood of (0, 0) as follows;

x2 = x1, y2 = α1x1 + α2y1 + α3x2
1 + α4x1y1 + α5y2

1 and

x3 = x2, y3 = α0 + y2.
(3.10)
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Then system (3.9) can be written as{
x′3(t) = y3 + p3(x3, y3),

y′3(t) = δ0 + δ1x3 + δ2y3 + δ3x2
3 + δ4x3y3 + δ5y2

3 + q3(x3, y3),
(3.11)

where p3 and q3 are C∞ functions of x3, y3 of order at least three and δ0 = γ1 − α0γ2 + α2
0γ5,

δ1 = γ1 − α0γ4, δ2 = γ2 − 2α0γ5, δ3 = γ3, δ4 = γ4, δ5 = γ5,

γ0 = α0α1 −
α0α2α4

α5
− α2β0 +

α2
2β2

α5
− α3

2β5

α2
5

,

γ1 = 2α0α3 +
α0α1α4

α2
− α0α2

4
α5
− α4β0 +

2α1α5β0

α2
− α2β1 − 3α1β2 +

2α2α4β2

α5
− 3α2

2α4β5

α2
5

+
α2

2β4

α5
+

4α1α2β5

α5
,

γ2 = α1 −
α0α4

α2
− α2α4

α5
− 2α5β0

α2
+ 3β2 −

4α2β5

α5
,

γ3 =
α0α3α2

4
α2

− α0α1α2
4

α2
2

+
α0α2

1α4α5

α3
2

+
2α3α5β0

α2

− 2α1α4α5β0

α2
2

+
2α2

1α2
5β0

α3
2
− α4β1 +

2α1α5β1

α2
− 3α3β2 +

α2
4β2

α5
− α2

1α5β2

α2
2
− α2β3 − 3α1β4

+
2α2α4β4

α5
− α2

1β5

α2
− 3α2α2

4β5

α2
5

+
4α2α3β5

α5
+

4α1α4β5

α5
,

γ4 = 2α3 +
α1α4

α2
+

α0α2
4

α2
2
− α2

4
α5
− 2α0α1α4α5

α3
2

+
2α4α5β0

α2
2
− 4α1α2

5β0

α3
2
− 2α5β1

α2
+

2α1α5β2

α2
2

+ 3β4 +
2α1β5

α2
− 4α4β5

α5

γ5 = − α4

α2
+

α0α4α5

α3
2

+
2α2

5β0

α3
2
− α5β2

α2
2
− β5

α2
.

Next, by letting s = t
1−δ5x3

, x4 = x3 and y4 = (1− δ5x3)y3 in (3.11) and rewriting s as t, system
(3.11) can be transformed into{

x′4(t) = y4 + p4(x4, y4),

y′4(t) = λ0 + λ1x1 + λ2y1 + λ3x2
1 + λ4x1y1 + q4(x4, y4),

(3.12)

where p4 and q4 are C∞ functions of x4, y4 of order at least three and λ0 = δ0, λ1 = δ1 − 2δ0δ5,

λ2 = δ2, λ3 = δ3 − 2δ1δ5 + δ0δ2
5 and λ4 = δ4 − δ2δ5. Let τ0 = λ0 − λ2

1
2λ3

+
λ2

1
4λ3

, τ1 = λ5 − λ1λ4
2λ3

,
τ2 = λ3 and τ3 = λ4. Taking the change of variables

x5 = x4 +
λ1

2λ3
, y5 = y4 + p4(x4, y4),

x6 =
τ2

3
τ2

x5, y6 =
τ3

3

τ2
2

y5, t̄ =
τ3

τ2
t,

(3.13)

we obtain the following system by setting t̄ as t;{
x′6(t) = y6,

y′6(t) = ω1(µ1, µ2) + ω2(µ1, µ2)y1 + x2
6 + x6y6 + q6(x6, y6),

(3.14)



Dynamics of a Beddington–DeAngelis-type predator–prey system 15

where q6 is a C∞ function of x6, y6 of order at least three and ω1(µ1, µ2) =
τ0τ4

3
τ3

2
and ω2(µ1, µ2) =

τ1τ3
τ2

. Therefore, we have the following theorem.

Theorem 3.2. If a = 3, b = 1, h0 < 1
4 , e > 9D, 0 < |h − h0| << 1 and 0 < |D − D0| << 1,

then system (1.3) undergoes a Bogdanov–Takens bifurcation. Hence there exist values of the parameters
(D, e, h) such that system (1.3) has a unique unstable limit cycle for some parameter values, and system
(1.3) has an unstable homoclinic loop for other parameter values.

4 Numerical examples

In this section, we will illustrate some numerical examples to substantiate the validity of our
theoretical results obtained in the previous sections.

Example 4.1. First let parameters a, b and e in system (1.3) be as follows;

a = 3, b = 1 and e = 76. (4.1)

If we take the value D = e(e−3)−e
√

e2−78e+225
18(e−3) , then it is not hard to see that system (1.3)

satisfies the hypotheses of Theorem 2.4 and the condition a3b2D2 − a2bDe(−1 + 2b + D) +

ae(2bD + e(−D + b(−1 + b + 2D))) + e2(−2D + e − b(2 + e)) = 0 hold. Also we can ob-
tain D ≈ 3.7280 and h0 ≈ 0.0013. Thus it follows from Theorem 2.4 that the equilibrium
(x∗0 , y∗0) ≈ (0.0736, 0.2797) is a cusp of codimension 2. Now, in order to simulate this phenom-
ena numerically, we use two initial values (x∗0 + 0.00001, y∗0 − 0.015) ≈ (0.07361, 0.2643) and
(x∗0 + 0.00001, y∗0 − 0.01) ≈ (0.07361, 0.2693). By means of Runge–Kutta method of order 4, we
can draw Figure 4.1 numerically.
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Figure 4.1: Phase portraits of system (1.3) when a = 3, b = 1, e = 76 and
D ≈ 3.7280, h ≈ 0.0013. Here (x∗0 , y∗0) ≈ (0.0736, 0.2797). (a) Two trajectories
of system (1.3) starting with (0.07361, 0.2643) and (0.07361, 0.2693). (b) The en-
larged part of (a) for 0.0735 ≤ x ≤ 0.0737.

Example 4.2. In order to ascertain the existence of a center equilibrium point mentioned in
Theorem 2.5, we will set some parameters in system (1.3) as

a = 0.8, b = 0.4, D = 0.2 and e = 1. (4.2)

Then we can easily check that the hypotheses of Theorem 2.5 are satisfied. Moreover, we can
obtain (x∗2 , y∗2) ≈ (0.4067, 0.7081) and h∗ ≈ 0.1846. If the value of h is set to be as h∗ − 0.001 ≈
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0.1836, then it follows from Theorem 2.5 (iv) that (x∗2 , y∗2) is a stable focus which is shown in
Figure 4.2(a). On the other hand, if we take h = h∗, then the equilibrium (x∗2 , y∗2) becomes a
center shown in Figure 4.2(b).
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Figure 4.2: Phase portraits of system (1.3) when a = 0.8, b = 0.4, D = 0.2 and
e = 1.0. (a) A trajectory of system (1.3) when h = h∗ − 0.001 and an initial value
(0.4, 0.7). (b) Two trajectories of system (1.3) when h = h∗ and two initial values
(0.4, 0.7) and (0.41, 0.71)

Example 4.3. In the example, we will present a numerical evidence of the existence of a limit
cycle stated in Theorem 3.1. For this, we set parameters a, b, D and e in system (1.3) as

a = 1.1, b = 0.8, D = 0.1 and e = 3.1. (4.3)

Then from tedious calculation, we obtain the value h∗ ≈ 0.0363 and σ ≈ 1608.62933 > 0.
Also we can easily see that the hypotheses of Theorem 3.1 (i) hold. Thus we know that there
exists a unstable limit cycle of system (1.3) for a suitable value h. By using Runge–Kutta
4th order method with negative step size, we illustrate such a limit cycle in Figure 4.3 when
h = h∗ − 0.0005 ≈ 0.0358 and two initial values (x∗2 + 0.01, y∗2 + 0.01) ≈ (0.1796, 4.0816) and
(x∗2 + 0.1, y∗2 + 0.1) ≈ (0.2696, 4.1716).
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Figure 4.3: A phase portrait of a unstable limit cycle of system (1.3) when
a = 1.1, b = 0.8, D = 0.1, e = 3.1, h = h∗ − 0.0005 and two initial values
(0.1796, 4.0816) and (0.2696, 4.1716).
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5 Conclusion and discussion

In summary, we have analyzed dynamical behaviors of the Beddington–DeAngelis predator–
prey system with constant harvesting rate. We have shown that there exist some parameter
regions in which both predator and prey species can be existed or extinct simultaneously.
Also, it has been obtained some sufficient conditions for the existence of limit cycles of the
system via Hopf bifurcation and Bogdanov–Takens bifurcation. Finally, we have displayed
some numerical examples to testify our theoretical results.

In this paper, following the work of L. Ling and W. Wang in [10], M. Haque in [6], J. Xia,
Z. Liu, R. Yuan and S. Ruan in [18], D. Xiao and L. S. Jennings in [19], and D. Xiao, W. Li and
M. Han in [20] we continue investing the harvesting effect on the dynamics of a predator–
prey system with Beddington–DeAngelis functional response. As a result we figure out that
harvesting may play a significant role in dynamics of a predator–prey system.

According to conditions of parameter values, we have investigated the existence of equi-
librium points and the stabilities of them. In Lemma 2.1 we have considered parameter values
in almost all cases, but some parameter values are not dealt with because they are very minor
cases and their classification method is similar to Lemma 2.1 as shown in Lemma 5.1.

Lemma 5.1. Let A = 1− b(e−aD)
e , B = h− bD

e and h0 = A2

4 + bD
e , and assume that be < abD + e

and (e− aD)(e + abD− be) > 2eD. Then

(i) system (1.3) has a unique equilibrium (x∗0 , y∗0) in R2
+ if 1

4 < h = h0,

(ii) system (1.3) has two equilibria (x∗1 , y∗1) and (x∗2 , y∗2) in R2
+ if 1

4 < h < h0,

(iii) system (1.3) has three equilibria (x0, y0), (x∗1 , y∗1) and (x∗2 , y∗2) in R2
+ if 1

4 = h < h0.

Thus using Lemma 5.1 and mathematical methods used in this paper, one can acquire similar
results to those obtained in the paper. However we will not mention it since it could be very
routine and tedious.

As mentioned in the abstract, by letting the parameters α = 0 and β = 0, and adding the
harvesting rate on the prey species in system (1.1), we can obtain the following two kinds
of predator–prey systems (5.1) and (5.2) which are called a ratio-dependent system with the
harvesting rate and a Holling-type II system with the harvesting rate, respectively.

x′(t) = rx
(

1− x
K

)
− γxy

βy + x
− h,

y′(t) = −dy +
δxy

βy + x
,

(5.1)


x′(t) = rx

(
1− x

K

)
− γxy

βy + α
− h,

y′(t) = −dy +
δxy

βy + α
.

(5.2)

Also, in [6], in order to account for the influence of intra-species competition among the
predator population in system (1.1), the author considers the following predator–prey system.

x′(t) = rx
(

1− x
K

)
− γxy

βy + x + α
,

y′(t) = −dy +
δxy

βy + x + α
− hy2.

(5.3)
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Systems Existence LAS SNB HB TB BTB References
(1.1) Yes Yes No Yes No No [6, 8]
(1.3) Yes Yes Yes Yes No Yes –
(5.1) Yes Yes Yes Yes No Yes [19]
(5.2) Yes Yes Yes Yes No Yes [14, 18]
(5.3) Yes Yes Yes Yes No Yes [6]

Table 5.1: This table lists the stability and bifurcation of all systems (1.1), (1.3),
(5.1), (5.2) and (5.3).

Although system (5.3) is a predator–prey system with competition effect on the predator, we
may regard the system as a predator–prey system with harvesting term since the predator
population could decrease due to the term hy2. Now we will compare the dynamics of these
systems around equilibrium points. We will focus on a positive equilibrium state among equi-
libria since the existence of a positive equilibrium state could give rise to the coexistence of all
species, which is a biologically significant fact from the point of view of biodiversity. In fact, all
systems which mentioned above have at least one positive equilibrium like (x∗i , y∗i ), i = 0, 1, 2.
Now we summarize the dynamical behavior of systems around positive equilibrium points
in Table 5.1 by letting LAS, SNB, HB, TB and BTB stand for locally asymptotically stable,
and saddle-node bifurcation, Hopf bifurcation, transcritical bifurcation and Bogdanov–Takens
bifurcations, respectively. Comparing the first row to the second and fifth row of Table 5.1,
we figure out that predator–prey systems with harvesting term exhibit much richer dynamics
than the system without harvesting. From the second, third and fourth rows, we assert that
predator–prey systems with harvesting rate on the prey species have similar dynamical behav-
iors around its positive equilibrium points even if their functional responses are different from
each other. From Table 5.1, we conclude that the harvest of any species in a predator–prey
system can make various dynamical behaviors regardless of functional responses.
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