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Abstract. The problem of solvability of the following second order system of difference
equations

zn+1 = αza
nwb

n, wn+1 = βwc
nzd

n−1, n ∈N0,

where a, b, c, d ∈ Z, α, β ∈ C \ {0}, z−1, z0, w0 ∈ C \ {0}, is studied in detail.
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1 Introduction

Investigation of various concrete nonlinear difference equations and systems has been of a
great recent interest (see, e.g., [1–5], [10–35] and the references therein). Here we mention
two subareas of interest. First, motivated by some classes of concrete nonlinear difference
equations some experts started investigating the corresponding symmetric or cyclic systems of
difference equations, as well as some modifications of the symmetric/cyclic systems (see, e.g.,
[4,10–12,14,15,19–21,23–27,29–33,35]). Second, one of the basic problems related to difference
equations and systems is the problem of their solvability. Books [7–9] contain numerous
classical results on the topic. Solvable difference equations and systems have appeared in the
literature from time to time for a long time. It has turned out that some of recently studied
concrete nonlinear difference equations and systems are solvable. For example, the solvability
of systems in [4] and [21] was discovered during the investigation of the long-term behavior
of their solutions. On the other hand, some papers which give solutions of quite concrete
equations and systems, without any theoretical explanations, have appeared recently. One of
the first papers of this type is [5]. These facts motivated some experts to work on the problem
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of solvability more seriously (see, e.g., [4, 13, 16, 17], [19]-[30], [32–35]). Short note [16] can
be regarded as a starting point for the serious investigation, and its importance is found in
the method which is used for showing the solvability of an extension of the equation in [5].
The method was later used numerous times (see, e.g., [1, 13, 17, 22, 34]) and was essentially
extended and developed in many of the other above mentioned papers on solvability.

Another fact of interest is to note that many difference equations and systems are ob-
tained from product-type ones by some modifications of their right-hand sides (e.g., the equa-
tions/systems in [18] and [31] are of this type). Product-type equations and systems are
solvable for the case of positive coefficients and initial values. However, this is not always the
case if some of them are real or complex numbers. Hence, the problem of their solvability
in these cases is of some interest. An investigation in this direction was started by S. Stević
and some of his collaborators in [27], [29], [30] and [35], where some product-type systems
are solved not only theoretically, but essentially also practically, that is, by presenting concrete
formulas for solutions depending on the initial values and involving parameters.

This paper is devoted to the study of solvability of the following second order system of
difference equations

zn+1 = αza
nwb

n, wn+1 = βwc
nzd

n−1, n ∈N0, (1.1)

where a, b, c, d ∈ Z, α, β ∈ C and z−1, z0, w0 ∈ C. Motivated by [27] system (1.1), unlike the
ones in papers [29], [30] and [35], has some new parameters, namely, the coefficients α and β.
Since the cases α = 0 or β = 0 are very simple, so of not much interest, from now on we will
assume that α, β ∈ C \ {0}.

Note that the domain of undefinable solutions [24] to system (1.1) is a subset of the fol-
lowing set

U = {(z−1, z0, w0) ∈ C3 : z−1 = 0 or z0 = 0 or w0 = 0}.

Thus we can regard that (z−1, z0, w0) belong to C3 \ U , although in some cases C3 \ U can be
even equal to C3 (for example, if a, b, c and d are natural numbers).

For a system of difference equations of the form

zn = f (zn−1, . . . , zn−k, wn−1, . . . , wn−l)

wn = g(zn−1, . . . , zn−s, wn−1, . . . , wn−t), n ∈N0,

where k, l, s, t ∈ N, is said that it is solvable in closed form if its general solution can be found
in terms of initial values z−i, i = 1, max{k, s}, w−j, j = 1, max{l, t}, delays k, l, s, t, and index n
only.

Let us also say that, as usual, the sums of the form ∑m
j=l aj, for m < l, will be regarded to

have value equal to zero.

2 Auxiliary results

Several auxiliary results, which will be used in the proofs of the main results are given in this
section. The first lemma is well-known (see, e.g., [9]).

Lemma 2.1. Let i ∈N0 and

s(i)n (z) = 1 + 2iz + 3iz2 + · · ·+ nizn−1, n ∈N,

where z ∈ C.



Product-type system of difference equations 3

Then

s(0)n (z) =
1− zn

1− z
, (2.1)

s(1)n (z) =
1− (n + 1)zn + nzn+1

(1− z)2 , (2.2)

for every z ∈ C \ {1} and n ∈N.

Remark 2.2. Since by the above mentioned convention s(i)n (z) = ∑n
j=1 jizj−1 = 0, for n = −1, 0,

a simple calculation shows that (2.1) also holds for n = 0 and z 6= 0, while (2.2) holds for
n = −1 and n = 0 when z 6= 0. Note also that s(1)n (1) = n(n+1)

2 .

Lemma 2.3. Let αi, βi, i = 0, n, be complex numbers. Then

n

∑
i=0

αi

n−i

∑
j=0

β j =
n

∑
j=0

β j

n−j

∑
i=0

αi, (2.3)

for every n ∈N0.

Proof. Let
Sn = {(i, j) : 0 ≤ i ≤ n, 0 ≤ j ≤ n− i}.

From the definition of set Sn we see that variable j takes all the values from 0 to n too, and
that for a fixed j, from the inequality j ≤ n− i we have that i ≤ n− j, that is, the upper bound
for i is equal n− j. Hence

Sn = {(i, j) : 0 ≤ j ≤ n, 0 ≤ i ≤ n− j}.

Using this fact and by the changing order of summation, equality (2.3) easily follows.

Remark 2.4. Note that Lemma 2.3 is a simple sort of the Fubini theorem with the discrete
measure.

Let

fn(u, v) =
n

∑
i=0

ui
n−i

∑
j=0

vj, (2.4)

where u, v ∈ C and n ∈N0, and where we in this case, as usual, regard that 00 = 1.

Lemma 2.5. Let fn(u, v) be defined in (2.4). Then

fn(u, v) = fn(v, u), (2.5)

for every u, v ∈ C and n ∈N0.
Moreover, the following formulas hold.

(a) If u 6= 1 6= v and u 6= v, then

fn(u, v) =
v− u + un+2 − vn+2 + uvn+2 − vun+2

(1− v)(1− u)(v− u)
, n ∈N0. (2.6)
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(b) If u = v 6= 1, then

fn(u, u) =
1− (n + 2)un+1 + (n + 1)un+2

(1− u)2 , n ∈N0. (2.7)

(c) If u 6= 1 and v = 1, then

fn(u, 1) =
n + 1− (n + 2)u + un+2

(1− u)2 , n ∈N0. (2.8)

(d) If u = 1 and v 6= 1, then

fn(1, v) =
n + 1− (n + 2)v + vn+2

(1− v)2 , n ∈N0. (2.9)

(e) If u = v = 1, then

fn(1, 1) =
(n + 1)(n + 2)

2
, n ∈N0. (2.10)

Proof. By using Lemma 2.3 with αi = ui, β j = vj, i, j = 0, n, equality (2.5) follows.
(a) By using the formula for the sum of a geometric progression three times (see (2.1)), the

conditions u 6= 1 6= v and u 6= v, and some simple calculation, for the case v 6= 0, we obtain

fn(u, v) =
n

∑
i=0

ui
n−i

∑
j=0

vj =
n

∑
i=0

ui
(

1− vn−i+1

1− v

)

=
1

1− v

( n

∑
i=0

ui − vn+1
n

∑
i=0

(u
v

)i
)

=
1

1− v

(
1− un+1

1− u
− v

vn+1 − un+1

v− u

)
=

v− u + un+2 − vn+2 + uvn+2 − vun+2

(1− v)(1− u)(v− u)
.

If v = 0 and u 6= 1, then

fn(u, 0) =
n

∑
i=0

ui =
1− un+1

1− u
=
−u + un+2

(1− u)(−u)
, (2.11)

which is nothing but formula (2.6) when v = 0.
(b) By using formula (2.1) twice, the conditions u = v 6= 1, and some simple calculation,

we obtain

fn(u, u) =
n

∑
i=0

ui
n−i

∑
j=0

uj =
n

∑
i=0

ui
(

1− un−i+1

1− u

)

=
1

1− u

( n

∑
i=0

ui − un+1
n

∑
i=0

1
)

=
1

1− u

(
1− un+1

1− u
− (n + 1)un+1

)
=

1− (n + 2)un+1 + (n + 1)un+2

(1− u)2 .
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(c) By using formula (2.1), the conditions u 6= 1 and v = 1, formula (2.2) with z = u, and
some simple calculation, we obtain

fn(u, 1) =
n

∑
i=0

ui
n−i

∑
j=0

1 =
n

∑
i=0

ui(n− i + 1)

= (n + 1)
n

∑
i=0

ui − u
n

∑
i=1

iui−1

= (n + 1)
1− un+1

1− u
− u

1− (n + 1)un + nun+1

(1− u)2

=
n + 1− (n + 2)u + un+2

(1− u)2 ,

as desired.
(d) By using equality (2.5) with u = 1, we get fn(1, v) = fn(v, 1). From this and by (2.8)

with u→ v, formula (2.9) follows.
(e) We have

fn(1, 1) =
n

∑
i=0

n−i

∑
j=0

1 =
n

∑
i=0

(n− i + 1) =
n+1

∑
j=1

j =
(n + 1)(n + 2)

2
.

Remark 2.6. If we note that

fn(u, u) =
n

∑
i=0

ui
n−i

∑
j=0

uj =
n

∑
i=0

n−i

∑
j=0

ui+j =
n

∑
l=0

(l + 1)ul = s(1)n+1(u),

since the equation i + j = l has l + 1 nonnegative integer solutions, formula (2.7) also follows
from (2.2). It is also easy to see that fn(u, 1) = uns(1)n+1(

1
u ), u 6= 0, from which along with

(2.2), formula (2.8) can be obtained. Note also that by using the above mentioned summing
convention and some simple calculation is obtained that formulas (2.6), (2.8)–(2.10) holds for
n = −1 (formula (2.7) holds for n = −1 if u 6= 0).

The following result is also known (for example, it is a consequence of the Lagrange
interpolation formula).

Lemma 2.7. If all the zeros zj, j = 1, k, of the polynomial

Pk(z) = γkzk + γk−1zk−1 + · · ·+ γ1z + γ0,

are such that zi 6= zj, i 6= j, then the following formulas hold:

k

∑
j=1

zl
j

P′k(zj)
= 0

for every l ∈ {0, 1, . . . , k− 2}, and
k

∑
j=1

zk−1
j

P′k(zj)
=

1
γk

.



6 S. Stević and D. Ranković

3 Main results

The main results in this paper are proved in this section. The first one is devoted to the case
b = 0.

Theorem 3.1. Assume that a, c, d ∈ Z, b = 0, α, β ∈ C \ {0} and z−1, z0, w0 ∈ C \ {0}. Then
system (1.1) is solvable in closed form.

Proof. In this case system (1.1) becomes

zn+1 = αza
n, wn+1 = βwc

nzd
n−1, n ∈N0. (3.1)

From the first equation in (3.1) it is not difficult to see that

zn = α∑n−1
i=0 ai

zan

0 , n ∈N. (3.2)

From (3.2) we easily obtain that for a 6= 1

zn = α
1−an
1−a zan

0 , n ∈N, (3.3)

while for a = 1, we have

zn = αnz0, n ∈N. (3.4)

By using (3.2) into the second equation in (3.1), we get

wn = βαd ∑n−3
i=0 ai

zdan−2

0 wc
n−1, for n ≥ 3. (3.5)

Hence, by using (3.5) with n→ n− 1, we have that

wn = βαd ∑n−3
i=0 ai

zdan−2

0
(

βαd ∑n−4
i=0 ai

zdan−3

0 wc
n−2
)c

= β1+cαd ∑n−3
i=0 ai+dc ∑n−4

i=0 ai
zdan−2+dcan−3

0 wc2

n−2, (3.6)

for n ≥ 4.
Based on (3.5) and (3.6), assume that for some k ≥ 2 we have proved

wn = β∑k−1
i=0 ci

α
d ∑k−1

j=0

(
cj ∑

n−j−3
i=0 ai

)
zd ∑k−1

i=0 cian−i−2

0 wck

n−k, (3.7)

for n ≥ k + 2.
Then by using (3.5) with n→ n− k into (3.7), we get

wn = β∑k−1
i=0 ci

α
d ∑k−1

j=0

(
cj ∑

n−j−3
i=0 ai

)
zd ∑k−1

i=0 cian−i−2

0

(
βαd ∑n−k−3

i=0 ai
zdan−k−2

0 wc
n−k−1

)ck

= β∑k
i=0 ci

αd ∑k
j=0

(
cj ∑

n−j−3
i=0 ai

)
zd ∑k

i=0 cian−i−2

0 wck+1

n−k−1 (3.8)

for n ≥ k + 3.
From (3.5), (3.8) and the method of induction we see that (3.7) holds for all natural numbers

k and n such that 1 ≤ k ≤ n− 2.
By taking k = n− 2 into (3.7) we get

wn = β∑n−3
i=0 ci

α
d ∑n−3

j=0

(
cj ∑

n−j−3
i=0 ai

)
zd ∑n−3

i=0 cian−i−2

0 wcn−2

2 , for n ≥ 3. (3.9)
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On the other hand, from the second equation in (3.1) with n = 1, we have

w2 = βwc
1zd

0 = β(βwc
0zd
−1)

czd
0 = β1+cwc2

0 zcd
−1zd

0. (3.10)

From (3.9) and (3.10), we get

wn = β∑n−3
i=0 ci

α
d ∑n−3

j=0

(
cj ∑

n−j−3
i=0 ai

)
zd ∑n−3

i=0 cian−i−2

0

(
β1+cwc2

0 zcd
−1zd

0
)cn−2

= β∑n−1
i=0 ci

α
d ∑n−3

j=0

(
cj ∑

n−j−3
i=0 ai

)
wcn

0 zd ∑n−2
i=0 cian−i−2

0 zdcn−1

−1 , (3.11)

for n ≥ 3.
Now the subcases a 6= c and a = c will be considered separately.

Subcase a 6= c. In this case from (3.11), we get

wn = β∑n−1
i=0 ci

α
d ∑n−3

j=0

(
cj ∑

n−j−3
i=0 ai

)
wcn

0 z
d an−1−cn−1

a−c
0 zdcn−1

−1 , n ≥ 2. (3.12)

If a 6= 1 and c 6= 1, then by formula (2.6) with n→ n− 3, u = c and v = a, (3.12) becomes

wn = β
1−cn
1−c α

d a−c+cn−1−an−1+can−1−acn−1
(1−a)(1−c)(a−c) wcn

0 z
d an−1−cn−1

a−c
0 zdcn−1

−1 , n ≥ 2. (3.13)

If a 6= c and a = 1, then by using formula (2.8) with n→ n− 3, u = c and v = 1, we get

wn = β
1−cn
1−c α

d n−2−(n−1)c+cn−1

(1−c)2 wcn

0 z
d 1−cn−1

1−c
0 zdcn−1

−1 , n ≥ 2, (3.14)

while if a 6= c and c = 1, then by using formula (2.9) with n→ n− 3, u = 1 and v = a, we get

wn = βnα
d n−2−(n−1)a+an−1

(1−a)2 w0z
d an−1−1

a−1
0 zd

−1, n ≥ 2. (3.15)

Subcase a = c. In this case from (3.11), we get

wn = β∑n−1
i=0 ai

α
d ∑n−3

j=0

(
aj ∑

n−j−3
i=0 ai

)
wan

0 zd(n−1)an−2

0 zdan−1

−1 , (3.16)

for n ≥ 3.
If a = c 6= 1, then by using formula (2.7) with n→ n− 3 and u = v = a, (3.16) becomes

wn = β
1−an
1−a α

d 1−(n−1)an−2+(n−2)an−1

(1−a)2 wan

0 zd(n−1)an−2

0 zdan−1

−1 , n ≥ 3, (3.17)

while if a = c = 1, then by using formula (2.10) with n→ n− 3 and u = v = 1, we get

wn = βnαd (n−2)(n−1)
2 w0zd(n−1)

0 zd
−1, n ≥ 3, (3.18)

finishing the proof of the theorem.

Corollary 3.2. Consider system (1.1) with a, c, d ∈ Z, b = 0 and α, β ∈ C \ {0}. Assume that
z−1, z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If a 6= c, a 6= 1 and c 6= 1 then the general solution to system (1.1) is given by (3.3) and (3.13).

(b) If a 6= c and a = 1 then the general solution to system (1.1) is given by (3.4) and (3.14).
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(c) If a 6= c and c = 1 then the general solution to system (1.1) is given by (3.3) and (3.15).

(d) If a = c 6= 1 then the general solution to system (1.1) is given by (3.3) and (3.17).

(e) If a = c = 1 then the general solution to system (1.1) is given by (3.4) and (3.18).

Theorem 3.3. Assume that a, b, c ∈ Z, d = 0, α, β ∈ C \ {0} and z−1, z0, w0 ∈ C \ {0}. Then
system (1.1) is solvable in closed form.

Proof. A proof of the theorem was essentially given in [27], but we give a slightly modified for
the completeness. In this case system (1.1) becomes

zn+1 = αza
nwb

n, wn+1 = βwc
n, n ∈N0. (3.19)

From the second equation in (3.19) we have that

wn = β∑n−1
i=0 ci

wcn

0 , n ∈N. (3.20)

From (3.20) we easily obtain that for c 6= 1

wn = β
1−cn
1−c wcn

0 , n ∈N, (3.21)

while for c = 1, we have

wn = βnw0, n ∈N. (3.22)

Employing (3.20) into the first equation in (3.19), we get

zn = αβb ∑n−2
i=0 ci

wbcn−1

0 za
n−1, (3.23)

for n ≥ 2.
Hence, by using (3.23) with n→ n− 1 into itself, we have

zn = αβb ∑n−2
i=0 ci

wbcn−1

0
(
αβb ∑n−3

i=0 ci
wbcn−2

0 za
n−2
)a,

= α1+aβb ∑n−2
i=0 ci+ba ∑n−3

i=0 ci
wbcn−1+bacn−2

0 za2

n−2, (3.24)

for n ≥ 3.
Based on (3.23) and (3.24), assume that for some k ≥ 2 we have proved

zn = α∑k−1
i=0 ai

β
b ∑k−1

j=0

(
aj ∑

n−j−2
i=0 ci

)
wb ∑k−1

i=0 aicn−i−1

0 zak

n−k, (3.25)

for n ≥ k + 1.
Then by using (3.23) with n→ n− k into (3.25), we get

zn = α∑k−1
i=0 ai

β
b ∑k−1

j=0

(
aj ∑

n−j−2
i=0 ci

)
wb ∑k−1

i=0 aicn−i−1

0

(
αβb ∑n−k−2

i=0 ci
wbcn−k−1

0 za
n−k−1

)ak

= α∑k
i=0 ai

βb ∑k
j=0

(
aj ∑

n−j−2
i=0 ci

)
wb ∑k

i=0 aicn−i−1

0 zak+1

n−k−1, (3.26)

for n ≥ k + 2.
From (3.23), (3.26) and the method of induction we see that (3.25) holds for all natural

numbers k and n such that 1 ≤ k ≤ n− 1.
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By taking k = n− 1 into (3.25) we get

zn = α∑n−2
i=0 ai

β
b ∑n−2

j=0

(
aj ∑

n−j−2
i=0 ci

)
wb ∑n−2

i=0 aicn−i−1

0 zan−1

1 , (3.27)

for n ≥ 2.
By using the relation z1 = αza

0wb
0 into (3.27) it follows that

zn = α∑n−2
i=0 ai

β
b ∑n−2

j=0

(
aj ∑

n−j−2
i=0 ci

)
wb ∑n−2

i=0 aicn−i−1

0 (αza
0wb

0)
an−1

= α∑n−1
i=0 ai

β
b ∑n−2

j=0

(
aj ∑

n−j−2
i=0 ci

)
wb ∑n−1

i=0 aicn−i−1

0 zan

0 , (3.28)

for n ≥ 2.
Now the subcases a 6= c and a = c will be considered separately.

Subcase a 6= c. In this case from (3.28), we get

zn = α∑n−1
i=0 ai

β
b ∑n−2

j=0

(
aj ∑

n−j−2
i=0 ci

)
zan

0 w
b an−cn

a−c
0 , n ∈N. (3.29)

If a 6= 1 and c 6= 1, then by formula (2.6) with n → n− 2, u = a and v = c and (2.5), (3.29)
becomes

zn = α
1−an
1−a β

b a−c+cn−an+can−acn
(1−a)(1−c)(a−c) zan

0 w
b an−cn

a−c
0 , n ∈N. (3.30)

If a 6= c and a = 1, then by using formula (2.9) with n→ n− 2, u = 1 and v = c, we get

zn = αnβ
b n−1−nc+cn

(1−c)2 z0w
b cn−1

c−1
0 , n ∈N, (3.31)

while if a 6= c and c = 1, then by using formula (2.8) with n→ n− 2, u = a and v = 1, we get

zn = α
1−an
1−a β

b n−1−na+an

(1−a)2 zan

0 w
b an−1

a−1
0 , n ∈N. (3.32)

Subcase a = c. In this case from (3.28), we get

zn = α∑n−1
i=0 ai

β
b ∑n−2

j=0

(
aj ∑

n−j−2
i=0 ai

)
zan

0 wbnan−1

0 , n ≥ 2. (3.33)

If a = c 6= 1, then by using formula (2.7) with n→ n− 2, u = v = a, (3.33) becomes

zn = α
1−an
1−a β

b 1−nan−1+(n−1)an

(1−a)2 zan

0 wbnan−1

0 , n ≥ 2, (3.34)

while if a = c = 1, then by using formula (2.10) with n→ n− 2, u = v = 1, we get

zn = αnβb (n−1)n
2 z0wbn

0 , n ∈N, (3.35)

completing the proof.

Corollary 3.4. Consider system (1.1) with a, b, c ∈ Z, d = 0 and α, β ∈ C \ {0}. Assume that
z−1, z0, w0 ∈ C \ {0}. Then the following statements are true.

(a) If a 6= c, a 6= 1 and c 6= 1 then the general solution to system (1.1) is given by (3.21) and (3.30).

(b) If a 6= c and a = 1 then the general solution to system (1.1) is given by (3.21) and (3.31).
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(c) If a 6= c and c = 1 then the general solution to system (1.1) is given by (3.22) and (3.32).

(d) If a = c 6= 1, then the general solution to system (1.1) is given by (3.21) and (3.34).

(e) If a = c = 1, then the general solution to system (1.1) is given by (3.22) and (3.35).

Theorem 3.5. Assume that a, b, c, d ∈ Z, bd 6= 0, α, β ∈ C \ {0} and z−1, z0, w0 ∈ C \ {0}. Then
system (1.1) is solvable in closed form.

Proof. A simple inductive argument shows that the conditions α, β ∈ C \ {0} and z−1, z0, w0 ∈
C \ {0}, along with the equations in (1.1) imply zn 6= 0 for n ≥ −1 and wn 6= 0 for n ∈ N0.
Further, from the first equation in (1.1), for every well-defined solution, we have that

wb
n =

zn+1

αza
n

, n ∈N0, (3.36)

while by taking the second equation in (1.1) to the b-th power, is obtained

wb
n+1 = βbwbc

n zbd
n−1, n ∈N0. (3.37)

Using (3.36) into (3.37) we obtain

zn+2

αza
n+1

= βb zc
n+1

αczac
n

zbd
n−1, n ∈N0,

that is,

zn+2 = α1−cβbza+c
n+1z−ac

n zbd
n−1, n ∈N0. (3.38)

Let

a1 = a + c, b1 = −ac, c1 = bd, (3.39)

x1 = 1− c, y1 = b. (3.40)

Then equation (3.38) can be written as

zn+2 = αx1 βy1 za1
n+1zb1

n zc1
n−1, n ∈N0. (3.41)

By using recurrent relation (3.41) with n→ n− 1 into itself, we have

zn+2 = αx1 βy1(αx1 βy1 za1
n zb1

n−1zc1
n−2)

a1 zb1
n zc1

n−1,

= αx1a1+x1 βy1a1+y1 za1a1+b1
n zb1a1+c1

n−1 zc1a1
n−2

= αx2 βy2 za2
n zb2

n−1zc2
n−2, (3.42)

for n ∈N, where

a2 := a1a1 + b1, b2 := b1a1 + c1, c2 := c1a1, (3.43)

x2 := x1a1 + x1, y2 := y1a1 + y1. (3.44)

Assume that for a k ∈N such that 2 ≤ k ≤ n + 1, we have proved that

zn+2 = αxk βyk zak
n+2−kzbk

n+1−kzck
n−k, (3.45)
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for n ≥ k− 1, and that

ak = a1ak−1 + bk−1, bk = b1ak−1 + ck−1, ck = c1ak−1, (3.46)

xk = x1ak−1 + xk−1, yk = y1ak−1 + yk−1. (3.47)

Then by using the relation

zn+2−k = αx1 βy1 za1
n+1−kzb1

n−kzc1
n−k−1,

for n ≥ k, into (3.45), we obtain

zn+2 = αxk βyk(αx1 βy1 za1
n+1−kzb1

n−kzc1
n−k−1)

ak zbk
n+1−kzck

n−k

= αx1ak+xk βy1ak+yk za1ak+bk
n+1−k zb1ak+ck

n−k zc1ak
n−k−1

= αxk+1 βyk+1 zak+1
n+1−kzbk+1

n−kzck+1
n−k−1, (3.48)

for n ≥ k, where

ak+1 := a1ak + bk, bk+1 := b1ak + ck, ck+1 := c1ak, (3.49)

xk+1 := x1ak + xk, yk+1 := y1ak + yk. (3.50)

Relations (3.48)–(3.50), along with (3.42)–(3.44) and the method of induction shows that
relations (3.45), (3.46) and (3.47) hold for all natural numbers k and n such that 2 ≤ k ≤ n + 1.

Hence, choosing k = n + 1 in (3.45), and using the relation z1 = αza
0wb

0 we have

zn+2 = αxn+1 βyn+1 zan+1
1 zbn+1

0 zcn+1
−1

= αxn+1 βyn+1
(
αza

0wb
0
)an+1 zbn+1

0 zcn+1
−1

= αan+1+xn+1 βyn+1 zaan+1+bn+1
0 zcn+1

−1 wban+1
0 , (3.51)

for n ∈N0.
From recurrent relations (3.46) we easily obtain that the sequence (ak)k≥4 satisfy the fol-

lowing difference equation

ak = a1ak−1 + b1ak−2 + c1ak−3. (3.52)

From this, the linearity of difference equation (3.52), and by using the first and third
relation in (3.46) we see that (bk)k∈N and (ck)k∈N are also solutions of equation (3.52).

On the other hand, from the recurrent relations in (3.47) we have

xk = x1

k−1

∑
i=1

ai + x1, yk = y1

k−1

∑
i=1

ai + y1, (3.53)

for every k ∈N.
Since difference equation (3.52) is solvable, it follows that closed form formulas for (ak)k∈N,

(bk)k∈N and (ck)k∈N, can be found. From the forms of general solutions of equation (3.52) (see
(3.76), (3.96), (3.117)) and by using known formulas for s(i)n , n ∈ N, i = 0, 1, 2, in (3.53) we can
easily get formulas for (xk)k∈N and (yk)k∈N. From these facts and (3.51) we see that equation
(3.38) is solvable, too.
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From the second equation in (1.1), we have that for every well-defined solution

zd
n−1 =

wn+1

βwc
n

, n ∈N0, (3.54)

while by taking the first equation in (1.1) to the d-th power, is obtained

zd
n+1 = αdzad

n wbd
n , n ∈N0. (3.55)

Using (3.54) into (3.55) we obtain

wn+3

βwc
n+2

= αd wa
n+2

βawac
n+1

wbd
n , n ∈N0,

which can be written as

wn+3 = αdβ1−awa+c
n+2w−ac

n+1wbd
n , n ∈N0, (3.56)

which is a related difference equation to (3.38) (only the coefficient is different and the indices
are shifted forward for one). Note also that sequence (wn)n∈N0 satisfies the following initial
conditions

w1 = βwc
0zd
−1 and w2 = β1+cwc2

0 zd
0zcd
−1. (3.57)

Hence, the above presented procedure for sequence (zn)n≥−1 can be repeated and obtained
that for all natural numbers k and n such that 1 ≤ k ≤ n + 1

wn+3 = αx̂k βŷk wak
n+3−kwbk

n+2−kwck
n+1−k, (3.58)

where (ak)k∈N, (bk)k∈N and (ck)k∈N satisfy the recurrent relations in (3.46) with initial con-
ditions (3.39), and (x̂k)k∈N and (ŷk)k∈N satisfy the equations in (3.47) respectively, with the
following initial conditions

x̂1 = d, ŷ1 = 1− a. (3.59)

From (3.58) with k = n + 1 and by using (3.57), we get

wn+3 = αx̂n+1 βŷn+1 wan+1
2 wbn+1

1 wcn+1
0

= αx̂n+1 βŷn+1
(

β1+cwc2

0 zd
0zcd
−1
)an+1

(
βwc

0zd
−1
)bn+1 wcn+1

0

=αx̂n+1 βŷn+1+(1+c)an+1+bn+1 wc2an+1+cbn+1+cn+1
0 zdan+1

0 zcdan+1+dbn+1
−1 , (3.60)

for n ∈N0.
As above, the solvability of equation (3.52) shows that closed form formulas for (ak)k∈N,

(bk)k∈N, (ck)k∈N, and consequently for (x̂k)k∈N and (ŷk)k∈N, can be found. This fact along
with (3.60) implies that equation (3.56) is solvable, too.

A small problem is that formulas (3.51) and (3.60) hold for n ∈N0, that is, zk can be found
for k ≥ 2 and wl for l ≥ 3. To overcome the problem we show that for the case bd 6= 0,
(ak)k∈N, (bk)k∈N, (ck)k∈N, defined by (3.46) and (xk)k∈N and (yk)k∈N, defined by (3.47), can
be naturally prolonged for negative indices (similarly is proved that (x̂k)k∈N and (ŷk)k∈N are
prolonged for these indices). Here, we show how they are prolonged for k = −2,−1, 0, and
in this way we get a natural set of “initial conditions” for the recurrent relations.
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From (3.49) and (3.50) with k = 0 we get

a1 = a1a0 + b0, b1 = b1a0 + c0, c1 = c1a0. (3.61)

x1 = x1a0 + x0, y1 = y1a0 + y0. (3.62)

Since c1 = bd 6= 0, from the last equation in (3.61) we get a0 = 1. Using this fact in the first
two equalities in (3.61) and in (3.62) is obtained b0 = c0 = 0, x0 = y0 = 0.

From this and by (3.49) and (3.50) with k = −1 we get

1 = a0 = a1a−1 + b−1, 0 = b0 = b1a−1 + c−1, 0 = c0 = c1a−1. (3.63)

0 = x0 = x1a−1 + x−1, 0 = y0 = y1a−1 + y−1. (3.64)

Since c1 6= 0, from the last equation in (3.63) we get a−1 = 0. Using this fact in the other two
equalities in (3.63) and in (3.64) is obtained b−1 = 1, c−1 = 0, x−1 = y−1 = 0.

From this and by (3.49) and (3.50) with k = −2 it follows that

0 = a−1 = a1a−2 + b−2, 1 = b−1 = b1a−2 + c−2, 0 = c−1 = c1a−2. (3.65)

0 = x−1 = x1a−2 + x−2, 0 = y−1 = y1a−2 + y−2. (3.66)

Since c1 6= 0, from the last equation in (3.65) we get a−2 = 0. Using this fact in the other two
equalities in (3.65), as well as in (3.66) is obtained b−2 = 0, c−2 = 1 and x−2 = y−2 = 0.

Hence, sequences (ak)k≥−2, (bk)k≥−2 and (ck)k≥−2 are solutions to linear difference equa-
tion (3.52) satisfying the next initial conditions

a−2 = 0, a−1 = 0, a0 = 1;

b−2 = 0, b−1 = 1, b0 = 0;

c−2 = 1, c−1 = 0, c0 = 0,

(3.67)

respectively, sequences (xk)k≥−2 and (yk)k≥−2 satisfy (3.47) and the next conditions

x−2 = 0, x−1 = 0, x0 = 0, x1 = 1− c, y−2 = 0, y−1 = 0, y0 = 0, y1 = b, (3.68)

and finally (x̂k)k≥−2 and (ŷk)k≥−2 satisfy (3.47) and the next conditions

x̂−2 = 0, x̂−1 = 0, x̂0 = 0, x̂1 = d, ŷ−2 = 0, ŷ−1 = 0, ŷ0 = 0, ŷ1 = 1− a. (3.69)

Using these facts it is easy to see that (zn)n≥−1 defined by (3.51) and (wn)n∈N0 defined by
(3.60) is the general solution to system (1.1) with initial values z−1, z0, w0, that is, the system is
solvable, as claimed.

Remark 3.6. Note that the condition a, b, c, d ∈ Z is naturally posed to avoid appearance of
multi-valued solutions to system (1.1) for complex initial values.

From Theorem 3.5 we obtain the following corollary.

Corollary 3.7. Consider system (1.1) with a, b, c, d ∈ Z and α, β ∈ C\ {0}. Assume that z−1, z0, w0 ∈
C \ {0} and bd 6= 0. Then the general solution to system (1.1) is given by formulas (3.51) and (3.60)
for n ≥ −3, where the sequences (an)n≥−2, (bn)n≥−2, (cn)n≥−2, satisfy difference equation (3.52) with
initial conditions (3.67), sequences (xn)n≥−2 and (yn)n≥−2 satisfy the equations in (3.47) with con-
ditions (3.68), and sequences (x̂n)n≥−2 and (ŷn)n≥−2 satisfy the equations in (3.47) with conditions
(3.69).
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From the theory of linear difference equations with constant coefficients we know that
their general solutions are completely determined by the set of zeros of their associated char-
acteristic polynomials. For equation (3.52) the polynomial is

P3(λ) = λ3 − a1λ2 − b1λ− c1, (3.70)

where a1, b1 and c1 are defined in (3.39). It is important to note that for the case bd 6= 0 the
polynomial is of the third degree, so that the zeros can be explicitly found.

A standard procedure shows that the zeros of polynomial (3.70) are:

λ1 =
a + c

3
+

3
√

B−
√

4A3 + B2

3 3
√

2
+

3
√

B +
√

4A3 + B2

3 3
√

2
, (3.71)

λ2 =
a + c

3
− (1 + i

√
3) 3
√

B−
√

4A3 + B2

6 3
√

2
− (1− i

√
3) 3
√

B +
√

4A3 + B2

6 3
√

2
, (3.72)

λ3 =
a + c

3
− (1− i

√
3) 3
√

B−
√

4A3 + B2

6 3
√

2
− (1 + i

√
3) 3
√

B +
√

4A3 + B2

6 3
√

2
, (3.73)

where

A := −a2 + ac− c2, B := 2a3 + 27bd− 3a2c− 3ac2 + 2c3. (3.74)

Now recall that the nature of these zeros depends on the sign of the discriminant

D := 4A3 + B2 (3.75)

(see, e.g., [6]). Namely, if D > 0, then one zero is real and two are complex conjugates. If
D = 0, all the zeros are real and at least two of them are equal. Finally, if D < 0, all the zeros
are real and different.

Case D 6= 0. Since D 6= 0, then all the zeros λi, i = 1, 3, of polynomial (3.70) are mutually
different, and the general solution to equation (3.52) has the following form

un = α1λn
1 + α2λn

2 + α3λn
3 , n ∈N, (3.76)

where αi, i = 1, 3, are arbitrary constants. Since for the case c1 6= 0, the solution can be
prolonged for nonpositive indices then we may assume that formula (3.76) holds also for
n ≥ −3.

From Lemma 2.7 with P3(t) = ∏3
j=1(t− λj), we have

3

∑
j=1

λl
j

P′3(λj)
= 0, for l = 0, 1, and

3

∑
j=1

λ2
j

P′3(λj)
= 1. (3.77)

From this, since from (3.67) we have a−2 = a−1 = 0 and a0 = 1, and general solution of
(3.52) has the form in (3.76), we obtain

an =
λn+2

1
(λ1 − λ2)(λ1 − λ3)

+
λn+2

2
(λ2 − λ1)(λ2 − λ3)

+
λn+2

3
(λ3 − λ1)(λ3 − λ2)

, (3.78)

for n ≥ −2.
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On the other hand, from (3.46) we get

bn = an+1 − a1an, (3.79)

cn = c1an−1, (3.80)

for n ≥ −2.
By using (3.78) and (3.39) into (3.79), we obtain

bn =
3

∑
j=1

λj − a− c
P′3(λj)

λn+2
j (3.81)

for n ≥ −2, while by (3.78), which also holds for n = −3, (3.39) and (3.80), we get

cn =
3

∑
j=1

bd
P′3(λj)

λn+1
j (3.82)

for n ≥ −2.
From (3.53), (3.40), (3.78) and the fact that a0 = 1, we have

xn = x1

n−1

∑
i=0

ai

= (1− c)
n−1

∑
i=0

(
λi+2

1
(λ1 − λ2)(λ1 − λ3)

+
λi+2

2
(λ2 − λ1)(λ2 − λ3)

+
λi+2

3
(λ3 − λ1)(λ3 − λ2)

)
, (3.83)

and

yn = y1

n−1

∑
i=0

ai

= b
n−1

∑
i=0

(
λi+2

1
(λ1 − λ2)(λ1 − λ3)

+
λi+2

2
(λ2 − λ1)(λ2 − λ3)

+
λi+2

3
(λ3 − λ1)(λ3 − λ2)

)
, (3.84)

for every n ∈N, while from (3.53), (3.59) and (3.78), we have

x̂n = x̂1

n−1

∑
i=0

ai

= d
n−1

∑
i=0

(
λi+2

1
(λ1 − λ2)(λ1 − λ3)

+
λi+2

2
(λ2 − λ1)(λ2 − λ3)

+
λi+2

3
(λ3 − λ1)(λ3 − λ2)

)
, (3.85)

and

ŷn = ŷ1

n−1

∑
i=0

ai

= (1− a)
n−1

∑
i=0

(
λi+2

1
(λ1 − λ2)(λ1 − λ3)

+
λi+2

2
(λ2 − λ1)(λ2 − λ3)

+
λi+2

3
(λ3 − λ1)(λ3 − λ2)

)
, (3.86)

for every n ∈N.
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Now assume that λi 6= 1, i = 1, 2, 3. Then, from formulas (3.83)–(3.86), we have

xn = (1− c)R(1)
n (λ1, λ2, λ3), (3.87)

yn = bR(1)
n (λ1, λ2, λ3), (3.88)

x̂n = dR(1)
n (λ1, λ2, λ3), (3.89)

ŷn = (1− a)R(1)
n (λ1, λ2, λ3), (3.90)

for n ∈N, where

R(1)
n (λ1, λ2, λ3) =

λ2
1(λ

n
1 − 1)

(λ1 − λ2)(λ1 − λ3)(λ1 − 1)
+

λ2
2(λ

n
2 − 1)

(λ2 − λ1)(λ2 − λ3)(λ2 − 1)

+
λ2

3(λ
n
3 − 1)

(λ3 − λ1)(λ3 − λ2)(λ3 − 1)
.

Formulas (3.87)–(3.90) hold also for every n ≥ −2. Indeed, if n = −2,−1, 0, then by some
simple calculation and (3.77), we obtain

R(1)
−2(λ1, λ2, λ3) = −

λ1 + 1
(λ1 − λ2)(λ1 − λ3)

− λ2 + 1
(λ2 − λ1)(λ2 − λ3)

− λ3 + 1
(λ3 − λ1)(λ3 − λ2)

= −
3

∑
j=1

1
P′3(λj)

−
3

∑
j=1

λj

P′3(λj)
= 0;

R(1)
−1(λ1, λ2, λ3) = −

λ1

(λ1 − λ2)(λ1 − λ3)
− λ2

(λ2 − λ1)(λ2 − λ3)
− λ3

(λ3 − λ1)(λ3 − λ2)

= −
3

∑
j=1

λj

P′3(λj)
= 0;

R(1)
0 (λ1, λ2, λ3) = 0.

From these three relations we see that the sequences defined in (3.87)–(3.90) satisfy the condi-
tions in (3.68) and (3.69), from which the statement follows.

If one of the zeros is equal to one, say λ3, then 1 6= λ1 6= λ2 6= 1, and we have

xn = (1− c)R(2)
n (λ1, λ2), (3.91)

yn = bR(2)
n (λ1, λ2), (3.92)

x̂n = dR(2)
n (λ1, λ2), (3.93)

ŷn = (1− a)R(2)
n (λ1, λ2), (3.94)

for n ∈N, where

R(2)
n (λ1, λ2) =

λ2
1(λ

n
1 − 1)

(λ1 − λ2)(λ1 − 1)2 +
λ2

2(λ
n
2 − 1)

(λ2 − λ1)(λ2 − 1)2 +
n

(λ1 − 1)(λ2 − 1)
.

Formulas (3.91)–(3.94) hold also for every n ≥ −2. Indeed, if n = −2,−1, 0, then by some
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simple calculation and (3.77), we obtain

R(2)
−2(λ1, λ2) = −

λ1 + 1
(λ1 − λ2)(λ1 − 1)

− λ2 + 1
(λ2 − λ1)(λ2 − 1)

− 1 + 1
(1− λ1)(1− λ2)

= −
3

∑
j=1

1
P′3(λj)

−
3

∑
j=1

λj

P′3(λj)
= 0;

R(2)
−1(λ1, λ2) = −

λ1

(λ1 − λ2)(λ1 − 1)
− λ2

(λ2 − λ1)(λ2 − 1)
− 1

(1− λ1)(1− λ2)

= −
3

∑
j=1

λj

P′3(λj)
= 0;

R(2)
0 (λ1, λ2) = 0.

From these three relations we see that the sequences defined in (3.91)–(3.94) satisfy the condi-
tions in (3.68) and (3.69), from which the statement follows.

From the above consideration and Theorem 3.5 we obtain the following corollary for the
case bd 6= 0 and D 6= 0.

Corollary 3.8. Consider system (1.1) with a, b, c, d ∈ Z and α, β ∈ C \ {0}. Assume z−1, z0, w0 ∈
C \ {0}, bd 6= 0 and D 6= 0. Then the following statements are true.

(a) If none of the zeros of characteristic polynomial (3.70) is equal to one, i.e., if P3(1) 6= 0, then the
general solution to system (1.1) is given by formulas (3.51) and (3.60), where sequences (an)n≥−2,
(bn)n≥−2 and (cn)n≥−2 are given by (3.78), (3.81) and (3.82) respectively, sequences (xn)n≥−2

and (yn)n≥−2 are given by (3.87) and (3.88), while sequences (x̂n)n≥−2 and (ŷn)n≥−2 are given
by (3.89) and (3.90).

(b) If only one of the zeros of characteristic polynomial (3.70) is equal to one, i.e., if P3(1) = 0 and
P′3(1) 6= 0, say λ3, then the general solution to system (1.1) is given by formulas (3.51) and
(3.60), where sequences (an)n≥−2, (bn)n≥−2 and (cn)n≥−2 are given by (3.78), (3.81) and (3.82)
respectively, sequences (xn)n≥−2 and (yn)n≥−2 are given by (3.91) and (3.92), while sequences
(x̂n)n≥−2 and (ŷn)n≥−2 are given by (3.93) and (3.94).

Remark 3.9. Equation (3.70) will have a zero equal to one if

P3(1) = 1− a− c + ac− bd = 0,

that is, if
(a− 1)(c− 1) = bd,

so that

P3(λ) = λ3 − (a + c)λ2 + acλ− (a− 1)(c− 1). (3.95)

If a = 3 and c = 0, then bd = −2 6= 0, D = −4 · 36 + (2 · 27− 27 · 2)3 = −2916 6= 0,

P3(λ) = λ3 − 3λ2 + 2 = (λ− 1)(λ2 − 2λ− 2),

so that the conditions of Corollary 3.8 (b) are satisfied. Hence, there are cases such that the
only one zero of polynomial (3.70) is equal to one and all three zeros are mutually different.
For the symmetry when a = 0 and c = 3 is obtained the same polynomial.
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Case D = 0. If D = 0, then, at least two zeros of characteristic polynomial (3.70), say, λ2 and
λ3 are equal. It is easy to see that the polynomial would have three equal zeros only if B = 0,
which along with D = 0 would also imply A = 0. However, since A = −(a2 − ac + c2) this is
only possible if a = c = 0. Indeed, using the fact that t2− t + 1 > 0, t ∈ R, it is easily obtained
that A < 0 in the case a 6= 0 6= c, while if a 6= 0 = c or a = 0 6= c, it is immediately obtained
that A < 0. But, in the case a = c = 0 polynomial (3.70) would have the form λ3 − bd. Using
the condition bd 6= 0 it would follow that such a polynomial has three different zeros, which
is a contradiction. Thus, (3.70) has exactly two equal zeros in this case.

Hence, the general solution of (3.52) has the following form

an = α̂1λn
1 + (α̂2 + α̂3n)λn

2 , n ∈N, (3.96)

where α̂1, α̂2 and α̂3 are arbitrary constants. Since, in our case the following conditions must
be satisfied a−2 = a−1 = 0 and a0 = 1, we will find the solution (an)n≥−2 of equation (3.52) by
letting λ3 → λ2 into the solution in (3.78).

We have

an = lim
λ3→λ2

(
λn+2

1
(λ1 − λ2)(λ1 − λ3)

+
λn+2

2
(λ2 − λ1)(λ2 − λ3)

+
λn+2

3
(λ3 − λ1)(λ3 − λ2)

)
= lim

λ3→λ2

(
λn+2

1
(λ1 − λ2)(λ1 − λ3)

+
λn+2

2 (λ3 − λ1)− λn+2
3 (λ2 − λ1)

(λ2 − λ1)(λ2 − λ3)(λ3 − λ1)

)
=

λn+2
1

(λ1 − λ2)2 + lim
λ3→λ2

λ2λ3(λ
n+1
2 − λn+1

3 )− λ1(λ
n+2
2 − λn+2

3 )

(λ2 − λ1)(λ2 − λ3)(λ3 − λ1)

=
λn+2

1 − (n + 2)λ1λn+1
2 + (n + 1)λn+2

2
(λ2 − λ1)2 ,

for n ≥ −2, that is,

an =
λn+2

1 +
(
λ2 − 2λ1 + n(λ2 − λ1)

)
λn+1

2

(λ2 − λ1)2 , n ≥ −2. (3.97)

A direct calculation verify that a−2 = a−1 = 0 and a0 = 1. Clearly, (3.97) is of the form in
(3.96) with

α̂1 =
λ2

1
(λ2 − λ1)2 , α̂2 =

λ2
2 − 2λ1λ2

(λ2 − λ1)2 and α̂3 =
λ2

λ2 − λ1
.

By using relations (3.97) in (3.79) and (3.80) we get

bn =
(λ1 − a− c)λn+2

1
(λ2 − λ1)2

+

(
λ2
(
2λ2 − 3λ1)− (a + c)(λ2 − 2λ1) + n(λ2 − λ1)(λ2 − a− c)

)
λn+1

2

(λ2 − λ1)2 , (3.98)

cn = bd
λn+1

1 + (−λ1 + n(λ2 − λ1))λ
n
2

(λ2 − λ1)2 , (3.99)

for n ≥ −2.
From (3.53), (3.40), (3.97) and the fact that a0 = 1, we have

xn = x1

n−1

∑
j=0

aj = (1− c)
n−1

∑
j=0

λ
j+2
1 +

(
λ2 − 2λ1 + j(λ2 − λ1)

)
λ

j+1
2

(λ2 − λ1)2 , (3.100)
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and

yn = y1

n−1

∑
j=0

aj = b
n−1

∑
j=0

λ
j+2
1 +

(
λ2 − 2λ1 + j(λ2 − λ1)

)
λ

j+1
2

(λ2 − λ1)2 , (3.101)

for every n ∈N, while from (3.53), (3.59) and (3.97), we have

x̂n = x̂1

n−1

∑
j=0

aj = d
n−1

∑
j=0

λ
j+2
1 +

(
λ2 − 2λ1 + j(λ2 − λ1)

)
λ

j+1
2

(λ2 − λ1)2 , (3.102)

and

ŷn = ŷ1

n−1

∑
j=0

aj = (1− a)
n−1

∑
j=0

λ
j+2
1 +

(
λ2 − 2λ1 + j(λ2 − λ1)

)
λ

j+1
2

(λ2 − λ1)2 , (3.103)

for every n ∈N.
If we assume that λ1 6= 1 6= λ2 = λ3, then from (3.100)–(3.103) and Lemma 2.1, it follows

that

xn = (1− c)R(3)
n (λ1, λ2), (3.104)

yn = bR(3)
n (λ1, λ2), (3.105)

x̂n = dR(3)
n (λ1, λ2), (3.106)

ŷn = (1− a)R(3)
n (λ1, λ2), (3.107)

for every n ∈N, where

R(3)
n (λ1, λ2) =

λ2
1(λ

n
1 − 1)

(λ2 − λ1)2(λ1 − 1)
+

(λ2 − 2λ1)λ2(λn
2 − 1)

(λ2 − λ1)2(λ2 − 1)
+

λ2
2(1− nλn−1

2 + (n− 1)λn
2)

(λ2 − λ1)(λ2 − 1)2 .

Formulas (3.104)–(3.107) hold also for every n ≥ −2. Indeed, if n = −2,−1, 0, then by
some simple calculation, we obtain

R(3)
−2(λ1, λ2) = −

λ1 + 1
(λ1 − λ2)2 −

(λ2 − 2λ1)(λ2 + 1)
(λ2 − λ1)2λ2

+
λ2 + 2

(λ2 − λ1)λ2
= 0;

R(3)
−1(λ1, λ2) = −

λ1

(λ1 − λ2)2 −
λ2 − 2λ1

(λ2 − λ1)2 +
1

λ2 − λ1
= 0;

R(3)
0 (λ1, λ2) = 0.

From these three relations we see that the sequences defined in (3.104)–(3.107) satisfy the
conditions in (3.68) and (3.69), from which the statement follows.

If we assume that λ1 6= 1 and λ2 = λ3 = 1, then from (3.100)–(3.103) it follows that

xn = (1− c)R(4)
n (λ1), (3.108)

yn = bR(4)
n (λ1), (3.109)

x̂n = dR(4)
n (λ1), (3.110)

ŷn = (1− a)R(4)
n (λ1), (3.111)
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for every n ∈N, where

R(4)
n (λ1) =

λ2
1(λ

n
1 − 1)

(λ1 − 1)3 +
(1− 2λ1)n
(λ1 − 1)2 +

(n− 1)n
2(1− λ1)

.

Formulas (3.108)–(3.111) hold also for every n ≥ −2. Indeed, if n = −2,−1, 0, then by
some simple calculation, we obtain

R(4)
−2(λ1) = −

λ1 + 1
(λ1 − 1)2 +

4λ1 − 2
(λ1 − 1)2 +

3
1− λ1

= 0;

R(4)
−1(λ1) = −

λ1

(λ1 − 1)2 +
2λ1 − 1
(λ1 − 1)2 +

1
1− λ1

= 0;

R(4)
0 (λ1) = 0.

From these three relations we see that the sequences defined in (3.108)–(3.111) satisfy the
conditions in (3.68) and (3.69), from which the statement follows.

If we assume that λ1 = 1 and λ2 = λ3 6= 1, then from formulas (3.100)–(3.103) it follows
that

xn = (1− c)R(5)
n (λ2), (3.112)

yn = bR(5)
n (λ2), (3.113)

x̂n = dR(5)
n (λ2), (3.114)

ŷn = (1− a)R(5)
n (λ2), (3.115)

for every n ∈N, where

R(5)
n (λ2) =

n
(λ2 − 1)2 +

(λ2 − 2)λ2(λn
2 − 1)

(λ2 − 1)3 +
λ2

2(1− nλn−1
2 + (n− 1)λn

2)

(λ2 − 1)3 .

Formulas (3.112)–(3.115) hold also for every n ≥ −2. Indeed, if n = −2,−1, 0, then by
some simple calculation, we obtain

R(5)
−2(λ2) = −

2
(λ2 − 1)2 −

(λ2 − 2)(λ2 + 1)
λ2(λ2 − 1)2 +

λ2 + 2
(λ2 − 1)λ2

= 0;

R(5)
−1(λ2) = −

1
(λ2 − 1)2 −

λ2 − 2
(λ2 − 1)2 +

1
λ2 − 1

= 0;

R(5)
0 (λ2) = 0.

From these three relations we see that the sequences defined in (3.112)–(3.115) satisfy the
conditions in (3.68) and (3.69), from which the statement follows.

From the above consideration and Theorem 3.5 we obtain the following corollary.

Corollary 3.10. Consider system (1.1) with a, b, c, d ∈ Z and α, β ∈ C \ {0}. Assume z−1, z0, w0 ∈
C \ {0}, bd 6= 0 and D = 0. Then the following statements are true.

(a) If none of the zeros of characteristic polynomial (3.70) is equal to one, i.e., if P3(1) 6= 0, then the
general solution to system (1.1) is given by formulas (3.51) and (3.60), where sequences (an)n≥−2,
(bn)n≥−2 and (cn)n≥−2 are given by (3.97), (3.98) and (3.99) respectively, sequences (xn)n≥−2

and (yn)n≥−2 are given by (3.104) and (3.105), while sequences (x̂n)n≥−2 and (ŷn)n≥−2 are given
by (3.106) and (3.107).
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(b) If exactly two of the zeros of characteristic polynomial (3.70) are equal to one (i.e., if P3(1) =

P′3(1) = 0 and P′′3 (1) 6= 0), say λ2 and λ3, then the general solution to system (1.1) is given by
formulas (3.51) and (3.60), where sequences (an)n≥−2, (bn)n≥−2 and (cn)n≥−2 are given by (3.97),
(3.98) and (3.99) respectively, sequences (xn)n≥−2 and (yn)n≥−2 are given by (3.108) and (3.109),
while sequences (x̂n)n≥−2 and (ŷn)n≥−2 are given by (3.110) and (3.111).

(c) If only one of the zeros of the characteristic polynomial (3.70) is equal to one (i.e., if P3(1) = 0
and P′3(1) 6= 0), say λ1, then the general solution to system (1.1) is given by formulas (3.51) and
(3.60), where sequences (an)n≥−2, (bn)n≥−2 and (cn)n≥−2 are given by (3.97), (3.98) and (3.99)
respectively, sequences (xn)n≥−2 and (yn)n≥−2 are given by (3.112) and (3.113), while sequences
(x̂n)n≥−2 and (ŷn)n≥−2 are given by (3.114) and (3.115).

Remark 3.11. As we have already mentioned equation (3.70) will have a zero equal to one
if (a − 1)(c − 1) = bd. Since a, b, c, d ∈ Z, this is possible, for example, if a = b + 1 and
c = d + 1, or a = d + 1 and c = b + 1. If λ = 1 is a double zero of (3.70), then it must be
P′3(1) = 3− 2a− 2c + ac = 0, which is possible only if (a− 2)(c− 2) = 1, that is, if a = c = 3
or a = c = 1. For a = c = 3, it follows that bd = 4, so that the corresponding polynomial is

P3(λ) = λ3 − 6λ2 + 9λ− 4 = (λ− 1)2(λ− 4), (3.116)

while for a = c = 1 it follows that bd = 0, so that the polynomial is equal to P3(λ) = λ(λ− 1)2.
Since in Corollary 3.10 we have the assumption bd 6= 0, the only possibility is that a = c =

3 and bd = 4. A direct computation shows that, in this case D = 4A3 + B2 = 4(−9)3+

(27 · 4− 2 · 27)2 = 0. Hence, the only polynomial which satisfies conditions of Corollary 3.10
(b) is defined in (3.116).

Remark 3.12. If a = −3, c = 0 and bd = (a − 1)(c − 1), then bd = 4 6= 0, D = −4 · 36 +

(2(−3)3 + 27 · 4)2 = 0 and

P3(λ) = λ3 + 3λ2 − 4 = (λ− 1)(λ + 2)2.

Hence, there are polynomials which satisfy conditions of Corollary 3.10 (c). Because of the
symmetry for a = 0 and c = −3 is obtained the same polynomial.

Remark 3.13. As we have already showed, the case that all the zeros of polynomial (3.70) are
equal, i.e., if λ1 = λ2 = λ3, is impossible for the system studied in this paper. Recall, also that
if all the zeros of the characteristic polynomial are equal, then the general solution of (3.52)
has the following form

an = (β̂1 + β̂2n + β̂3n2)λn
1 , n ∈N, (3.117)

where β̂1, β̂2 and β̂3 are arbitrary constants.

Remark 3.14. The formulas presented in this paper can be used in the study of the asymptotic
behavior of solutions to system (1.1). We leave the problem to the reader.
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[9] D. S. Mitrinović, J. D. Kečkić, Methods for calculating finite sums (in Serbian), Naučna
Knjiga, Beograd, 1984.

[10] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations,
J. Math. Anal. Appl. 219(1998), No. 2, 415–426. MR1606350; url

[11] G. Papaschinopoulos, C. J. Schinas, On the behavior of the solutions of a system of
two nonlinear difference equations, Comm. Appl. Nonlinear Anal. 5(1998), No. 2, 47–59.
MR1621223

[12] G. Papaschinopoulos, C. J. Schinas, Invariants for systems of two nonlinear difference
equations, Differential Equations Dynam. Systems 7(1999), No. 2, 181–196. MR1860787

[13] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class
of rational difference equations, Int. J. Difference Equ. 5(2010), No. 2, 233–249. MR2771327

[14] G. Stefanidou, G. Papaschinopoulos, C. Schinas, On a system of max difference equa-
tions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14(2007), No. 6, 885–903.
MR2369919

[15] G. Stefanidou, G. Papaschinopoulos, C. J. Schinas, On a system of two exponential
type difference equations, Comm. Appl. Nonlinear Anal. 17(2010), 1–13. MR2669014
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