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Abstract

We discuss the problem

{

− div
(

|∇u|
p(x)−2

∇u
)

= λ(a (x) |u|
q(x)−2

u + b(x) |u|
h(x)−2

u), for x ∈ Ω,

u = 0, for x ∈ ∂Ω.

where Ω is a bounded domain with smooth boundary in R
N (N ≥ 2) and p is Lips-

chitz continuous, q and h are continuous functions on Ω such that 1 < q(x) < p(x) <

h(x) < p∗(x) and p(x) < N . We show the existence of at least one nontrivial weak
solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev
spaces combined with adequate variational methods and the Mountain Pass Theorem.

Keywords and Phrases: variable exponent Lebesgue and Sobolev spaces; p (x)-Laplacian;
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1. Introduction

The study of partial differential equations and variational problems involving p(x)-growth con-
ditions has captured special attention in the last decades. This is a consequence of the fact that
such equations can be used to model phenomena which arise in mathematical physics, for example:

• Electrorheological fluids: see Acebri and Mingione [1], Zhikov [25] and Růžička [20], Fan and
Zhang [12], Mihăilescu and Rădulescu [16], Chabrowski and Fu [7], Hästö [14], Diening [8].

• Nonlinear porous medium: see Antontsev and Rodrigues [2], Buhrii and Mashiyev [4], and
Songzhe, Wenjie, Chunling and Hongjun [21].

• Image Processing: Chen, Levine and Rao [6].
A typical model of an elliptic equation with p(x)-growth conditions is

− div
(

|∇u|
p(x)−2

∇u
)

= f(x, u). (1.1)

The operator − div
(

|∇u|
p(x)−2

∇u
)

is called the p(x)-Laplace operator and it is a natural gen-

eralization of the p−Laplace operator, in which p(x) ≡ p > 1 is a constant. The p(x)-Laplacian

1This research was supported by DUBAP grant No. 10-FF-15, Dicle University, Turkey.
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processes have more complicated nonlinearity, for example, it is nonhomogeneous, so in the discus-
sions some special techniques will be needed.

Problems like (1.1) with Dirichlet boundary condition have been largely considered in the liter-
ature in the recent years. We give in what follows a concise but complete image of the actual stage
of research on this topic. We will use the notations such as p1 and p2 where

p1 := ess inf
x∈Ω

p (x) ≤ p (x) ≤ p2 := ess sup
x∈Ω

p (x) < ∞.

In the case f(x, u) = λ |u|
p(x)−2

u in [13] the authors established the existence of infinitely many
eigenvalues for problem (1.1) by using an argument based on the Ljusternik-Schnirelmann critical
point theory. Denoting by Λ the set of all nonnegative eigenvalues, they showed that Λ is discrete,
sup Λ = ∞ and pointed out inf Λ = 0 for general p(x), and only under some special conditions

inf Λ > 0. In the case f(x, u) = λ |u|q(x)−2
u, there are different papers, for example, in [12] the

same authors proved that any λ > 0 is an eigenvalue of problem (1.1) when p2 < q1 and also when
q2 < p1. In [18] the authors proved the existence of a continuous family of eigenvalues which lies in
a neighborhood of the origin when q1 < p1 and q(x) has subcritical growth in problem (1.1).

In the case f(x, u) = A |u|
a−2

u + B |u|
b−2

u with 1 < a < p1 < p2 < b < min{N, Np1

N−p1
} and

A, B > 0, in [17] Mihăilescu show that there exists λ > 0 such that, for any A, B ∈ (0, λ), problem
(1.1) has at least two distinct nontrivial weak solutions.

The aim of this paper is to discuss the existence of a weak solution of the p (x)-Laplacian
equation

{

− div
(

|∇u|p(x)−2 ∇u
)

= λ(a (x) |u|q(x)−2
u + b(x) |u|h(x)−2

u), for x ∈ Ω,

u = 0, for x ∈ ∂Ω.
(Pλ)

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with smooth boundary, λ is a positive real number,

p is Lipschitz continuous on Ω, and q, h ∈ C+(Ω), a(x), b(x) > 0 for x ∈ Ω such that a ∈ Lβ(x) (Ω),

β(x) = p(x)
p(x)−q(x) and b ∈ Lγ(x) (Ω), γ(x) = p∗(x)

p∗(x)−h(x) . Here p∗(x) = Np(x)
N−p(x) if p(x) < N or

p∗(x) = ∞ if p(x) ≥ N.

In the present paper, assuming the condition

1 < q1 ≤ q2 < p1 ≤ p2 < h1 ≤ h2 < p∗1 and p2 < N (1.2)

and using the the variable exponent theory of Lebesgue and Sobolev spaces combined with ade-
quate variational methods and the Mountain Pass Theorem, we show the existence of at least one
nontrivial weak solution of problem (Pλ).

2.Preliminaries

We recall in what follows some definitions and basic properties of variable exponent Lebesgue

and Sobolev spaces Lp(x) (Ω), W 1,p(x) (Ω) and W
1,p(x)
0 (Ω). In that context we refer to [9, 10, 15]

for the fundamental properties of these spaces.
Set
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L∞
+ (Ω) =

{

p; p ∈ L∞ (Ω) , ess inf
x∈Ω

p(x) > 1

}

.

For p ∈ L∞
+ (Ω) , we define the variable exponent Lebesgue space Lp(.)(Ω) to consist of all measurable

functions u : Ω → R for which the modular

ρp(x) (u) =

∫

Ω

|u (x)|p(x)
dx

is finite. We define the Luxembourg norm on this space by the formula

‖u‖p(x) = inf
{

δ > 0 : ρp(x)

(u

δ

)

≤ 1
}

.

Equipped with this norm, Lp(.)(Ω) is a separable and reflexive Banach space. Define the variable
exponent Sobolev space W 1,p(x) (Ω) by

W 1,p(x) (Ω) = {u ∈ Lp(x) (Ω) ; |∇u| ∈ Lp(x) (Ω)},

and the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) , ∀u ∈ W 1,p(x) (Ω)

makes W 1,p(x) (Ω) a separable and reflexive Banach space. The space W
1,p(x)
0 (Ω) is denoted by the

closure of C∞
0 (Ω) in W 1,p(x) (Ω). W

1,p(x)
0 (Ω) is a separable and reflexive Banach space.

Proposition 2.1 [10, 15] The conjugate space of Lp(x) (Ω) is Lq(x) (Ω), where 1
p(x) + 1

q(x) = 1.

For any u ∈ Lp(x) (Ω) and υ ∈ Lq(x) (Ω), we have

∣

∣

∣

∣

∣

∣

∫

Ω

uυdx

∣

∣

∣

∣

∣

∣

≤

(

1

p1
+

1

q1

)

‖u‖p(x) ‖υ‖q(x) ≤ 2 ‖u‖p(x) ‖υ‖q(x) .

The next proposition illuminates the close relation between the ‖·‖p(x) and the convex modular
ρp(x) :

Proposition 2.2 [9, 10, 15] If u ∈ Lp(x) (Ω) and p2 < ∞ then we have

i) ‖u‖p(x) < 1 (= 1; > 1) ⇔ ρp(x)(u) < 1 (= 1; > 1) ,

ii) ‖u‖p(x) > 1 =⇒ ‖u‖
p1

p(x) ≤ ρp(x) (u) ≤ ‖u‖
p2

p(x) ,

iii) ‖u‖p(x) < 1 =⇒ ‖u‖
p2

p(x) ≤ ρp(x) (u) ≤ ‖u‖
p1

p(x) ,

iv) ‖u‖p(x) = a > 0 ⇐⇒ ρp(x)

(u

a

)

= 1

Proposition 2.3 [9, 10, 15] If u, un ∈ Lp(x) (Ω) , n = 1, 2, ..., then the following statements are
equivalent

(1) lim
n→∞

‖un − u‖p(x) = 0;

(2) lim
n→∞

ρp(x)(un − u) = 0;

(3) un → u in measure in Ω and lim
n→∞

ρp(x)(un) = ρp(x)(u).
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Lemma 2.4 [5] Assume that r ∈ L∞
+ (Ω) and p ∈ C+(Ω) :=

{

m ∈ C(Ω) : m1 > 1
}

. If |u|r(x) ∈

Lp(x) (Ω), then we have

min
{

‖u‖r1

r(x)p(x) , ‖u‖r2

r(x)p(x)

}

≤
∥

∥

∥|u|
r(x)
∥

∥

∥

p(x)
≤ max

{

‖u‖r1

r(x)p(x) , ‖u‖r2

r(x)p(x)

}

.

Remark 2.5 If r(x) ≡ r, r ∈ R then

‖|u|
r
‖p(x) = ‖u‖

r
rp(x) .

Given two Banach spaces X and Y , the symbol X →֒ Y means that X is continuously imbedded
in Y and the symbol X →֒→֒ Y means that there is a compact embedding of X in Y .

Proposition 2.6 [9, 10, 11, 15] Assume that Ω is bounded and smooth.
(i) Let q, h ∈ C+(Ω). If q(x) ≤ h(x) for all x ∈ Ω, then Lh(x) (Ω) →֒ Lq(x) (Ω) .

(ii) Let p is Lipschitz continuous and p2 < N, then for h ∈ L∞
+ (Ω) with p(x) ≤ h(x) ≤ p∗(x)

there is a continuous imbedding W 1,p(x) (Ω) →֒ Lh(x) (Ω) , and also there is a constant C1 > 0 such
that ‖u‖h(x) ≤ C1 ‖u‖1,p(x).

(iii) Let p, q ∈ C+(Ω). If p(x) ≤ q(x) < p∗(x) for all x ∈ Ω, then W 1,p(x) (Ω) →֒→֒ Lq(x) (Ω) .

(iv) (Poincaré inequality ) If p ∈ C+(Ω), then there is a constant C2 > 0 such that

‖u‖p(x) ≤ C2 ‖|∇u|‖p(x) , ∀ u ∈ W
1,p(x)
0 (Ω) .

Consequently, ‖u‖ := ‖|∇u|‖p(x) and ‖u‖1,p(x) are equivalent norms on W
1,p(x)
0 (Ω). In what fol-

lows, W
1,p(x)
0 (Ω), with p ∈ C+(Ω), will be considered as endowed with the norm ‖u‖1,p(x). We will

use ‖u‖ = ‖∇u‖p(x) for u ∈ W
1,p(x)
0 (Ω) in the following discussions.

Finally, we introduce Mountain-Pass Theorem which is the main tool of the present paper.

Palais-Smale condition [24] Let E be a Banach space and I ∈ C1 (E, R). If {un} ⊂ E is a
sequence which satisfies conditions

|Iλ(un)| < M,

I ′λ(un) → 0 as n → ∞ in E∗

where M is a positive constant and E∗ is the dual space of E, then {un} possesses a convergent
subsequence.

Mountain-Pass Theorem [24] Let E be a Banach space, and let I ∈ C1 (E, R) satisfy the
Palais-Smale condition. Assume that I (0) = 0, and there exists a positive real number ρ and
u, υ ∈ E such that

(i) ‖υ‖ > ρ, I (υ) ≤ I (0) .

(ii) α = inf {I (u) : u ∈ E, ‖u‖ = ρ} > 0.

Put G = {g ∈ C ([0, 1] , E) : g (0) = 0, g (1) = υ} 6= ∅. Set β = inf
g∈G

sup
t∈[0,1]

I (g (t)) .
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Then, β ≥ α and β is a critical value of I.

3. Main Results

The energy functional corresponding to problem (Pλ) is defined as Jλ : W
1,p(x)
0 (Ω) → R,

Jλ(u) =

∫

Ω

|∇u|
p(x)

p(x)
dx − λ

∫

Ω

a(x)

q(x)
|u|

q(x)
dx − λ

∫

Ω

b(x)

h(x)
|u|

h(x)
dx. (3.1)

We say that u ∈ W
1,p(x)
0 (Ω) is a weak solution for problem (Pλ) provided

∫

Ω

|∇u|
p(x)−2

∇u∇υdx = λ

∫

Ω

a(x) |u|
q(x)−2

uυdx + λ

∫

Ω

b(x) |u|
h(x)−2

uυdx

for all υ ∈ W
1,p(x)
0 (Ω) .

Standard arguments imply that Jλ ∈ C1
(

W
1,p(x)
0 (Ω) , R

)

with

〈J ′
λ(u), υ〉 =

∫

Ω

|∇u|
p(x)−2

∇u∇υdx − λ

∫

Ω

a(x) |u|
q(x)−2

uυdx − λ

∫

Ω

b(x) |u|
h(x)−2

uυdx (3.2)

for all u, υ ∈ W
1,p(x)
0 (Ω). Thus the weak solution of (Pλ) are exactly the critical points of Jλ.

The main result of the present paper is the following theorem.

Theorem 3.1 Assume p is Lipschitz continuous, q, h ∈ C+(Ω) and condition (1.2) is fulfilled.
If

λ ∈

(

0, min

{

q1ρ
p2−q1

4C
q1

1 p2 ‖a‖β(x)

,
h1ρ

p2−h1

4Ch1
1 p2 ‖b‖γ(x)

})

,

then the problem (Pλ) has at least one nontrivial solution, where ρ ∈ (0, 1) .

To obtain the proof of Theorem 3.1, we use Mountain-Pass theorem. Therefore, we must show
Jλ satisfies Palais-Smale condition in the first place.

Lemma 3.2 Let λ satisfies the condition of Theorem 3.1. If {un} ⊂ W
1,p(x)
0 (Ω) is a sequence

which satisfies conditions

|Jλ(un)| < M, (3.3)

J ′
λ(un) → 0 as n → ∞ in

(

W
1,p(x)
0 (Ω)

)∗

(3.4)

where M is a positive constant, then {un} possesses a convergent subsequence.

Proof: First, we show that {un} is bounded in W
1,p(x)
0 (Ω). Assume the contrary. Then, passing

to a subsequence if necessary, we may assume that ‖un‖ → ∞ as n → ∞. Thus, we may consider
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that ‖un‖ > 1 for any integer n. By (3.4) we deduce that there exists N1 > 0 such that for any
n > N1, we have

‖J ′
λ(un)‖ ≤ 1.

On the other hand, for any n > N1 fixed, the application

W
1,p(x)
0 (Ω) ∋ υ → 〈J ′

λ(un), υ〉

is linear and continuous. The above information implies

|〈J ′
λ(un), υ〉| ≤ ‖J ′

λ(un)‖
W

−1,p′(x)
0 (Ω)

‖υ‖ ≤ ‖υ‖ , ∀υ ∈ W
1,p(x)
0 (Ω) , n > N1.

Setting υ = un we have

−‖un‖ ≤

∫

Ω

|∇un|
p(x)

dx − λ

∫

Ω

a(x) |un|
q(x)

dx − λ

∫

Ω

b(x) |un|
h(x)

dx ≤ ‖un‖

for any n > N1.

Using the assumption ‖un‖ > 1, relations (3.3) , (3.4), Proposition 2.1, Lemma 2.4 and Propo-
sition 2.6 (ii) we have

M > Jλ(un) −
1

h1
〈J ′

λ(un), un〉

=

∫

Ω

|∇un|
p(x)

p(x)
dx − λ

∫

Ω

a(x)

q(x)
|un|

q(x)
dx − λ

∫

Ω

b(x)

h(x)
|un|

h(x)
dx

−
1

h1

∫

Ω

|∇un|
p(x)

dx +
λ

h1

∫

Ω

a(x) |un|
q(x)

dx +
λ

h1

∫

Ω

b(x) |un|
h(x)

dx

≥
1

p2

∫

Ω

|∇un|
p(x)

dx −
λ

q1

∫

Ω

a(x) |un|
q(x)

dx −
λ

h1

∫

Ω

b(x) |un|
h(x)

dx

−
1

h1

∫

Ω

|∇un|
p(x)

dx +
λ

h1

∫

Ω

a(x) |un|
q(x)

dx +
λ

h1

∫

Ω

b(x) |un|
h(x)

dx

≥

(

1

p2
−

1

h1

)

‖un‖
p1 − λ

(

1

h1
−

1

q1

)

C3 ‖a‖β(x) ‖un‖
q2 , (3.5)

where C3 > 0 is a constant independent of un and x, for n large enough. Dividing (3.5) by ‖un‖
p1

and passing to the limit as n → ∞ we obtain 1
p2

− 1
h1

< 0.

Since q1 ≤ q2 < p1 ≤ p2 < h1, this is a contradiction. It follows {un} is bounded in W
1,p(x)
0 (Ω) .)

Next, we show the strong convergence of {un} in W
1,p(x)
0 (Ω). Since {un} is bounded, up to a

subsequence (which we still denote by {un}), we may assume that there exists u ∈ W
1,p(x)
0 (Ω) such

that

un ⇀ u weakly in W
1,p(x)
0 (Ω) as n → ∞.
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By Proposition 2.6 (iii) we obtain

un → u strongly in Lp(x) (Ω) as n → ∞. (3.6)

Furthermore, from [3, 23] we have

un → u strongly in Lp∗(x) (K) as n → ∞, (3.7)

where K is compact subset of Ω.
The above information and relation (3.4) imply

〈J ′
λ(un) − J ′

λ(u), un − u〉 → 0 as n → ∞.

On the other hand, we have
∫

Ω

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

(∇un −∇u) dx

= 〈J ′
λ(un) − J ′

λ(u), un − u〉 − λ

∫

Ω

a(x)
(

|un|
q(x)−2

un − |u|q(x)−2
u
)

(un − u)dx

−λ

∫

Ω

b(x)
(

|un|
h(x)−2

un − |u|
h(x)−2

u
)

(un − u) dx.

Propositions 2.1, 2.3 and Lemma 2.4 we have

λ

∣

∣

∣

∣

∣

∣

∫

Ω

a(x)
(

|un|
q(x)−2

un − |u|
q(x)−2

u1

)

(un − u) dx

∣

∣

∣

∣

∣

∣

≤ λ

∣

∣

∣

∣

∣

∣

∫

Ω

a(x) |un|
q(x)−2

un (un − u) dx

∣

∣

∣

∣

∣

∣

+ λ

∣

∣

∣

∣

∣

∣

∫

Ω

a(x) |u1|
q(x)−2

u (un − u) dx

∣

∣

∣

∣

∣

∣

≤ C4 ‖a‖β(x)

∥

∥

∥|un|
q(x)−1

∥

∥

∥

p(x)
q(x)−1

‖un − u‖p(x) + C5 ‖a‖β(x)

∣

∣

∣

∣

∣

∣|u|
q(x)−1

∣

∣

∣

∣

∣

∣

p(x)
q(x)−1

‖un − u‖p(x)

≤ C4 ‖a‖β(x) ‖un‖
q2−1
p(x) ‖un − u‖p(x) + C5 ‖a‖β(x) ‖u‖

q2−1
p(x) ‖un − u‖p(x) ,

where C4, C5 > 0 and 1
β(x) + q(x)−1

p(x) + 1
p(x) = 1.

Similarly, Propositions 2.1, 2.3 and Lemma 2.4 we have

λ

∣

∣

∣

∣

∣

∣

∫

Ω

b(x)
(

|un|
h(x)−2

un − |u|
h(x)−2

u
)

(un − u)dx

∣

∣

∣

∣

∣

∣

≤ C6 ‖b‖γ(x)

∥

∥

∥|un|
h(x)−1

∥

∥

∥

p∗(x)
h(x)−1

‖un − u‖p∗(x) + C7 ‖b‖γ(x)

∥

∥

∥|u|
h(x)−1

∥

∥

∥

p∗(x)
h(x)−1

‖un − u‖p∗(x)

≤ C6 ‖b‖γ(x) ||un||
h2−1
p∗(x) ‖un − u‖p∗(x) + C7 ‖b‖γ(x) ‖u‖

h2−1
p∗(x) ‖un − u‖p∗(x) ,

where C6, C7 > 0 and 1
γ(x) + h(x)−1

p∗(x) + 1
p∗(x) = 1. By (3.6) and (3.7) we have
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‖un − u‖p(x) → 0 as n → ∞

and

‖un − u‖p∗(x) → 0 as n → ∞.

Therefore, from above inequalities we deduce that

lim
n→∞

∫

Ω

b(x)
(

|un|
h(x)−2

un − |u|
h(x)−2

u
)

(un − u) = 0, (3.8)

and

lim
n→∞

∫

Ω

a(x)
(

|un|
q(x)−2

un − |u|
q(x)−2

u
)

(un − u) dx = 0, (3.9)

respectively. By (3.8) and (3.9) we obtain

lim
n→∞

∫

Ω

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

(∇un −∇u) = 0. (3.10)

This result and the following inequality [23, Lemma 2.2]

(

|ξ|
r−2

ξ − |η|
r−2

η
)

(ξ − η) ≥ 2−r |ξ − η| , ∀r ≥ 2; ξ, η ∈ R
N . (3.11)

yield

lim
n→∞

∫

Ω

|∇un −∇u|
p(x)

dx = 0. (3.12)

This fact and Proposition 2.3 imply ‖∇un −∇u‖p(x) → 0 as n → ∞. Relation (3.12) and fact that

un ⇀ u (weakly) in W
1,p(x)
0 (Ω) enable us to apply [12] in order to obtain that un ⇀ u (strongly)

in W
1,p(x)
0 (Ω). Thus, Lemma 3.2 is proved.

Now, we show that the Mountain-Pass theorem can be applied in this case.

Lemma 3.3 Assume p, q, h ∈ C+(Ω) and condition (1.2) is fulfilled. The following assertions
hold.

(i) There exist λ > 0, α > 0 and ρ ∈ (0, 1) such that

Jλ(u) ≥ α, ∀u ∈ W
1,p(x)
0 (Ω) with ‖u‖ = ρ. (3.13)

(ii) There exists ω ∈ W
1,p(x)
0 (Ω) such that

lim
t→∞

Jλ(tω) = −∞. (3.14)

(iii) There exists ϕ ∈ W
1,p(x)
0 (Ω) such that ϕ ≥ 0, ϕ 6= 0 and

Jλ(tϕ) < 0, (3.15)
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for t > 0 small enough.

Proof. (i) Using Propositions 2.1, 2.2, 2.6 (ii) and Lemma 2.4 we deduce that for any u ∈

W
1,p(x)
0 (Ω) with ρ ∈ (0, 1) we have

Jλ(u) ≥
1

p2

∫

Ω

|∇u|
p(x)

dx −
λ

q1

∫

Ω

a(x) |u|
q(x)

dx −
λ

h1

∫

Ω

b(x) |u|
h(x)

dx

≥
1

p2
‖u‖

p2 −
λ

q1
‖a‖β(x)

∥

∥

∥|u|
q(x)
∥

∥

∥

p(x)
q(x)

−
λ

h1
‖b‖γ(x)

∥

∥

∥|u|
h(x)

∥

∥

∥

p∗(x)
h(x)

≥
1

p2
‖u‖p2 −

λ

q1
‖a‖β(x) ‖u‖q1

p(x) −
λ

h1
‖b‖γ(x) ‖u‖

h1

p∗(x)

≥
1

p2
‖u‖p2 − C

q1

1

λ

q1
‖a‖β(x) ‖u‖q1 − Ch1

1

λ

h1
‖b‖γ(x) ‖u‖

h1 .

Taking

λ = min

{

q1ρ
p2−q1

4C
q1

1 p2 ‖a‖β(x)

,
h1ρ

p2−h1

4Ch1
1 p2 ‖b‖γ(x)

}

we obtain

Jλ(u) ≥
ρp2

2p2
, ∀u ∈ W

1,p(x)
0 (Ω) with ‖u‖ = ρ.

Thus Lemma 3.3 (i) is proved.

(ii) Let ω ∈ C∞
0 (Ω) , ω ≥ 0, ω 6= 0 and t > 1.We have

Jλ(tω) =

∫

Ω

tp(x)

p(x)
|∇ω|

p(x)
dx − λ

∫

Ω

tq(x)

q(x)
a(x) |ω|

q(x)
dx − λ

∫

Ω

th(x)

h(x)
b(x) |ω|

h(x)
dx

≤
tp2

p1

∫

Ω

|∇ω|
p(x)

dx − λ
tq2

q1

∫

Ω

a(x) |ω|
q(x)

dx − λ
th2

h1

∫

Ω

b(x) |ω|
h(x)

dx.

Since q2, p2 < h2 we have Jλ(tω) → −∞. Thus Lemma 3.3 (ii) is proved.

(iii) Let ϕ ∈ C∞
0 (Ω) , ϕ ≥ 0, ϕ 6= 0 and t ∈ (0, 1). We have

Jλ(tϕ) ≤
tp1

p1

∫

Ω

|∇ϕ|
p(x)

dx − λ
tq1

q1

∫

Ω

a(x) |ϕ|
q(x)

dx − λ
th1

h1

∫

Ω

b(x) |ϕ|
h(x)

dx.

Since

λtq1

q1

∫

Ω

a(x) |ϕ|q(x)
dx +

λth1

h1

∫

Ω

b(x) |ϕ|h(x)
dx

<
λtq1

q1





∫

Ω

a(x) |ϕ|
q(x)

dx +

∫

Ω

b(x) |ϕ|
h(x)

dx



 ,
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we have

Jλ(tϕ) ≤
tp1

p1

∫

Ω

|∇ϕ|
p(x)

dx −
λtq1

q1





∫

Ω

a(x) |ϕ|
q(x)

dx +

∫

Ω

b(x) |ϕ|
h(x)

dx



 < 0,

for t < δ
1

p1−q1 with

0 < δ < min































1,

λp1





∫

Ω

a(x) |ϕ|
q(x)

dx +

∫

Ω

b(x) |ϕ|
h(x)

dx





q1

∫

Ω

|∇ϕ|
p(x)

dx































.

Lemma 3.3 (iii) is proved.

Proof of Theorem 3.1 We set

G =
{

g ∈ C([0, 1] , W
1,p(x)
0 (Ω)) : g (0) = 0, g (1) = υ

}

,

where υ ∈ W
1,p(x)
0 (Ω) is determined by Lemma 3.3 (ii) and (iii), and

β := inf
g∈G

sup
t∈[0,1]

Jλ (g (t)) .

According to Lemma 3.3 (ii) and (iii), we know that ‖υ‖ > ρ, so every path g ∈ G intersects
the sphere ‖v‖ = ρ. Then Lemma 3.3 (i) implies

α ≤ inf
‖u‖=ρ

Jλ (u) ≤ β,

with the constant α > 0 in Lemma 3.3 (i), thus β > 0. By the Mountain-Pass theorem Jλ admits
a critical value β ≥ α.

Since Jλ ∈ C1
(

W
1,p(x)
0 (Ω) , R

)

, from Lemma 3.2 we conclude

J ′
λ(un) → J ′

λ(u) (3.16)

as n → ∞.
Relations (3.3), (3, 4) and (3.16) show that J ′

λ(u) = 0 and thus u is a weak solutions for problem
(Pλ). Moreover, by relations (3.3), (3, 4) it follows that Jλ(u) > 0 and thus, u is a nontrivial weak
solutions for problem (Pλ). The proof is completed.

Remark 3.4 If (u, λ) is a solution of (Pλ) and u 6= 0, as usual, we call λ and u an eigenvalue
eigenfunction corresponding to λ of (Pλ), respectively. If (u, λ) is a solution of (Pλ) and u 6= 0,
then

λ = λ(u) =

∫

Ω

|∇u|
p(x)

dx

∫

Ω

(a(x) |u|
q(x)

+ b(x) |u|
h(x)

)dx
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and hence λ > 0.
Theorem 3.1 ensures that problem (Pλ) has a continuous family of positive eigenvalues that lie

in a neighborhood of the origin. Furthermore, we obtain

inf
u∈W

1,p(x)
0 \{0}

∫

Ω

|∇u|
p(x)

dx

∫

Ω

(a(x) |u|
q(x)

+ b(x) |u|
h(x)

)dx

= 0.

Remark 3.5 Furthermore, we can consider the equation

{

− div
(

|∇u|p(x)−2 ∇u
)

= λ(a (x) |u|q(x)−2
u − b(x) |u|h(x)−2

u), for x ∈ Ω,

u = 0, for x ∈ ∂Ω.
(P

/
λ )

where p, q, h, a, b and λ are the same in problem (Pλ).

The energy functional corresponding to problem (P
/
λ ) is defined as Iλ : W

1,p(x)
0 (Ω) → R,

Iλ(u) =

∫

Ω

|∇u|p(x)

p(x)
dx − λ

∫

Ω

a(x)

q(x)
|u|q(x)

dx + λ

∫

Ω

b(x)

h(x)
|u|h(x)

dx.

We infer that for any x ∈ Ω and u ∈ W
1,p(x)
0 (Ω)

λa(x)

q(x)
|u(x)|

q(x)
−

λb(x)

h(x)
|u(x)|

h(x)

≤
λa2

q1
|u(x)|q(x) −

λb1

h2
|u(x)|h(x)

≤
λa2

q1

(

a2h2

b1q1

)

q(x)
h(x)−q(x)

≤
λa2

q1

[

(

a2h2

b1q1

)

q2
h1−q2

+

(

a2h2

b1q1

)

q1
h2−q1

]

:= A (3.17)

where A is a positive constant independent of u and x, by using the following elementary inequality
[19, Lemma 4]

atk − bts ≤ a
(a

b

)
k

s−k

, for all t ≥ 0

where a, b > 0 and 0 < k < s.
Integrating (3.17) over Ω, we get

λ

∫

Ω

a(x)

q(x)
|u(x)|

q(x)
dx − λ

∫

Ω

b(x)

h(x)
|u(x)|

h(x)
dx ≤ D

where D is a positive constant independent of u. Thus,
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Jλ(u) ≥
1

p2

∫

Ω

|∇u|
p(x)

dx − λ

∫

Ω

a(x)

q(x)
|u|

q(x)
dx + λ

∫

Ω

b(x)

h(x)
|u|

h(x)
dx

≥
1

p2
‖u‖

p1 − D,

for all u ∈ W
1,p(x)
0 (Ω) with ‖u‖ > 1. We infer that Jλ(u) → ∞ as ‖u‖ → ∞. Therefore the energy

functional Iλ is coercive on W
1,p(x)
0 (Ω). Moreover, a similar argument as the one used in the proof

of [16, Lemma 3.4] shows that Iλ is also weakly lower semi-continuous in W
1,p(x)
0 (Ω). These facts

enable us to apply [22, Theorem 1.2] in order to find that there exits uλ ∈ W
1,p(x)
0 (Ω) a global

minimizer of Iλ and thus, a weak solution of problem (P
/
λ ).
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