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Abstract. Using barrier strip conditions, we study the existence of C2[0, 1]-solutions
of the boundary value problem (φp(x′))′ = f (t, x, x′), x(0) = A, x′(1) = B, where
φp(s) = s|s|p−2, p > 2. The question of the existence of positive monotone solutions is
also affected.
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1 Introduction

This paper is devoted to the solvability of the boundary value problem (BVP)

(φp(x′))′ = f (t, x, x′), t ∈ [0, 1], (1.1)

x(0) = A, x′(1) = B. (1.2)

Here φp(s) = s|s|p−2, p > 2, the scalar function f (t, x, y) is defined for (t, x, y) ∈ [0, 1]× Dx ×
Dy, where the sets Dx, Dy ⊆ R may be bounded, and B ≥ 1. Besides, f is continuous on a
suitable subset of its domain.

The solvability of various singular and nonsingular BVPs with p-Laplacian has been stud-
ied, for example, in [1–5, 7–12, 14]. Conditions used in these works or do not allow the main
nonlinearity to change sign, [2, 11], or impose a growth restriction on it, [3, 9, 11], or require
the existence of upper and lower solutions, [1, 3, 5, 8, 9, 12]; other type conditions have been
used in [7], where the main nonlinearity may changes its sign. As a rule, the obtained results
guarantee the existence of positive solutions.

Another type of conditions have been used in [10] for studying the solvability of (1.1), (1.2)
in the case p ∈ (1, 2). The existence of at least one positive and monotone C2[0, 1]-solution is
established therein under the following barrier condition:
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H. There are constants Li, Fi, i = 1, 2, and a sufficiently small σ > 0 such that

F1 ≥ F2 + σ, F1 − σ > 0, L2 − σ ≥ L1,

[A− σ, L + σ] ⊆ Dx, [F2, L2] ⊆ Dy, where L = L1 + |A|,

f (t, x, y) ≥ 0 for (t, x, y) ∈ [0, 1]× Dx × [L1, L2], (1.3)

f (t, x, y) ≤ 0 for (t, x, y) ∈ [0, 1]× DA × [F2, F1], (1.4)

where the constants m and M are, respectively, the minimum and the maximum of
f (t, x, p) on [0, 1]× [A− σ, L + σ]× [F1 − σ,L1 + σ] and DA = (−∞, L] ∩ Dx.

Let us recall, the strips [0, 1]× [L1, L2] and [0, 1]× [F2, F1] are called “barrier” because they limit
the values of the first derivatives of all C2[0, 1]-solution of (1.1), (1.2) between themselves. Re-
cently, it was shown in [13] that conditions of form (1.3) and (1.4) guarantee C1[0, 1]-solutions
to the φ-Laplacian equation

(φ(x′))′ = f (t, x, x′), t ∈ (0, 1),

with boundary conditions (1.2), where φ : R → R is an increasing homeomorphism and
f : [0, 1]×R2 → R is continuous.

It turned out that the cases 1 < p < 2 and p > 2 require different technical approaches for
the use of H for studying the solvability of (1.1), (1.2). So, in the present paper we show that
H with the additional requirement

B−M ≥ F1 (1.5)

guarantees the existence of at least one monotone, and positive in the case A ≥ 0, C2[0, 1]-
solution to (1.1), (1.2) with p > 2. In fact, our main result is the following.

Theorem 1.1. Let H and (1.5) hold, and f (t, x, y) be continuous on the set [0, 1]× [A− σ,L + σ]

×[F1 − σ, L1 + σ]. Then BVP (1.1), (1.2) has at least one strictly increasing solution in C2[0, 1] for
each p ∈ (2, ∞).

The paper is organized as follows. In Section 2 we present preliminaries needed to for-
mulate the Topological Transversality Theorem, which is our basic tool, and prove auxiliary
results. In Section 3 we give the proof of Theorem 1.1, formulate a corollary and give an
example.

2 Fixed point theorem, auxiliary results

Let K be a convex subset of a Banach space E and U ⊂ K be open in K. Let L∂U(U, K) be the
set of compact maps from U to K which are fixed point free on ∂U; here, as usual, U and ∂U
are the closure of U and boundary of U in K.

A map F in L∂U(U, K) is essential if every map G in L∂U(U, K) such that G/∂U = F/∂U
has a fixed point in U. It is clear, in particular, every essential map has a fixed point in U.

The following fixed point theorem due to A. Granas et al. [6].
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Theorem 2.1 (Topological transversality theorem). Suppose:

(i) F, G : U → K are compact maps;

(ii) G ∈ L∂U(U, K) is essential;

(iii) H(x, λ), λ ∈ [0, 1], is a compact homotopy joining G and F, i.e. H(x, 0) = G(x) and H(x, 1) =
F(x);

(iv) H(x, λ), λ ∈ [0, 1], is fixed point free on ∂U.

Then H(x, λ), λ ∈ [0, 1], has at least one fixed point in U and in particular there is a x0 ∈ U such that
x0 = F(x0).

The following results is important for our consideration. It can be found also in [6].

Theorem 2.2. Let l ∈ U be fixed and F ∈ L∂U(U, K) be the constant map F(x) = l for x ∈ U. Then
F is essential.

Further, we need the following fact.

Proposition 2.3. Let the constants B and M be such that B ≥ 1 and B > M > 0. Then

(B−M)r ≤ Br −M for r ∈ [1, ∞).

Proof. The inequality is evident for r = 1. For M ∈ (0, B) consider the function g(r) =

(B−M)r − Br + M, r ∈ (1, ∞). First, let B−M ∈ (0, 1). Then ln(B−M) < 0 and so

g′(r) = (B−M)r ln(B−M)− Br ln B < 0 for r ∈ R.

Next, assume B−M = 1. Now we get

g′(r) = −(1 + M)r ln(1 + M) < 0 for r ∈ R.

Finally, let B − M ∈ (1, ∞). In this case from B > B − M > 0 we have Br ≥ (B − M)r for
r ∈ [0, ∞) and so

g′(r) ≤ Br ln(B−M)− Br ln B = Br ln
B−M

B
< 0 for r ∈ [0, ∞).

In summary, we have proved that g′(r) < 0 for each r ∈ [0, ∞). Then, the result follows
from the fact that g(1) = 0.

Let us emphasize explicitly that we conduct the rest consideration of this section for an
arbitrary fixed p > 2.

For λ ∈ [0, 1] consider the family of BVPs{
(φp(x′))′ = λ f (t, x, x′), t ∈ [0, 1],

x(0) = A, x′(1) = B, B ≥ 1,
(2.1)

where f : [0, 1]× Dx × Dy → R, Dx, Dy ⊆ R. Since

φp(s) = s|s|p−2 =

{
sp−1, s ≥ 0,

−(−s)p−1, s < 0,
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we have

φ′p(s) =

{
(p− 1)sp−2, s ≥ 0

(p− 1)(−s)p−2, s < 0
= (p− 1)|s|p−2

and (φp(x′(t)))′ = (p− 1)|x′(t)|p−2x′′(t), if x′′(t) exists. So, we can write (2.1) as{
(p− 1)|x′(t)|p−2x′′(t) = λ f (t, x, x′), t ∈ [0, 1],

x(0) = A, x′(1) = B.
(2.1′)

For convenience set

mp =
m

(p− 1)(F1 − σ)p−2 and Mp =
M

(p− 1)(F1 − σ)p−2 ,

where F1, σ, m and M are as in H.
The next result gives a priori bounds for the C2[0, 1]-solutions of family (2.1′) (as well as of

(2.1)).

Lemma 2.4. Let H hold and x ∈ C2[0, 1] be a solution to family (2.1′). Then

A ≤ x(t) ≤ L, F1 ≤ x′(t) ≤ L1 and mp ≤ x′′(t) ≤ Mp for t ∈ [0, 1].

Proof. The proof of the bounds for x and x′ is the same as the corresponding part of the proof
of [10, Lemma 3.1], but we will state it for completeness. So, assume on the contrary that

x′(t) ≤ L1 for t ∈ [0, 1] (2.2)

is not true. Then, x′(1) = B ≤ L1 together with x′ ∈ C[0, 1] implies that

S+ = {t ∈ [0, 1] : L1 < x′(t) ≤ L2}

is not empty. Moreover, there exists an interval [α, β] ⊂ S+ with the property

x′(α) > x′(β). (2.3)

Then, by the fundamental theorem of calculus applied to x′, (2.3) implies that there is a γ ∈
(α, β) such that

x′′(γ) < 0.

We have (γ, x(γ), x′(γ)) ∈ S+ × Dx × (L1, L2], which yields

f (γ, x(γ), x′(γ)) ≥ 0,

by (1.3). Then,

0 > (p− 1)|x′(γ)|p−2x′′(γ) = λ f (γ, x(γ), x′(γ)) ≥ 0 for λ ∈ [0, 1],

a contradiction. Thus, (2.2) is true.
By the mean value theorem, for each t ∈ (0, 1] there exists ξ ∈ (0, t) such that x(t)− x(0) =

x′(ξ)t, which yields
x(t) ≤ L for t ∈ [0, 1].

Arguing as above and using (1.4), we establish x′(t) ≥ F1 for all t ∈ [0, 1] and, as a
consequence, x(t) ≥ A on [0, 1].
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To reach the bounds for x′′(t) from

x′(t) > F1 − σ > 0, t ∈ [0, 1],

we obtain firstly

0 <
1

(p− 1)(x′(t))p−2 ≤
1

(p− 1)(F1 − σ)p−2 .

Next, multiplying both sides of this inequality by λM ≥ 0 and λm ≤ 0, for t ∈ [0, 1] obtain
respectively

λM
(p− 1)(x′(t))p−2 ≤

λM
(p− 1)(F1 − σ)p−2 ≤

M
(p− 1)(F1 − σ)p−2 = Mp,

and
λm

(p− 1)(x′(t))p−2 ≥
λm

(p− 1)(F1 − σ)p−2 ≥
m

(p− 1)(F1 − σ)p−2 = mp;

from f (t, x, L1) ≥ 0 for (t, x) ∈ [0, 1] × [A − σ, L + σ] and f (t, x, F1) ≤ 0 for (t, x) ∈ [0, 1]
×[A− σ, L + σ], it follows that M ≥ 0 and m ≤ 0.

On the other hand,

m ≤ f (t, x(t), x′(t)) ≤ M for t ∈ [0, 1],

since (x(t), x′(t)) ∈ [A, L] × [F1, L1] for each t ∈ [0, 1]. Multiplying the last inequality by
λ(p− 1)−1(x′(t))2−p ≥ 0, λ, t ∈ [0, 1], we arrive to

mp ≤
λm

(p− 1)(x′(t))p−2 ≤
λ f (t, x(t), x′(t))
(p− 1)(x′(t))p−2 ≤

λM
(p− 1)|x′(t)|p−2 ≤ Mp

for all λ, t ∈ [0, 1], from where, keeping in mind that x′(t) > 0 on [0, 1], we get

mp ≤
λ f (t, x(t), x′(t))
(p− 1)|x′(t)|p−2 ≤ Mp for all λ, t ∈ [0, 1],

which yields the required bounds for x′′(t).

Now, introduce sets

C1
+[0, 1] = {x ∈ C1[0, 1] : x(t) > 0 on [0, 1], x(1) = φp(B)}

and, in case that H holds,

V = {x ∈ C1[0, 1] : A− σ ≤ x ≤ L + σ, F1 − σ ≤ x′ ≤ L1 + σ}.

Introduce also the map Λλ : V → C1
+[0, 1] defined by

Λλx = λ
∫ t

1
f (s, x(s), x′(s))ds + φp(B) for λ ∈ [0, 1].

Lemma 2.5. Let H hold and

f (t, x, y) ∈ C
(
[0, 1]× [A− σ, L + σ]× [F1 − σ, L1 + σ]

)
. (2.4)

Then Λλ, λ ∈ [0, 1], is well defined and continuous.
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Proof. Clearly, because of (2.4), (Λλx)′(t) = λ f (t, x(t), x′(t)), x ∈ V, is continuous on [0, 1] for
each λ ∈ [0, 1]. Next, observe that for each x ∈ V we have

λ f (t, x(t), x′(t)) ≤ λM ≤ M for λ, t ∈ [0, 1].

Integrating this inequality from 1 to t, t ∈ [0, 1), we get

λ
∫ t

1
f (s, x(s), x′(s))ds ≥ M(t− 1), t ∈ [0, 1],

from where it follows

λ
∫ t

1
f (s, x(s), x′(s))ds ≥ −M, t ∈ [0, 1],

and
−M + φp(B) ≤ (Λλx)(t), t ∈ [0, 1].

By (1.5) and Proposition 2.3, we have

0 < (F1 − σ)p−1 < (B−M)p−1 ≤ −M + Bp−1 = −M + φp(B)

and then,
0 < (F1 − σ)p−1 < (Λλx)(t), t ∈ [0, 1].

Obviously, (Λλx)(1) = φp(B). Finally, (2.4) implies that the map Λλ, λ ∈ [0, 1], is continuous
on V.

Further, introduce the sets

C2
BC[0, 1] = {x ∈ C2[0, 1] : x(0) = A, x′(1) = B},

K = {x ∈ C2
BC[0, 1] : x′(t) > 0 on [0, 1]}

and the map Φp : K → C1
+[0, 1] defined by Φpx = φp(x′).

Lemma 2.6. The map Φp is well defined and continuous.

Proof. For each x ∈ K we have x′(t) > 0, t ∈ [0, 1]. Then,

(Φpx)(t) = x′(t)|x′(t)|p−2 = x′(t)p−1 > 0 on [0, 1] (2.5)

and, obviously, (Φpx)′(t) = (p− 1)(x′(t))p−2x′′(t) is continuous on [0, 1]. Also, (Φpx)(1) =

x′(1)|x′(1)|p−2 = φp(B). So, Φpx ∈ C1
+[0, 1]. The continuity of Φp follows from x′ ∈ C[0, 1]

and (2.5).

It is well known that the inverse function of φp(s) is φq(s) = s|s|q−2, q−1 + p−1 = 1, p > 1.
Using it, we introduce the map Φq : C1

+[0, 1]→ K, defined by

(Φqy)(t) =
∫ t

0
φq(y(s))ds + A, t ∈ [0, 1].

But, for y ∈ C1
+[0, 1] we have y(t) > 0 on [0, 1] and so

(Φqy)(t) =
∫ t

0
(y(s))

1
p−1 ds + A, t ∈ [0, 1].
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Lemma 2.7. The map Φq : C1
+[0, 1]→ K is well defined, the inverse map of Φp and continuous.

Proof. For each fixed y ∈ C1
+[0, 1] we get a unique x(t) = (Φqy)(t) =

∫ t
0 (y(s))

1
p−1 ds + A. In

fact, to establish the veracity of the first two assertions, we have to show that x ∈ K or, what
is the same, to show that x is a unique C2[0, 1]-solution to the BVP

x′|x′|p−2 = y, t ∈ [0, 1], x(0) = A, x′(1) = B (2.6)

with x′(t) > 0 on [0, 1].

The last follows immediately from x′(t) = (y(t))
1

p−1 on [0, 1]. Then, x′|x′|p−2 = (x′(t))p−1 =

y(t) for t ∈ [0, 1]. Besides, x′(1) = (y(1))
1

p−1 = (φp(B))
1

p−1 = B and x(0) = A. Now, the
continuity of y′(t) and y(t) > 0 on [0, 1] imply that

x′′(t) =
1

p− 1
(y(t))

2−p
p−1 y′(t)

exists and is continuous on [0, 1]. Thus, x(t) is a solution to (2.6) and is in C2[0, 1].
To complete the proof we just have to observe that the continuity of Φq follows from the

continuity of y1/(p−1)(t) on [0, 1].

3 Proof of main result

Proof of Theorem 1.1. We will prove the assertion for an arbitrary fixed p > 2. Introduce the set

U = {x ∈ K : A− σ < x < L + σ, F1 − σ < x′ < L1 + σ, mp − σ < x′′(t) < Mp + σ}

and consider the homotopy
Hλ : U × [0, 1]→ K

defined by Hλ(x) := ΦqΛλ j, where j : U → C1[0, 1] is the embedding jx = x. To show that all
assumptions of Theorem 2.1 are fulfilled observe firstly that U is an open subset of K, and K
is a convex subset of the Banach space C2[0, 1]. For the fixed points of Hλ, λ ∈ [0, 1], we have

ΦqΛλ j(x) = x

and
Φpx = Λλ j(x),

which is the operator form of the family{
φp(x′) = λ

∫ t
1 f (s, x(s), x′(s))ds + φp(B), t ∈ (0, 1),

x(0) = A, x′(1) = B.
(3.1)

Thus, the fixed points of Hλ coincide with the C2[0, 1]-solutions of (3.1). But, it is obvious that
each C2[0, 1]-solution of (3.1) is a C2[0, 1]-solution of (2.1). So, all conclusions of Lemma 2.4
are valid in particular and for the C2[0, 1]-solutions of (3.1) which allow us to conclude that
the C2[0, 1]-solutions of (3.1) do not belong to ∂U and so the homotopy is fixed point free
on ∂U. On the other hand, it is well known that j is completely continuous, that is, it maps
each bounded set to a compact one. Thus, j(U) is a compact set. Besides, it is clear that
j(U) ⊂ V. Then, according to Lemma 2.5, Λλ(j(U)) ⊆ C1

+[0, 1] is compact. Finally, the set
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Φq(Λλ(j(U)) ⊂ K is compact, by Lemma 2.7. So, the homotopy is compact. Now, since for
x ∈ U we have Λ0 j(x) = φp(B) = Bp−1, the map H0 maps each x ∈ U to the unique solution
l = Bt + A ∈ K to the BVP

x′ = B, t ∈ (0, 1),

x(0) = A, x′(1) = B,

i.e., it is a constant map and so is essential, by Theorem 2.2. So, we can apply Theorem 2.1. It
infers that the map H1(x) has a fixed point in U. It is easy to see that it is a C2[0, 1]-solution of
the BVPs of families (3.1) and (2.1) obtained for λ = 1 and, what is the same, of (1.1), (1.2).

An elementary consequence of the just proved theorem is the following.

Corollary 3.1. Let A ≥ 0, H and (1.5) hold, and f (t, x, y) be continuous for (t, x, y) ∈ [0, 1]×
[A − σ, L + σ] × [F1 − σ, L1 + σ]. Then for each p > 2 BVP (1.1), (1.2) has at least one strictly
increasing solution in C2[0, 1] with positive values on (0, 1].

We illustrate this result by the following example.

Example 3.2. Consider the BVP

(φp(x′))′ =
(2x′ − 1)(x′ − 10)√

x + 1 + 100
, t ∈ (0, 1),

x(0) = 2, x′(1) = 5,

where p > 2 is fixed.

It is easy to check that H holds for F2 = 1, F1 = 2.1, L1 = 11.9, L2 = 13 and σ = 0.1;
moreover, we can take L = 14, m = −0.5 and M = 0.5. The function f (t, x, y) = (2y−1)(y−10)√

x+1+100
is continuous for (t, x, y) ∈ [0, 1] × [2, 14] × [2.1, 11.9]. Thus, we can apply Corollary 3.1 to
conclude that this BVP has a positive strictly increasing solution in C2[0, 1].
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