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Abstract

In this paper, we give sufficient conditions for the existence or the
nonexistence of positive solutions of the nonlinear fractional boundary
value problem

D
α

0+u + a(t)f(u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u
′(0) = 0, u

′(1) − µu
′(η) = λ,

where Dα

0+ is the standard Riemann-Liouville fractional differential oper-

ator of order α, η ∈ (0, 1), µ ∈

»

0,
1

ηα−2

«

are two arbitrary constants and

λ ∈ [0,∞) is a parameter. The proof uses the Guo-Krasnosel’skii fixed
point theorem and Schauder’s fixed point theorem.

1 Introduction

In this paper, we are interested in the existence or non-existence of positive
solutions for the nonlinear fractional boundary value problem (BVP for short)

Dα
0+u + a(t)f(u(t)) = 0, 2 < α < 3, 0 < t < 1, (1.1)

u(0) = u′(0) = 0, u′(1) − µu′(η) = λ, (1.2)

where α is a real number, Dα
0+ is the standard Riemann-Liouville differentiation

of order α, η ∈ (0, 1), µ ∈
[
0,

1

ηα−2

)
are arbitrary constants and λ ∈ [0,∞) is a

parameter. A positive solution is a function u(t) which is positive on (0, 1) and
satisfies (1.1)-(1.2).

We show, under suitable conditions on the nonlinear term f , that the frac-
tional boundary value problem (1.1)-(1.2) has at least one or has non positive
solutions. By employing the fixed point theorems for operators acting on cones
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in a Banach space (see, for example [7, 8, 13, 14, 15]). The use of cone techniques
in order to study boundary value problems has a rich and diverse history. That
is, some authors have used fixed point theorems to show the existence of pos-
itive solutions to boundary value problems for ordinary differential equations,
difference equations, and dynamic equations on time scales, (see for example
[1, 2, 3]). Moreover, Delbosco and Rodino [7] considered the existence of a so-
lution for the nonlinear fractional differential equation Dα

0+u = f(t, u), where
0 < α < 1 and f : [0, a] × R → R, 0 < a ≤ +∞ is a given function, continuous
in (0, a) × R. They obtained results for solutions by using the Schauder fixed
point theorem and the Banach contraction principle. Bai and Lü [5] studied the
existence and multiplicity of positive solutions of nonlinear fractional differential
equation boundary value problem:

{
Dα

0+u + f(t, u(t)) = 0, 1 < α < 2, 0 < t < 1,
u(0) = u(1) = 0,

where Dα
0+ is the standard Riemann-Liouville differential operator of order α.

Recently Bai and Qiu [4]. considered the existence of positive solutions to
boundary value problems of the nonlinear fractional differential equation

{
Dα

0+u + f(t, u(t)) = 0, 2 < α ≤ 2, 0 < t < 1,
u(0) = u′(1) = u′′(0) = 0,

where Dα
0+ is the Caputo’s fractional differentiation, and f : (0, 1] ×

[0, +∞) → [0, +∞), with limt−→0+ f(t, .) = +∞ . They obtained results for
solutions by using the Krasnoselskii’s fixed point theorem and the nonlinear
alternative of Leray-Schauder type in a cone.

Lü Zhang [18] considered the existence of solutions of nonlinear fractional
boundary value problem involving Caputo’s derivative

{
Dα

t u + f(t, u(t)) = 0, 1 < α < 2, 0 < t < 1,
u(0) = ν 6= 0, u(1) = ρ 6= 0.

In another paper, by using fixed point theory on cones, Zhang [19] stud-
ied the existence and multiplicity of positive solution of nonlinear fractional
boundary value problem

{
Dα

t u + f(t, u(t)) = 0, 1 < α < 2, 0 < t < 1,
u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where Dα
t is the Caputo’s fractional derivative. By using the Krasnoselskii

fixed point theory on cones, Benchohra, Henderson, Ntoyuas and Ouahab [6]
used the Banach fixed point and the nonlinear alternative of Leray-Schauder to
investigate the existence of solutions for fractional order functional and neutral
functional differential equations with infinite delay

{
Dαy(t) = f(t, yt), for each t ∈ J = [0, b] , 0 < α < 1,

y(t) = φ(t), t ∈ (−∞,0],
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where Dα is the standard Riemman-Liouville fractional derivative, f : J ×B →
R is a given function satisfying some suitable assumptions, φ ∈ B, φ(0) = 0
and B is called a phase space. By using the Krasnoselskii fixed point theory on
cones, El-Shahed [8] Studied the existence and nonexistence of positive solutions
to nonlinear fractional boundary value problem

{
Dα

0+u + λa(t)f(u(t)) = 0, 2 < α < 3, 0 < t < 1,
u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville differential operator of order α.

Some existence results were given for the problem (1.1)-(1.2) with α = 3 by Sun
[17].The BVP (1.1)-(1.2) arises in many different areas of applied mathematics
and physics, and only its positive solution is significant in some practice.

For existence theorems of fractional differential equation and application,
the definitions of fractional integral and derivative and related proprieties we
refer the reader to [7, 11, 12, 16].

The rest of this paper is organized as follows: In section 2, we present some
preliminaries and lemmas. Section 3 is devoted to prove the existence and
nonexistence of positive solutions for BVP (1.1)-(1.2).

2 Elementary Background and Preliminary

lemmas

In this section, we will give the necessary notations, definitions and basic lemmas
that will be used in the proofs of our main results. We also present a fixed point
theorem due to Guo and Krasnosel’skii.

Definition 1 [10, 11, 15]. The fractional (arbitrary) order integral of the func-
tion h ∈ L

1([a, b] , R+) of order α ∈ R+ is defined by

Iα
a h(t) =

1

Γ(α)

∫ t

a

(t − s)α−1h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = (h ∗ ϕα) (t),

where ϕα(t) =
tα−1

Γ(α)
for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα −→ δ(t) as

α −→ 0, where δ is the delta function.

Definition 2 [10, 11, 15]. For a function h given on the interval [a, b], the αth

Riemann-Liouville fractional-order derivative of h, is defined by

(Dα
a+h) (t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

0

f(s)

(t − s)α−n+1
ds, n = [α] + 1.

Lemma 3 [4] Let α > 0. If u ∈ C (0, 1)∩L (0, 1), then the fractional differential
equation

Dα
0+u(t) = 0 (2.2)
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has solution u(t) = c1t
α−1 + c2t

α−2 + ... + cntα−n, ci ∈ R, i = 1, 2, ..., n,
n = [α] + 1.

Lemma 4 [4] Assume that u ∈ C (0, 1)∩L (0, 1) with a fractional derivative of
order α > 0. Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + ... + cntα−n, (2.3)

for some ci ∈ R, i = 1, 2, ..., n, n = [α] + 1.

Lemma 5 Let y ∈ C+ [0, 1] = {y ∈ C [0, 1] , y(t) ≥ 0, t ∈ [0, 1] }, then the
(BVP)

Dα
0+u(t) + y(t) = 0, 2 < α < 3, 0 < t < 1, (2.4)

u(0) = u′(0) = 0, u′(1) − µu′(η) = λ, (2.5)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds + µtα−1

(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λtα−1

2(1−µη) (2.6)

where

G(t, s) = 1
Γ(α)

{
tα−1(1 − s)α−2 − (t − s)α−1 , s ≤ t

tα−1(1 − s)α−2, t ≤ s
(2.7)

and

G1(η, s) = 1
Γ(α)

{
ηα−2(1 − s)α−2 − (η − s)α−2, s ≤ η

ηα−2(1 − s)α−2 , η ≤ s
(2.8)

Proof. By applying Lemmas 3 and 4 , the equation (2.4) is equivalent to the
following integral equation

u(t) = −c1t
α−1 − c2t

α−2 − c3t
α−3 − 1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds. (2.9)

for some arbitrary constants c1, c2, c3 ∈ R. Boundary conditions (2.5), permit
us to deduce there exacts values

c2 = c3 = 0

c1 = 1
(µηα−2−1)

{
1

Γ(α)

[∫ 1

0

(1 − s)α−2y(s)ds − µ

∫ η

0

(η − s)α−2y(s)ds

]
+ λ

(α−1)

}

then, the unique solution of (2.4)-(2.5) is given by the formula

u(t) = − 1
Γ(α)

∫ t

0

(t − s)α−1y(s)ds + tα−1

(1−µηα−2)Γ(α)

∫ 1

0

(1 − s)α−2y(s)ds

− µtα−1

(1−µηα−2)Γ(α)

∫ η

0

(η − s)α−2y(s)ds + λtα−1

(α−1)(1−µηα−2)

= − 1
Γ(α)

∫ t

0

(t − s)α−1y(s)ds + tα−1

Γ(α)

∫ 1

0

(1 − s)α−2y(s)ds
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+ µηα−2tα−1

(1−µηα−2)Γ(α)

∫ 1

0

(1 − s)α−2y(s)ds − µtα−1

(1−µηα−2)Γ(α)

∫ η

0

(η − s)α−2y(s)ds

+ λtα−1

(α−1)(1−µηα−2)

= − 1
Γ(α)

∫ t

0

(t − s)α−1y(s)ds + tα−1

Γ(α)

∫ t

0

(1 − s)α−2y(s)ds

+ tα−1

Γ(α)

∫ 1

t

(1 − s)α−2y(s)ds + µtα−1ηα−2

(1−µηα−2)Γ(α)

∫ η

0

(1 − s)α−2y(s)ds

+ µtα−1ηα−2

(1−µηα−2)Γ(α)

∫ 1

η

(1 − s)α−2y(s)ds

+
−1

ηα−2
µtα−1ηα−2

(1−µηα−2)Γ(α)

∫ η

0

(η − s)α−2y(s)ds + λtα−1

(α−1)(1−µηα−2)

= 1
Γ(α)

∫ 1

0

G(t, s)y(s)ds + µtα−1

(1−µηα−2)Γ(α)

∫ 1

0

G1(η, s)y(s)ds + λtα−1

(α−1)(1−µηα−2)

where,

G(t, s) =
1

Γ(α)

{
tα−1(1 − s)α−2 − (t − s)α−1 , s ≤ t

tα−1(1 − s)α−2, t ≤ s

G1(η, s) =
1

Γ(α)

{
ηα−2(1 − s)α−2 − (η − s)α−2, s ≤ η

ηα−2(1 − s)α−2 , η ≤ s

This ends the proof. In order to check the existence of positive solutions, we
give some properties of the functions G(t, s) and G1(t, s).

Lemma 6 For all (t, s) ∈ [0, 1] × [0, 1], we have

(P1)
∂G(t, s)

∂t
= (α − 1)G1(t, s).

(P2) 0 ≤ G1(η, s) ≤ 1
Γ(α)η

α−2 (1 − s)α−2,

∫ 1

0

G1(η, s)ds = (1−η)ηα−2

(α−1)Γ(α)

(P3) γG(1, s) ≤ G(t, s) ≤ G(1, s), (t, s) ∈ [τ, 1] × [0, 1].
Where G(1, s) = 1

Γ(α)s(1 − s)α−2, γ = τα−2, and τ satisfies

∫ 1

τ

s(1 − s)α−2a(s)ds > 0. (2.10)

Proof. (P1) and (P2) are obvious. We prove that (P3) holds.
For all (t, s) ∈ [0, 1]× [0, 1], (P1) and (P2) imply that, 0 ≤ G(t, s) ≤ G(1, s).
If 0 ≤ s ≤ t ≤ 1, we have

G(t, s)

G(1, s)
=

tα−1(1 − s)α−2 − (t − s)α−1

s(1 − s)α−2

≥ t(t − ts)α−2 − (t − ts)α−1

s(1 − s)α−2
=

t(t − ts)α−2 − (t − ts)(t − ts)α−2

s(1 − s)α−2

=
ts(t − ts)α−2

s(1 − s)α−2
= tα−1.
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If 0 ≤ t ≤ s ≤ 1, we have

G(t, s)

G(1, s)
=

tα−1(1 − s)α−2

s(1 − s)α−2
≥ tα−1(1 − s)α−2

(1 − s)α−2
= tα−1.

Thus,
tα−1G(1, s) ≤ G(t, s) ≤ G(1, s), (t, s) ∈ [0, 1]× [0, 1] .

Therefore,

τα−1G(1, s) ≤ G(t, s) ≤ G(1, s), (t, s) ∈ [τ, 1] × [0, 1] .

This completes the proof.

Lemma 7 If y ∈ C+ [0, 1], then the unique solution u(t) of the BVP (2.4)-(2.5)
is nonnegative and satisfies

min
t∈[τ,1]

u(t) ≥ γ ‖u‖ .

Proof. Let y ∈ C+ [0, 1]; it is obvious that u(t) is nonnegative. For any
t ∈ [0, 1], by (2.6) and Lemma 6, it follows that

u(t) =

∫ 1

0

G(t, s)y(s)ds + µtα−1

(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λtα−1

(α−1)(1−µηα−2)

≤
∫ 1

0

G(1, s)y(s)ds + µ
(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λ
(α−1)(1−µηα−2) ,

and thus

‖u‖ ≤
∫ 1

0

G(1, s)y(s)ds + µ
(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λ
(α−1)(1−µηα−2) .

More that, (2.6) and Lemma 6 imply that, for any t ∈ [τ, 1] ,

u(t) =

∫ 1

0

G(t, s)y(s)ds + µtα−1

(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λtα−1

(α−1)(1−µηα−2)

≥ γ

∫ 1

0

G(1, s)y(s)ds + µτα−1

(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λτα−1

(α−1)(1−µηα−2)

= γ

(∫ 1

0

G(1, s)y(s)ds + µ
(1−µηα−2)

∫ 1

0

G1(η, s)y(s)ds + λ
(α−1)(1−µηα−2)

)
.

Hence
min

t∈[τ,1]
u(t) ≥ γ ‖u‖ .

This completes the proof.

Definition 8 Let E be a real Banach space. A nonempty closed convex set
K ⊂ E is called cone of E if it satisfies the following conditions
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(A1) x ∈ K, σ ≥ 0 implies σx ∈ K;
(A2) x ∈ K, −x ∈ K implies x = 0.

Definition 9 An operator is called completely continuous if it continuous and
maps bounded sets into precompact sets

To establish the existence or nonexistence of positive solutions of BVP (1.1)-
(1.2), we will employ the following Guo-Krasnosel’skii fixed point theorem:

Theorem 10 [12] Let E be a Banach space and let K ⊂ E be a cone in E.
Assume that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2 . Let
T : K∩

(
Ω2\Ω1

)
−→ K be completely continuous operator. In addition, suppose

either

(H1) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2 or
(H2) ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω2 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω1,
holds. Then T has a fixed point in K ∩

(
Ω2\Ω1

)
.

3 Existence of solutions

In this section, we will apply Krasnosel’skii’s fixed point theorem to the problem
(1.1)-(1.2). We note that u(t) is a solution of (1.1)-(1.2) if and only if

u(t) =
∫ 1

0
G(t, s)a(s)f(u(s))ds + µtα−1

(1−µηα−2)

∫ 1

0
G1(η, s)a(s)f(u(s))ds

+ λtα−1

(α−1)(1−µηα−2) . (3.1)

Let us consider the Banach space of the form

E=C+ [0, 1] = {u ∈ C [0, 1] , u(t) ≥ 0, t ∈ [0, 1] } ,

equipped with standard norm

‖u‖∞ = max {|u(t)| : t ∈ [0, 1]} .

We define a cone K by

K=

{
u ∈ E : min

t∈[τ,1]
u(t) ≥ γ ‖u‖

}
,

and an integral operator T : E−→E by

Tu(t) =
∫ 1

0
G(t, s)a(s)f(u(s))ds + µtα−1

(1−µηα−2)

∫ 1

0
G1(η, s)a(s)f(u(s))ds

+ λtα−1

(α−1)(1−µηα−2) . (3.2)

It is not difficult see that, fixed points of T are solutions of (1.1)-(1.2). Our aim
is to show that T : K−→K is completely continuous, in order to use Theorem
10.

EJQTDE, 2011 No. 2, p. 7



Lemma 11 Let f : [0,∞) −→ [0,∞) continuous. Assume the following condi-
tion

(C0) a ∈ C ([0, 1] , [0,∞)) .

Then operator T : K−→K is completely continuous.

Proof. Since G(t, s), G1(η, s) ≥ 0, then Tu(t) ≥ 0 for all u ∈ K. We first prove
that T (K) ⊂ K. In fact,

Tu(t) =
∫ 1

0 G(t, s)a(s)f(u(s))ds + tα−1

(1−µηα−2)

{
µ
∫ 1

0 G1(η, s)a(s)f(u(s))ds + λ
(α−1)

}

≤
∫ 1

0
G(1, s)a(s)f(u(s))ds + 1

(1−µηα−2)

{
µ
∫ 1

0
G1(η, s)a(s)f(u(s))ds + λ

(α−1)

}

t ∈ [0, 1]

so,

‖Tu‖ ≤
∫ 1

0 G(1, s)a(s)f(u(s))ds+ 1
(1−µηα−2)

{
µ
∫ 1

0 G1(η, s)a(s)f(u(s))ds + λ
(α−1)

}
,

on the other hand, Lemma 6 imply that, for any t ∈ [τ, 1] ,

Tu(t) =
∫ 1

0
G(t, s)a(s)f(u(s))ds + tα−1

(1−µηα−2)

{
µ
∫ 1

0
G1(η, s)a(s)f(u(s))ds + λ

(α−1)

}

≥ γ

∫ 1

0

G(1, s)a(s)f(u(s))ds + τα−1

(1−µηα−2)

{
µ

∫ 1

0

G1(η, s)a(s)f(u(s))ds + λ
(α−1)

}

= γ

∫ 1

0

G(1, s)a(s)f(u(s))ds + γ
(1−µηα−2)

(
µ

∫ 1

0

G1(η, s)a(s)f(u(s))ds + λ
(α−1)

)

and, for u ∈ K
min

t∈[τ,1]
Tu(t) ≥ γ ‖Tu‖ .

Consequently, we have T (K) ⊂ K. Next, we prove that T is continuous. In fact,
let

N =
1

2Γ(α)

(∫ 1

0 s(1 − s)α−2a(s)ds +
∫ 1

0 (1 − s)α−2a(s)ds
)

,

assume that un, u0 ∈ K and un −→ u0, then ‖un‖ ≤ c < ∞, for every n ≥ 0.
Since f is continuous on [0, c], it is uniformly continuous. Therefore, for any ǫ >

0, there exists δ > 0 such that |u1 − u2| < δ implies that |f(u1) − f(u2)| < ε
2N

.
Since un −→ u0, there exists n0 ∈ N such that ‖un − u0‖ < δ for n ≥ n0. Thus
we have |f(un(t)) − f(u0(t))| < ε

2N
, for n ≥ n0and t ∈ [0, 1]. This implies that
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for n ≥ n0

‖Tun − Tu0‖ =

∥∥∥∥∥

∫ 1

0 G(t, s)a(s) [f(un(s)) − f(u0(s))] ds

+ µtα−1

(1−µηα−2)

∫ 1

0 G1(η, s)a(s) [f(un(s)) − f(u0(s))] ds

∥∥∥∥∥

≤ ε

2N

[∫ 1

0 G(1, s)a(s)ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)ds
]

≤ ε

2N

[
1

Γ(α)

∫ 1

0
s(1 − s)α−2a(s)ds + µηα−2

(1−µηα−2)

1

Γ(α)

∫ 1

0
(1 − s)α−2a(s)ds

]

≤ ε

2N

[
1

Γ(α)

(∫ 1

0 s(1 − s)α−2a(s)ds + 1
(1−µηα−2)

∫ 1

0 (1 − s)α−2a(s)ds
)]

≤ ε

2N
(2N) = ε.

That is, T : K−→K is continuous. Finally, let B ⊂ K be bounded, we claim
that T (B) ⊂ K is uniformly bounded. Indeed, since B is bounded, there exists
some m > 0 such that ‖u‖ ≤ m, for all u ∈ B. Let

C = max {|f(u(t))| : 0 ≤ u ≤ m}

then
‖Tu‖ ≤ C1N for all u ∈ B.

such that C1 = C + λ
(α−1)(1−µηα−2)N At last, we prove T (B) is equicontinuous.

Hence T (B) is bounded, for all ε > 0, each u ∈ B, t1, t2 ∈ [0, 1], t1 < t2, let

δ = min

{
Γ(α)ε

6C‖a‖
∞

,
(1−µηα−2)Γ(α)ε

3C‖a‖
∞

,
(1−µηα−2)ε

3λ

}
, this allows us to show that,

|Tu(t2) − Tu(t1)| < ε when t2 − t1 < δ.

One has

|Tu(t2) − Tu(t1)|

=

∣∣∣∣∣

∫ 1

0 (G(t2, s) − G(t1, s)) a(s)f(u(s))ds

+
(tα−1

2
−t

α−1

1 )
(1−µηα−2)

{
µ
∫ 1

0 G1(η, s)a(s)f(u(s))ds + λ
(α−1)

}
∣∣∣∣∣

≤ C ‖a‖∞
(∫ 1

0
(G(t2, s) − G(t1, s)) ds +

µ(t
α−1

2
−t

α−1

1 )
(1−µηα−2)

∫ 1

0
G1(η, s)ds

)

+
λ(t

α−1

2
−t

α−1

1 )
(α−1)(1−µηα−2)

≤ C ‖a‖∞
{∫ t1

0 (G(t2, s) − G(t1, s)) ds +
∫ t2

t1
(G(t2, s) − G(t1, s)) ds

}

+ C ‖a‖∞
∫ 1

t2
(G(t2, s) − G(t1, s)) ds

+
µ(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

C ‖a‖∞
Γ(α)

∫ 1

0
G1(η, s)ds +

λ(t
α−1

2
−t

α−1

1 )
(α−1)(1−µηα−2)
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≤ C ‖a‖∞
Γ(α)

(I1 + I2 + I3) +
(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

(
C ‖a‖∞ µ

∫ 1

0 G1(η, s)ds + λ
(α−1)

)

=
C ‖a‖∞
Γ(α)

(I4 + I5 + I6) +
(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

(
C ‖a‖∞ µ

∫ 1

0
G1(η, s)ds + λ

(α−1)

)

=
C ‖a‖∞
Γ(α)

(I7 + I8 + I9) +
(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

(
C ‖a‖∞ µ

∫ 1

0
G1(η, s)ds + λ

(α−1)

)

=
C ‖a‖∞
Γ(α)

(I10 + I11 + I12) +
(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

(
C ‖a‖∞ µ

∫ 1

0 G1(η, s)ds + λ
(α−1)

)

=
C ‖a‖∞
Γ(α)

I13 +
µ(t

α−1

2
−t

α−1

1 )
(1−µηα−2) C ‖a‖∞

(1 − η) ηα−2

(α − 1) Γ(α)
+

λ(t
α−1

2
−t

α−1

1 )
(α−1)(1−µηα−2)

≤ C ‖a‖∞
Γ(α)

I13 +
µ(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

C ‖a‖∞
Γ(α)

ηα−2

α − 1
+

λ(t
α−1

2
−t

α−1

1 )
(α−1)(1−µηα−2) ,

where
I1 =

∫ t1

0

[
(1 − s)α−2(tα−1

2 − tα−1
1 ) −

(
(t2 − s)α−1 − (t1 − s)α−1

)]
ds

I2 =
∫ t2

t1

[
(1 − s)α−2(tα−1

2 − tα−1
1 ) − (t2 − s)α−1

]
ds

I3 =
∫ 1

t2
(1 − s)α−2(tα−1

2 − tα−1
1 )ds

I4 = (tα−1
2 − tα−1

1 )
∫ t1

0 (1 − s)α−2ds −
∫ t1

0 (t2 − s)α−1ds

I5 = (tα−1
2 − tα−1

1 )
∫ t1

0 (1 − s)α−2ds −
∫ t1

0 (t2 − s)α−1ds

I6 = −
∫ t2

t1
(t2 − s)α−1ds + (tα−1

2 − tα−1
1 )

∫ 1

t2
(1 − s)α−2ds

I7 = 1
α−1 (tα−1

2 − tα−1
1 )

[
1 − (1 − t1)

α−1
]
+ 1

α
[(t2 − t1)

α − t2
α] + 1

α
t1

α

I8 = − 1
α−1 (tα−1

2 − tα−1
1 )

[
(1 − t2)

α−1 − (1 − t1)
α−1

]

I9 = − 1
α
(t2 − t1)

α + 1
α−1 (tα−1

2 − tα−1
1 )(1 − t2)

α−1

I10 = 1
α−1 (tα−1

2 − tα−1
1 ) − 1

α−1 (tα−1
2 − tα−1

1 )(1 − t1)
α−1

I11 =
∫

1
α
(t2 − t1)

α − 1
α
t2

α + 1
α
t1

α − 1
α−1 (tα−1

2 − tα−1
1 )(1 − t2)

α−1

I12 = 1
α−1 (tα−1

2 −tα−1
1 )(1−t1)

α−1− 1
α
(t2−t1)

α+ 1
α−1 (tα−1

2 −tα−1
1 )(1−t2)

α−1

I13 = 1
α−1 (tα−1

2 − tα−1
1 ) − 1

α
(tα2 − tα1 ).

In order to estimate t2
α − t1

α and t2
α−1 − t1

α−1, we can apply a method
used in [4, 18]; by means value theorem of differentiation, we have

t2
α − t1

α ≤ α(t2 − t1) < αδ ≤ 3δ,

t2
α−1 − t1

α−1 ≤ (α − 1) (t2 − t1) < (α − 1) δ ≤ 2δ.

Thus, we obtain

|Tu(t2) − Tu(t1)| <
C ‖a‖∞
Γ(α)

I +
µ(t

α−1

2
−t

α−1

1 )
(1−µηα−2)

C ‖a‖∞
Γ(α)

ηα−2

α − 1
+

λ(t
α−1

2
−t

α−1

1 )
(α−1)(1−µηα−2)

<
C ‖a‖∞
Γ(α)

[
(α − 1) δ

(α − 1)
+

αδ

α

]
+ µ(α−1)δ

(1−µηα−2)

C ‖a‖∞
Γ(α)

ηα−2

(α − 1)
+ λ(α−1)δ

(α−1)(1−µηα−2)

<

(
2C ‖a‖∞

Γ(α)
+ 1

(1−µηα−2)

C ‖a‖∞
Γ(α)

+ λ
(1−µηα−2)

)
δ <

ε

3
+

ε

3
+

ε

3
= ε,
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where

I =
1

α − 1
(tα−1

2 − tα−1
1 ) − 1

α
(t2

α − t1
α) .

By means of the Arzela-Ascoli theorem, T : K−→K is completely continuous.
The proof is achieved.

In all what follow, we assume that the next conditions are satisfied.
(C1) f : [0,∞) −→ [0,∞) is continuous;

(C2) a : (0, 1) −→ [0,∞) is continuous, 0 <

∫ 1

0

s(1 − s)α−2a(s)ds < ∞

and 0 <

∫ 1

0

(1 − s)α−2a(s)ds < ∞.( that is a is singular at t = 0, t = 1 )

Lemma 12 [15] Suppose that E is a Banach space, Tn : E −→ E (n = 1, 2, 3, ...)
are completely continuous operators, T : E−→E, and

lim
n−→∞

max
‖u‖<r

‖Tnu − Tu‖ = 0 for all r > 0.

Then T is completely continuous.

For any natural number n (n ≥ 2), we set

an(t) =






inft<s≤ 1
n

a(s), 0 ≤ t ≤ 1
n
,

a(t), 1
n
≤ t ≤ 1 − 1

n
,

inf1− 1
n

<s<t a(s), 1 − 1
n
≤ t ≤ 1.

(3.3)

Then an : [0, 1] −→ [0, +∞) is continuous and an(t) ≤ a(t), t ∈ (0, 1). Let

Tnu(t) =
∫ 1

0
G(t, s)an(s)f(u(s))ds + µtα−1

(1−µηα−2)

∫ 1

0
G1(η, s)an(s)f(u(s))ds

+ λtα−1

(α−1)(1−µηα−2) .

Lemma 13 If (C1), (C2) hold. Then T : K−→K is completely continuous.

Proof. By a similar as in the proof of Lemma 11 it is obvious that Tn : E −→ E
is completely continuous.

Since

0 <
∫ 1

0
G(t, s)a(s)ds + µtα−1

(1−µηα−2)

∫ 1

0
G1(η, s)a(s)ds

<
∫ 1

0
G(1, s)a(s)ds + µ

(1−µηα−2)

∫ 1

0
G1(η, s)a(s)ds

<
1

Γ(α)

[∫ 1

0
s(1 − s)α−2a(s)ds + µηα−2

(1−µηα−2)

∫ 1

0
(1 − s)α−2

a(s)ds
]

< +∞,

and by the absolute continuity of the integral, we have

lim
n−→∞

[∫
e(n)s(1 − s)α−2a(s)ds + µηα−2tα−1

(1−µηα−2)

∫
e(n) (1 − s)

α−2
a(s)ds

]
= 0,
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where e(n) =
[
0, 1

n

]
∪

[
1 − 1

n
, 1

]
.

Let r > 0 and u ∈ Br = {u ∈ E : ‖u‖ ≤ r} and Mr =
max {f(u(t) : (t, u) ∈ [0, 1] × [0, r]} < +∞, by (3.3), Lemma 6(P3), and the
absolute continuity of the integral, we have

lim
n−→∞

‖Tnu − Tu‖

≤ lim
n−→∞

max
0≤t<1

∣∣∣∣∣

∫ 1

0
G(t, s) (an(s) − a(s)) f(u(s))ds

+ µtα−1

(1−µηα−2)

∫ 1

0 G1(η, s) (an(s) − a(s)) f(u(s))ds

∣∣∣∣∣

≤ Mr

Γ(α)
lim

n−→∞

[ ∫ 1

0
s(1 − s)α−2 (a(s) − an(s)) ds

+ µ
(1−µηα−2)

∫ 1

0
(1 − s)

α−2
(a(s) − an(s)) ds

]

≤ Mr

Γ(α)
lim

n−→∞

[ ∫
e(n)

s(1 − s)α−2 (a(s) − an(s)) ds

+ µ
(1−µηα−2)

∫
e(n) (1 − s)

α−2
(a(s) − an(s)) ds

]

=
Mr

Γ(α)
lim

n−→∞





∫ 1
n

0
s(1 − s)α−2 (a(s) − an(s)) ds

+ µ
(1−µηα−2)

∫ 1
n

0 (1 − s)
α−2

(a(s) − an(s)) ds

+
∫ 1

1− 1
n

s(1 − s)α−2 (a(s) − an(s)) ds

+ µ
(1−µηα−2)

∫ 1

1− 1
n

(1 − s)
α−2

(a(s) − an(s)) ds





≤ Mr

Γ(α)
lim

n−→∞

[∫
e(n)

s(1 − s)α−2a(s)ds + µηα−2tα−1

(1−µηα−2)

∫
e(n)

(1 − s)α−2
a(s)ds

]
= 0.

Then by Lemma 12, T : K−→K is completely continuous.
Throughout this section, we shall use the following notations:

Λ1 :=

(
1

Γ(α)

∫ 1

0 s(1 − s)α−2a(s)ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)ds

)−1

,

Λ2 :=

(
γ

Γ(α)

∫ 1

τ
s(1 − s)α−2a(s)ds + µγ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)ds

)−1

.

It is obvious that Λ2 > Λ1 > 0. Also we define

f0 = lim
r−→0+

f(r)

r
, f∞ = lim

r−→∞

f(r)

r
.

Theorem 14 Suppose that f is superlinear, i.e.

f0 = 0, f∞ = ∞.

Then BVP (1.1)-(1.2) has at least one positive solution for λ small enough and
has no positive solution for λ large enough.

Proof. We divide the proof into two steps.
Step 1. We prove that BVP (1.1)-(1.2) has at least one positive solution

for sufficiently small λ > 0.since f0 = 0, for Λ1 > 0, there exists R1 > 0 such

that f(r)
r

≤ Λ1

2 , r ∈ [0, R1] . Therefore,

f(r) ≤ rΛ1

2
, for r ∈ [0, R1] . (3.4)
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Let Ω1 = {u ∈ C [0, 1] : ‖u‖ ≤ R1} and let λ satisfies

0 < λ ≤ (α − 1)
(
1 − µηα−2

)
R1

2
. (3.5)

Then, for any u ∈ K∩ ∂Ω1, it follows from Lemma 6, (3.2), (3.4) and (3.5) that

Tu(t) =
∫ 1

0
G(t, s)a(s)f(u(s))ds + tα−1

(1−µηα−2)

(
µ
∫ 1

0
G1(η, s)a(s)f(u(s))ds + λ

(α−1)

)

≤ 1

Γ(α)

∫ 1

0 s (1 − s)
α−2

a(s)f(u(s))ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)f(u(s))ds

+ λ
(α−1)(1−µηα−2)

≤ Λ1

2

(
1

Γ(α)

∫ 1

0 s (1 − s)
α−2

a(s)u(s)ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)u(s)ds

)

+
(α−1)(1−µηα−2)R1

2(α−1)(1−µηα−2)

≤ Λ1

2

(
1

Γ(α)

∫ 1

0
s (1 − s)α−2

a(s)ds + µ
(1−µηα−2)

∫ 1

0
G1(η, s)a(s)ds

)
‖u‖ + R1

2

= ‖u‖
2 + ‖u‖

2 = ‖u‖ .

And thus
‖Tu(t)‖ ≤ ‖u‖ , for u ∈ K ∩ ∂Ω1. (3.6)

On the other hand, since f∞ = ∞ , for Λ2 > 0, there exists R2 > R1 such that
f(r)

r
≥ Λ2, r ∈ [γR2,∞) .Thus we have

f(r) ≥ rΛ2, for r ∈ [γR2,∞] . (3.7)

Set Ω2 = {u ∈ C [0, 1] : ‖u‖ ≤ R2}. For any u ∈ K∩ ∂Ω2, by Lemma 6 one has
mins∈[τ,1]u(s) ≥ γ ‖u‖ = γR2. Thus , from (3.6) we can conclude that

Tu(1) =
∫ 1

0
G(1, s)a(s)f(u(s))ds + µ

(1−µηα−2)

∫ 1

0
G1(η, s)a(s)f(u(s))ds

+ λ
(α−1)(1−µηα−2)

≥
∫ 1

0 G(1, s)a(s)f(u(s))ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)f(u(s))ds

≥ 1

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)f(u(s))ds + µ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)f(u(s))ds

≥ Λ2

(
1

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)u(s)ds + µ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)u(s)ds

)

≥ Λ2

(
γ

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)ds + µγ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)ds

)
‖u‖

= ‖u‖ ,

which implies that
‖Tu‖ ≥ ‖u‖ , for u ∈ K ∩ ∂Ω2. (3.8)
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Therefore, by (3.6), (3.8) and the first part of Theorem 10 we know that the
operator T has at least one fixed point u ∈ K ∩

(
Ω2\Ω1

)
, which is a positive

solution of BVP (1.1)-(1.2).
Step 2. We verify that BVP (1.1)-(1.2) has no positive solution for λ large

enough. Otherwise, there exist 0 < λ1 < λ2 < ... < λn < ..., with limn−→∞λn =
+∞, such that for any positive integer n, the BVP

{
Dαu + a(t)f(u) = 0, 2 < α < 3, 0 < t < 1,

u(0) = u
′

(0) = 0, u
′

(1) − µu
′

(η) = λn,

has a positive solution un(t), by (3.1), we have

un(1) =
∫ 1

0
G(1, s)a(s)f(un(s))ds

+
1

(1 − µηα−2)

(
µ
∫ 1

0 G1(η, s)a(s)f(un(s))ds +
λn

(α − 1)

)

≥ λn

(α − 1) (1 − µηα−2)
−→ +∞, (n −→ ∞) .

Thus
‖u‖ −→ +∞, (n −→ ∞) .

Since f∞ = ∞ , for 4Λ2 > 0, there exists R̂ > 0 such that f(r)
r

≥ 4Λ2, r ∈[
γR̂,∞

)
, which implies that

f(r) ≥ 2Λ2r, for r ∈
[
γR̂,∞

)
.

Let n be large enough that ‖un‖ ≥ R̂, then

‖un‖ ≥ un(1)

=
∫ 1

0
G(1, s)a(s)f(un(s))ds + µ

(1−µηα−2)

∫ 1

0
G1(η, s)a(s)f(un(s))ds

+ λn

(α−1)(1−µηα−2)

≥ 2Λ
(∫ 1

0 G(1, s)a(s)un(s)ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)un(s)ds
)

≥ 2Λ
(∫ 1

τ
G(1, s)a(s)un(s)ds + µ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)un(s)ds

)

≥ 2Λ2

(
γ

1

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)ds + µγ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)ds

)
‖un‖

= 2 ‖un‖ ,

which is contradiction. The proof is complete.
Moreover, if the function f is nondecreasing, the following theorem holds.

Theorem 15 Suppose that f is superlinear. If f is nondecreasing, then there
exists a positive constant λ∗ such that BVP (1.1)-(1.2) has at least one positive
solution for λ ∈ (0, λ∗) and has no positive solution for λ ∈ (λ∗,∞).
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Proof. Let Σ = {λ : BVP (1.1)-(1.2) has at least one positive solution} and
λ∗ = sup Σ; it follows from Theorem 14 that 0 < λ∗ < ∞. From the definition
of λ∗, we know that for any λ ∈ (0, λ∗), there is a λ0 > λ such that BVP

{
Dαu + a(t)f(u(t)) = 0, 2 < α < 3, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) − µu′(η) = λ0,

has a positive solution u0(t). Now we prove that for any λ ∈ (0, λ0), BVP
(1.1)-(1.2) has a positive solution. In fact, let

K(u0) = {u ∈ K : u(t) ≤ u0(t), t ∈ [0, 1]}

For any λ ∈ (0, λ0), u ∈ K(u0), it follows from (3.2) and the monotonicity of f

that we have that

Tu(t) =
∫ 1

0 G(t, s)a(s)f(u(s))ds + tα−1

(1−µηα−2)

(
µ
∫ 1

0 G1(η, s)a(s)f(u(s))ds + λ
(α−1)

)

≤
∫ 1

0
G(t, s)a(s)f(u0(s))ds + tα−1

(1−µηα−2)

(
µ
∫ 1

0
G1(η, s)a(s)f(u0(s))ds + λ

(α−1)

)

= u0(t).

Thus, T (K(u0)) ⊆ K(u0). By Shaulder’s fixed point theorem we know that
there exists a fixed point u ∈ K(u0), which is a positive solution of BVP (1.1)-
(1.2). The proof is complete.

Now we consider the case f is sublinear.

Theorem 16 Suppose that f is sublinear, i.e.

f0 = ∞, f∞ = 0.

Then BVP (1.1)-(1.2) has at least one positive solution for any λ ∈ (0,∞).

Proof. Since f0 = ∞, there exists R1 > 0 such that f(r) ≥ Λ2r, for any
r ∈ [0, R1]. So for any u ∈ K with ‖u‖ = R1 and any λ > 0, we have

Tu(1) =
∫ 1

0
G(1, s)a(s)f(u(s))ds + 1

(1−µηα−2)

(
µ
∫ 1

0
G1(η, s)a(s)f(u(s))ds + λ

(α−1)

)

≥ 1

Γ(α)

∫ 1

0 (1 − s)α−2sa(s)f(u(s))ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)f(u(s))ds

≥ 1

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)f(u(s))ds + µ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)f(u(s))ds

≥ Λ2

(
1

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)u(s)ds + µ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)u(s)ds

)

≥ Λ2

(
γ

1

Γ(α)

∫ 1

τ
(1 − s)α−2sa(s)ds + µγ

(1−µηα−2)

∫ 1

τ
G1(η, s)a(s)ds

)
‖u‖

= ‖u‖ ,

and consequently, ‖Tu‖ ≥ ‖u‖. So, if we set Ω1 = {u ∈ K : ‖u‖ < R1}, then

‖Tu‖ ≥ ‖u‖ , for u ∈ K ∩ ∂Ω1. (3.9)
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Next we construct the set Ω2. We consider two cases: f is bounded or f is
unbounded.

Case (1): Suppose that f is bounded, say f(r) ≤ M for all r ∈ [0,∞). In
this case we choose

R2 ≥ max

{
2R1,

2M

Λ1
, 2λ

(α−1)(1−µηα−2)

}
,

and then for u ∈ K with ‖u‖ = R2, we have

Tu(t) =
∫ 1

0
G(t, s)a(s)f(u(s))ds + tα−1

(1−µηα−2)

(
µ
∫ 1

0
G1(η, s)a(s)f(u(s))ds + λ

(α−1)

)

≤ M

(
1

Γ(α)

∫ 1

0 (1 − s)α−2sa(s)ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)ds

)

+ λ
(α−1)(1−µηα−2)

≤ M

Λ1
+

R2

2
≤ R2

2
+

R2

2
= R2 = ‖u‖ .

So,
‖Tu‖ ≤ ‖u‖ .

Case (2): When f is unbounded. Now, since f∞ = 0, there exists R0 > 0
such that

f(r) ≤ Λ1

2
r, for r ∈ [R0,∞) , (3.10)

Let
R2 ≥ max

{
2R1, R0,

2λ
(α−1)(1−µηα−2)

}
,

and be such that
f(r) ≤ f(R2), for r ∈ [0, R2] .

For u ∈ K with ‖u‖ = R2, from (3.2) and (3.10), we have

Tu(t) =
∫ 1

0 G(t, s)a(s)f(u(s))ds + tα−1

(1−µηα−2)

(
µ
∫ 1

0 G1(η, s)a(s)f(u(s))ds + λ
(α−1)

)

≤
∫ 1

0
G(t, s)a(s)f(R2)ds + 1

(1−µηα−2)

(
µ
∫ 1

0
G1(η, s)a(s)f(R2)ds + λ

(α−1)

)

≤ Λ1

2

(
1

Γ(α)

∫ 1

0 (1 − s)α−2sa(s)ds + µ
(1−µηα−2)

∫ 1

0 G1(η, s)a(s)ds

)
R2 +

R2

2

=
R2

2
+

R2

2
= R2 = ‖u‖ .

Thus,
‖Tu‖ ≤ ‖u‖ .

Therefore, in either case we may put Ω2 = {u ∈ K : ‖u‖ < R2}, then

‖Tu‖ ≥ ‖u‖ , for u ∈ K ∩ ∂Ω2. (3.11)

So, it follows from (3.9), (3.11) and the second part of Theorem 10 that T has a
fixed point u∗ ∈ K∩

(
Ω2\Ω1

)
, Then u∗ is a positive solution of BVP (1.1)-(1.2).

The proof is achieved.
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4 Application

In this section we give an example to illustrate the usefulness of our main results.

Example 17 Let us consider the following fractional BVP

D
5
2

0+u(t) +
1√

t (1 − t2)
u

3
2 (t) = 0, 0 < t < 1, (4.1)

u(0) = u′(0) = 0, u′(1) − 1

2
√

2
u′(

1

2
) = λ, (4.2)

We can easily show that f(u(t)) = u
3
2 (t) satisfy:

f0 = lim
u−→0+

f(u)

u
= lim

u→0+

√
u(t) = 0, f∞ = lim

u→∞

f(u)

u
= lim

u→∞

√
u(t) = +∞,

obviously, for a.e. t ∈ [0, 1], we have

∫ 1

0

(1 − s)α−2a(s)ds =

∫ 1

0

√
1 − s√

s (1 − s2)
ds =

∫ 1

0

ds√
s (1 + s)

= 1. 762 7.

∫ 1

0

s(1 − s)α−2a(s)ds =

∫ 1

0

s
√

1 − s√
s (1 − s2)

ds =

∫ 1

0

√
s

1 + s
ds = 0.532 84.

So conditions (C1), (C2) holds, then we can choose R2 > R1 > 0, and for λ

satisfies 0 < λ ≤ 9
16R1 < R2, then we can choose

Ω1 = {u ∈ K : ‖u‖ < R1} , Ω2 = {u ∈ K : ‖u‖ < R2}

and by Theorem 14, we can show that the BVP (4.1)-(4.2) has at least one
positive solution u(t) ∈ K ∩

(
Ω2\Ω1

)
for λ small enough and has no positive

solution for λ large enough.

Example 18 Let us consider the following fractional BVP

D
5
2

0+u(t) +
1√

t (1 − t2)
exp(−u(t)) = 0, 0 < t < 1, (4.3)

u(0) = u′(0) = 0, u′(1) − 1

2
√

2
u′(

1

2
) = λ, (4.4)

We can easily show that f(u(t)) = exp(−u(t)) satisfy:

f0 = lim
u−→0+

f(u)

u
= lim

u→0+

1

u exp(u)
= ∞, f∞ = lim

u→∞

f(u)

u
= lim

u→∞

1

u exp(u)
= 0,
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obviously, for a.e. t ∈ [0, 1], we have

∫ 1

0

(1 − s)α−2a(s)ds =

∫ 1

0

ds√
s (1 + s)

= 1. 762 7.

∫ 1

0

s(1 − s)α−2a(s)ds =

∫ 1

0

√
s

1 + s
ds = 0.532 84.

So conditions (C1), (C2) holds, and by Theorem 16, we can show that the
BVP (4.3)-(4.4) has at least one positive solutions u(t), for any λ ∈ (0,∞).
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