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Abstract. In this paper, the bifurcated limit cycles from centre for a special three dimen-
sional quadratic polynomial system and the Lü system are studied. For a given centre,
the cyclicity is bounded from below by considering the linear parts of the correspond-
ing Liapunov quantities of the perturbed system. We show that five limit cycles and
two limit cycles can bifurcate from the centres for the three dimensional system and the
Lü system respectively.
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1 Introduction

We consider an analytic system of differential equations

u̇ = f (u), u ∈ R3 (1.1)

has an isolated equilibrium point at the origin, the linear part d f at the origin has one non-zero
and two pure imaginary eigenvalues and that the components of f are quadratic polynomial
functions.

A sufficient condition for a Hopf bifurcation in the three dimensional systems (1.1) (it
possess two pure imaginary and one non-zero real eigenvalue) is illustrated bellow: let

λ3 − Tλ2 − Kλ− D = 0 (1.2)

be the characteristic polynomial for system (1.1) where

T =
3

∑
i=1

ai,i (trace of the Jacobian matrix of system (1.1) at the origin),

D = determinant of the Jacobian matrix of system (1.1) at the origin,

K = −(A1,1 + A2,2 + A3,3);
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where A1 = a2,2a3,3 − a2,3a3,2 , A2 = a1,1a3,3 − a1,3a3,1 and A3 = a1,1a2,2 − a1,2a2,1 and ai,j, i, j =
1, 2, 3 are elements of the Jacobian matrix of system (1.1) at the origin.

Then the Hopf bifurcation occurs at a point (which is called Hopf point) on the surface

TK + D = 0; K < 0 and T 6= 0. (1.3)

We use an invertible linear change of coordinates and a rescaling of time, system (1.1) which
satisfies (1.3) can be written into:

ẋ1 = −x2 + F1(x1, x2, x3),

ẋ2 = x1 + F2(x1, x2, x3), (1.4)

ẋ3 = λx3 + F3(x1, x2, x3),

where x1, x2, x3 ∈ R, λ is a non-zero real number, F1, F2 and F3 are real analytic functions on
the neighborhood of the origin in R3, and with their derivatives vanish at the origin, the set of
all parameters in F1, F2 and F3 is denoted by Λ and K is the corresponding parameter space.

In this paper, we choose a special case of (1.1) as follows:

ẋ1 = λx1 − x2 + a(x2
1 + x2

2) + (cx1 + dx2)x3,

ẋ2 = x1 + λx2 + b(x2
1 + x2

2) + (ex1 + f x2)x3, (1.5)

ẋ3 = −x3 + S(x2
1 + x2

2) + (Tx1 + Ux2)x3,

where a, b, c, d, e, f , S, T and U are real parameters. When λ = 0, this system has studied by
Edneral et al. [5] and they investigated the nature of the local flow on the local center manifold
at the origin. The following results are obtained (for their proof see [5]).

Proposition 1.1. A system of the form (1.5) for which S = 0 and λ = 0 has a center on the local
center manifold at the origin.

Theorem 1.2. A system of the form (1.5) for which a = b = c + f = 0, λ = 0, and S = 1 has a
center on the local center manifold at the origin if and only if at least one of the following two sets of
conditions holds:

1. 8c + T2 −U2 = 4(e− d)− T2 −U2 = 2(e + d) + TU = 0;

2. c = d + e = 0.

Theorem 1.3. A system of the form (1.5) for which d + e = c = f = 0, λ = 0 and S = 1 has a
center on the local center manifold at the origin if and only if at least one of the following three sets of
conditions holds:

1. a = b = 0;

2. T− 2a = U − 2b = 0;

3. d = e = 0.

If we perturb the parameters, how many periodic orbits can bifurcate from the origin? To
answer this, we apply a new technique examining centre bifurcations to estimate the cyclicity
of system (1.5) satisfying the conditions of Proposition 1.1, Theorem 1.2 and Theorem 1.3,
which is explained in section three. Based on [4], the technique can be applied to other
differential systems in R3 and we hope that it will be useful for a wider audience. For the
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first time in three dimensional systems, such a technique was used by Salih [8] to prove
that four limit cycles can bifurcate from the three dimensional Lotka–Volterra systems. In two
dimensional systems, such a technique was used by Christopher [4] to show that at least eleven
and seventeen limit cycles can bifurcate from a cubic centre and a quadratic non-degenerate
centre, respectively with at least twenty-two limit cycles for another quadratic system globally.

The paper is organized as follows. In Section 2, the used technique which is used to es-
timate the bifurcated periodic orbits from centres is studied. The procedure for bifurcating
limit cycles from centre and five bifurcating limit cycles from centre for a special three dimen-
sional quadratic polynomial system are explained in Section 3. In the last section, we apply
the same technique to the Lü system and show that only one limit cycle can be bifurcated
from the centre.

2 A useful technique to examine the cyclicity bifurcating from
centre

Bifurcation of limit cycles from critical points is the current area research in the bifurcation
theory. A limit cycle is obtained by perturbing a focus or centre. One common approach is
the centre bifurcation which is used to estimate the cyclicity and also to study the bifurcation
of limit cycles from the centre (see Bautin [2] and Yu [9]).

Christopher in [4] investigated a technique to examine the cyclicity bifurcating from centre
in two dimensional systems by linearizing the Liapunov quantities. Salih [8] generalized the
technique to three dimensional systems to estimate the cyclicity of the centre. He applied the
technique to the three dimensional Lotka–Volterra systems. The idea of the technique used
here to estimate the cyclicity in three dimensional differential system can be illustrated by the
following steps. Firstly, a point on a centre variety will be chosen, after that, the Liapunov
quantities about this point will be linearized. If the codimension of the point that was chosen
on a centre variety is r provided that the first r linear terms of Liapunov quantities are linearly
independent, then r− 1 is the cyclicity. That is, we can bifurcate r− 1 limit cycles by a small
perturbation.

Constructing the Liapunov function and calculating its focal values is a classical way to
determine the number of limit cycles and their stability. In this method we seek a function of
the form

F(x1, x2, x3) = x2
1 + x2

2 +
∞

∑
k=3

Fk(x1, x2, x3), (2.1)

where Fk = ∑k
i=0 ∑i

j=0 Ck−i,i−j,jxk−i
1 xi−j

2 xj
3 for system (1.1) and the coefficients of Fk satisfy

X (F) = L1(x2
1 + x2

2) + L2(x2
1 + x2

2)
2 + L3(x2

1 + x2
2)

3 + · · · , (2.2)

where Li, i = 1, 2, . . . are polynomials in the parameters of the system and the Li is called the
ith Liapunov constant (focal value).

Explaining the technique in more detail, it is assumed that the centre critical point of (1.4)
corresponds to 0 ∈ K, by using a perturbation technique in parameters. This can be written:

X = Xo +X1 + · · · ,

F = Fo + F1 + · · · ,

Li = Li0 + Li1 + · · · , i = 1, 2, . . . ,

(2.3)
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where Xo, Fo and L0i are calculated at the unperturbed parameters and X1, F1 and L1i are ob-
tained at a perturbed parameters of first order (they contain the terms of degree one in Λ), and
so forth. The Liapunov function Fi and the Liapunov quantity Li have degree i in parameters.
Putting equation (2.3) into equation (2.2) and we obtain:

XoFo = 0, X0F1 +X1Fo = L11(x2
1 + x2

2) + L21(x2
1 + x2

2)
2 + · · · , (2.4)

and more general,

XoFi + ... +XiFo = L1i(x2
1 + x2

2) + L2i(x2
1 + x2

2)
2 + · · · (2.5)

The linear terms of the Liapunov quantities Lk (modulo the Li, i < k) would be obtained by
solving the pair equations (2.4) simultaneously by linear algebra. Equation (2.5) is used to
generate the higher order terms of the Liapunov quantities.

3 Centre bifurcation of a quadratic three dimensional system

In this section, to examine the cyclicity bifurcating from centre at the origin of system (1.5)
where the parameters satisfy the conditions of Proposition 1.1, Theorem 1.2 and Theorem 1.3
we apply the above technique which is described in Section 2. The main results of this section
are the following theorems.

Theorem 3.1. Suppose S = 1, λ = 0 and d + e = c = f = 0 for system (1.5) the following results
are obtained.

1. If the parameters in system (1.5) satisfy the first set of conditions of Theorem 1.3, then five limit
cycles can bifurcate from the origin.

2. If the parameters in system (1.5) satisfy the second set of conditions of Theorem 1.3, then five
limit cycles can bifurcate from the origin.

3. If the parameters in system (1.5) satisfy the third set of conditions of Theorem 1.3, then four limit
cycles can bifurcate from the origin.

Proof. 1. When the conditions hold, system (1.5) reduce to

ẋ1 = −x2 + dx2x3,

ẋ2 = x1 − dx1x3,

ẋ3 = −x3 + x2
1 + x2

2 + (Tx1 + Ux2)x3.

We choose a point, (λ, a, b, c, d, e, f , S, T, U) = (0, 0, 0, 0, 1,−1, 0, 1, 1, 0) on centre variety and it
is easy to check that XoFo = 0 where

Xo =

(
(−x2 + x2x3)

∂

x1
, (x1 − x1x3)

∂

x2
, (−x3 + x2

1 + x2
2 + x1x3)

∂

x3

)
,

Fo = x2
1 + x2

2 +
N

∑
k=3

k

∑
i=0

i

∑
j=0

Ck−i,i−j,jxk−i
1 xi−j

2 xj
3.
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We let (λ, a, b, c, d, e, f , S, T, U) = (0 + λ1, 0 + a1, 0 + b1, 0 + c1, 1 + d1,−1 + e1, 0 + f1, 1 + S1,
1 + T1, 0 + U1), then the perturbed vector field and the perturbed Liapunov function of first
order are defined by

X1 =

(
(λ1x1 + a1(x2

1 + x2
2) + (c1x1 + d1x2)x3)

∂

x1
, (λ1x2 + b1(x2

1 + x2
2)

+(e1x1 + f1x2)x3)
∂

x2
, (S1(x2

1 + x2
2) + (T1x1 + U1x2)x3)

∂

x3

)
,

F1 =
N

∑
k=3

k

∑
i=0

i

∑
j=0

Dk−i,i−j,jxk−i
1 xi−j

2 xj
3

Using computer algebra package MAPLE, X0F1 +X1Fo in equation (2.4) give us the following
linearly independent terms of Liapunov quantities.

1. L1 = 2λ1.

2. L2 = f1 + c1.

3. L3 =
1
40

(3d1 + 20a1 + 11 f1 + 3e1 + 20b1 + 9c1).

4. L4 =
1

400
(153d1 + 430a1 + 206 f1 + 153e1 + 260b1 + 224).

5. L5 =
1

544000
(527253d1 + 1007080a1 + 330421 f1 + 527253e1 + 507960b1 + 676659).

6. L6 =
1

1202240000
(
2460349388d1 + 4091910030a1

+ 823850861 f1 + 2460349388e1 + 2033633160b1 + 3268059169
)
.

The origin of system (1.5) is weak focus of order 5 if and only if

1. λ1 = 0.

2. c1 = − f1.

3. d1 =
1
3
(−20a1 − 2 f1 − 3e1 − 20b1).

4. a1 =
−1
59

(12 f1 + 76b1).

5. f1 =
659345
553569

b1; b1 6= 0.

Since

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂L1
∂λ1

∂L1
∂c1

∂L1
∂d1

∂L1
∂a1

∂L1
∂ f1

∂L2
∂λ1

∂L2
∂c1

∂L2
∂d1

∂L2
∂a1

∂L2
∂ f1

∂L3
∂λ1

∂L3
∂c1

∂L3
∂d1

∂L3
∂a1

∂L3
∂ f1

∂L4
∂λ1

∂L4
∂c1

∂L4
∂d1

∂L4
∂a1

∂L4
∂ f1

∂L5
∂λ1

∂L5
∂c1

∂L5
∂d1

∂L5
∂a1

∂L5
∂ f1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1660707
21760000

6= 0,

then by suitable perturbation of the coefficients of Liapunov quantities, five limit cycles can
be bifurcated from the origin of system (1.5) in the neighborhood of the origin.



6 R. H. Salih and M. S. Hasso

Remark 3.2. By the same way, we can prove the second and third part of the above theorem
as well as the below theorems.

Theorem 3.3. Suppose S = 1, λ = 0 and a = b = c + f = 0 for system (1.5) the following results
are obtained.

1. If the parameters in system (1.5) satisfy the first set of conditions of Theorem 1.2, then three limit
cycles can bifurcate from the origin.

2. If the parameters in system (1.5) satisfy the second set of conditions of Theorem 1.2, then five
limit cycles can bifurcate from the origin.

Theorem 3.4. If the parameters in system (1.5) satisfy the condition of Proposition 1.1, i.e. S = 0 and
λ = 0, then only one limit cycle can bifurcate from the origin.

4 Centre bifurcation of the Lü system

In this section, we consider the three dimensional Lü system:

ẋ = a(y− x),

ẏ = cy− xz, (4.1)

ż = −bz + xy,

where a, b and c are real parameters. Besides the origin, system (4.1) has two symmetric equi-
librium points A± = (±

√
bc,±

√
bc, c) when bc > 0. Yu and Zhang [10] investigate the stabil-

ity of (4.1) and show that the system display Hopf bifurcation under certain conditions. They
also drive the conditions of supercritical and subcritical bifurcation. in [7], Mello and Coelho
have studied the stability and degenerate Hopf bifurcation which occur at the equilibria A±
up to codimension three of system (4.1). Since the system is invariant under the involution
(x, y, z)→ (−x,−y, z), so the equilibrium point A+ and A− have the same stability.

When (a, b, c) ∈ S = {(a, b, c) : ab > 0, c = a+b
3 }, A± are Hopf points of system (4.1)

because it has two purely imaginary eigenvalues and one real eigenvalue. In this case, the
first Liapunov constant of A± is non-zero if and only if (a− 5b)(2a− b) 6= 0. In [7], it was
shown that when (a− 5b) = 0, the second Liapunov constant is different from zero, but when
(2a− b) = 0, it was shown that the second and third Liapunov constants vanish. Therefore,
Mello and Coelho [7], conjectured that the eqilibria A± are centre of (4.1) if the following
conditions are held.

b = 2c, a = c, and ab > 0. (4.2)

To show that the conjecture concerning the existence of centres on local centre manifold at
A± of (4.1) is true, based on Darboux method, Mahdi et al. [6] showed that the local centre
manifolds are algebraic ruled surface. Buică et al. [3] proved that the conjecture is true by
finding a global inverse Jacobi multiplier.

Now, we apply the above technique which is described in Section 2 and the main result of
this section is the following theorem.

Theorem 4.1. If the parameters in Lü system (4.1) satisfy conditions (4.2) , then only one limit cycles
can bifurcate from the critical point located at A+.
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Proof. As a first step, we scale the critical point A+ to the origin by setting x̃1 = x−
√

bc, ỹ =

y−
√

bc, z̃ = z− c. When system (4.1) satisfies the conditions (4.2), its characteristic polyno-
mial is given by

λ3 +
√

2ωλ2 + ω2λ + ω3
√

2 = 0,

its coefficients satisfy equation (1.3) and the eigenvalues are ±iω and −
√

2ω, where ω =
√

2c.
The critical point A+ is centre as we see in Figure 4.1 .

We let a = 1√
2
ω + a1 and b =

√
2ω + b1 where a1 and b1 are parameters after perturbation

in the system. Therefore, the unperturbed, Xo, and the perturbed vector field of first order,
X1, are defined by

Xo = −
ω√

2
(x̃− ỹ)

∂

∂x̃
+

(
ω√

2
(ỹ− x̃)−ωz̃− x̃z̃

)
∂

∂ỹ
+ (ω(x̃ + ỹ−

√
2z̃) + x̃ỹ)

∂

∂z̃
,

X1 = −a1(x̃− ỹ)
∂

∂x̃
− 1

2
√

2
b1z̃

∂

∂ỹ
+

(
1

2
√

2
b1(x̃ + ỹ)− b1z̃

)
∂

∂z̃
. (4.3)

Using the linear transformation

X = PY, P =


1√
2

1 − 1
2
√

2
3√
2

0 1
2
√

2

1
√

2 1

 , (4.4)

where X = (x̃, ỹ, z̃), Y = (y1, y2, y3), the linear part of system (4.1) at the origin

A =


− 1√

2
ω 1√

2
ω 0

− 1√
2
ω 1√

2
ω −ω

ω ω −
√

2ω


can be written in the real canonical form as 0 −ω 0

ω 0 0
0 0 −

√
2ω

 ,

and the new system is given by

ẏ1 = −ωy2 −
1
2

y2
1 −

5
3
√

2
y1y2 −

1
9

y1y3 −
2
3

y2
2 −

7
18
√

2
y2y3 +

13
72

y2
3,

ẏ2 = ωy1 +
1√
2

y2
1 +

4
3

y1y2 −
1

18
√

2
y1y3 +

√
2

3
y2

2 +
5
18

y2y3 −
√

2
9

y2
3, (4.5)

ẏ3 = −ω
√

2y3 + y2
1 +
√

2y1y2 −
1
3

y1y3 +
1

3
√

2
y2y3 −

1
12

y2
3.

The same transformation in equation (4.4) is used for the perturbed vector field part of sys-
tem (4.1) and we obtain

ẏ1 =
1
9

(
2a1 −

3
2

b1

)
y1 −

1
9

(√
2a1 −

3
2
√

2
b1

)
y2 +

1
9

(
a1 −

1
2

b1

)
y3,

ẏ2 =
1
9

(
5
√

2a1 +
3

2
√

2
b1

)
y1 −

1
9

(
5a1 +

3
2

b1

)
y2 +

1
18

(
5
√

2a1 −
5√
2

b1

)
y3,

ẏ3 =
−4
3

a1y1 +
1
3

(
2
√

2a1 −
3√
2

b1

)
y2 −

2
3
(a1 + b1)y3. (4.6)
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Figure 4.1: Numerical plot of trajectories near critical points of system (4.1)
where a = 1, b = 2, c = 1 with initial conditions: (0, 0.1, 0.2), (1.8, 1.4, 1.5),
(−1.3,−1.4, 1.5), (−1.2,−1.4, 1) and (−1,−1.4, 1). The red points indicate the
critical points.

Figure 4.2: Two limit cycles are bifurcated around critical points A+ and A−.

Now, we define the unperturbed, Fo, and the perturbed Liapunov function of first order, F1, by

Fo = y2
1 + y2

2 +
N

∑
k=3

k

∑
i=0

i

∑
j=0

Ck−i,i−j,jyk−i
1 yi−j

2 yj
3,

F1 =
N

∑
k=3

k

∑
i=0

i

∑
j=0

Dk−i,i−j,jyk−i
1 yi−j

2 yj
3, (4.7)

where N ≥ 3. It is easy to show that the Liapunov function, Fo, of equation (4.5) satisfies
XoFo = 0. Using computer algebra package MAPLE, equation (2.4) give us the following
linear independent terms of Liapunov quantities.

1. L1 =
−1
3
(a1 + b1).

2. L2 = − 1
864ω2 (91a1 − 557b1).



Centre bifurcations of periodic orbits for some special 3D systems 9

The origin of system (4.1) is weak focus of order one if and only if

a1 = −b1.

Since the Jacobian of L1 and L2 with respect to a1 and b1 is non-zero, then by suitable pertur-
bation of the coefficients of Liapunov quantities, only one limit cycle can be bifurcated from
the origin of system (4.1) in the neighborhood of the origin, as we see in Figure 4.2.

Remark 4.2. By the same way, we can prove that another limit cycle can bifurcate from the
critical point located at A−.

5 Conclusion

In this paper, we presented a simple computational approach to estimate the cyclisity bifur-
cating from centre. This approach is applied to a special three dimensional system which is
introduced in [5] to obtain some bifurcated periodic orbit. In addition, we applied the same
approach to Lü system and two bifurcating periodic orbits were obtained.
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