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Abstract. The solvability problem for the following system of difference equations
Zpp = azlwl, wpiq = w428 ,, n €Ny,

where a,b,c,d € Z, «,p € C\ {0}, z_3,2_1,2z0,w_1,wg € C\ {0}, is solved. In the
main case when bd # 0, a polynomial of the fourth order is associated to the system,
and its solutions are represented in terms of the parameters, through the roots of the
polynomial in all possible cases (the roots are given in terms of parameters a,b, c,d).
This is also the first paper which successfully deals with the associated polynomial (to
a product-type system) of the fourth order in detail, which is the main achievement of
the paper.
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1 Introduction

Concrete nonlinear difference equations and systems is a research field of some recent interest
(see, e.g., [2,4,9-15,17-45]). Among the systems, symmetric and related ones have attracted at-
tention of some experts, especially after the publication of several papers by Papaschinopoulos
and Schinas almost twenty years ago (see, e.g., [2,4,9-14,17,18,21,23-28,30,31,34-40,42-45]).
On the other hand, solvability of the equations and systems has re-attracted some recent
attention (see, e.g., [2,15,21-36,38-45]). Some of them are solved by the method of transfor-
mation (see, e.g., [15,21,22,24,38-41] and the references therein). For somewhat more complex
methods see [33] and [34]. An interesting related method has been recently applied to partial
difference equations in [29] and [32]. Books [1,5-8] contain many classical methods for solving
difference equations and systems.
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If initial values and coefficients of product-type systems are positive they can be solved by
transforming them to the linear ones with constant coefficients, by using the logarithm. If the
initial values and coefficients are not positive the method is not of a special use. Therefore,
the solvability of product-type systems with non-positive initial values and coefficients is a
problem of interest. We started studying the problem in [36], where we showed the solvability
of the system

a c

Zntl = n € Ny, (1.1)

n _
b’ Wypy1 =
Zn—

d 4
1 wn—

1
for a,b,c,d € Z and z_1,zp,w_1,wy € C\ {0}, and gave many results on the long-term
behavior of solutions to (1.1) by using the obtained closed form formulas. Product-type equa-
tions appeared also in the study of the difference equation in [33], as its special cases. The
max-type system in [23] is solved by reducing it to a product-type one. They also appeared
indirectly in the study of some max-type and related difference equations and systems, as
their boundary cases (see, e.g., [19,20,37]). The study was continued in [42], in [30] where a
three-dimensional system was considered, in [28] where it was noticed for the first time that
some coefficients can be added to a product-type system so that the solvability is preserved,
and later in [31,35,43-45] where various new details and methods are presented.

This paper continues investigating the solvability problem, by studying the following
product-type system

b d
Zpt1 = QZpW,, Wyl = PW,_12n_o, 1 € Ny, (1.2)

where a,b,c,d € Z,a, € Cand z_5,z_1,z0, w_1,wp € C.
Clearly, the domain of undefinable solutions [24] to system (1.2) is a subset of

U={(z_2,2-1,20,w_1,wp) € C’:z,=00rz1=00rzg=00rw_; =0orwy = 0}.

Thus, from now on we will assume that z_»,z_1,zp,w_1,wg € C\ {0}. Since the cases a = 0
and B = 0 are trivial or produce solutions which are not well-defined we will also assume
that ap # 0.

In the main case when bd # 0, a polynomial of the fourth order is associated to the
system, and its solutions are represented in terms of the parameters, through the roots of
the polynomial in all the cases (the roots are given in terms of parameters 4, b, ¢, d), which is
the main achievement of the paper. This is the first paper which deals with the associated
polynomial (to a product-type system) of the fourth order in detail. An associated polynomial
of the fourth order appears yet in [42], but almost without any analysis of its roots and their
influence on the solutions to the system therein.

In this paper, we will use the following standard convention } ;" , a; = 0, when m < k.

2 Auxiliary results
In this section we quote two auxiliary results which are used in the proofs of the main results.

The first one is the following lemma which is well-known (see, e.g., [6,8]). For a proof of a
more general result see [35].
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Lemma 2.1. Let i € INg and

sgf)(z) =1+2z+3224+---+n'z"!, neN

where z € C.
Then
(0) 11— z"
s (2) = 1-z’
M, 1—(m+1)z"+nz""!
o (z) = (1-2z)? '

for every z € C\ {1} and n € IN.

(2.2)

(2.3)

The following lemma is also known, and can be proved, for example, by using the
Lagrange interpolation polynomial or the calculus of residue (see, for example, [6] and [42]).

Lemma 2.2. Assume that Aj, j = 1,k, are pairwise different zeros of the polynomial
P(z) = mz" + 125V + -+ gz +ag,

with oy # 0.
Then

forl =0,k —2, and

3 Main results

The main results in this paper are formulated and proved in this section.

3.1 Solvability of system (1.2)

The first result concerns the solvability problem of system (1.2).

Theorem 3.1. Assume that a,b,c,d € Z, a,p € C\ {0} and z_5,z_1,z9,w_1,wg € C\ {0}. Then

system (1.2) is solvable in closed form.
Proof. Case b = 0. In this case system (1.2) becomes

Zp4l = QZ5, Wpi1 = ,Bw;_lzz,z, n € No.
From the first equation in (3.1) we get
gl

n
zp =a=="z§, neN,

from which it follows that
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when a # 1, and
Zp = &"zg, n €N, (3.4)

whena = 1.
Employing (3.2) in the second equation in (3.1), we get

n—4 -3
n = Bat = Tzl e, (3.5)

for n > 4, from which it follows that

2nti—4 oj g onti-3
wansi = a0 AT s, (36)
forn>2andi=0,1.
Assume that for some k € IN it has been proved that

1 i k=1 j 2n—2j+i—3
o Zkzl o dzk o Z 2n—2j+i—4 al dz ca
Wopti = P70 a7 = . 29 W (n—k)+ir (3.7)

forn>k+1landi=0,1.
By using (3.6) with n replaced by n — k and inserting into (3.7) we get

k

Won+i =

k=1 .jp2n—2j+i-3 2(n—k)+i—4 ;i i c
Zk e dﬂké J):Z” rid g Ay, ayt Al _d2n—h+i-3_ .
B i Z, pa =i 2y (n—k-1)

2n—2j+i=3 okt

o Zk j dZ ]Zn 2j+i—4 1 dzk
_ BT T z W 1) (3.8)

forn > k+2and i = 0,1, from which along with (3.6) and the method of induction it follows
that (3.7) holds for every n > k+1and i =0, 1.
Choosing k = n — 1 in (3.7) we obtain

n-2 j jy2n—2j—4 ; dzﬂ 2 ojg2n—2j-3 -
wZn:,B’OC DM arTCD Wil aO w5 (3.9)
and
e C] d n— C/ 2n—2j—3 ﬂl dzn 2 a2h=2j-2 "
Wang1 = =0 < Hi=0 ¢ Lizo w§ (3.10)
forn > 2.
From the second equation in (3.1), with n = 0,1, 2, we have
2
= w1z, wy, = Pwiz?,, ws = pwizl = W 2% 28 (3.11)

Then by using (3.11) into (3.9) and (3.10) we have

(prusat )¢

Ta o AT I T o den AT
= p wo Z-1 %o

n-2 j n—2 jy2n—2j—4 ; d):" a4 -1
e Ayt sy a n
Wy, = ’32170 Q 2/70 X‘4170

(3.12)
and
2,
Won1 = ‘an 5 dZ]"OZ ]Zzn %3 ll‘ dzn a2 (‘Bl—i-cw ch d)c” 1

1 2 2j
_ﬁzyocf Ay 2oy ¥ w_”l“ dcr, dZ” n-2j- (3.13)



Product-type system of difference equations

forn > 2.
Subcase a # 1 # ¢, ¢ # a®. In this case we have
2 a2n— 2j
j d n—2 j 2n—2j—4 z n dz’l j— et
- PR g S g
: 2n—2_ .n—1
1t dzn_z jl= —g21—2j-3 o d(l% dcn—1
=BT == =Wy zg z%9
2n—2_.n—1
1ot d (1=c""1 a(a?1=2_cn—1) n da% ot
— ‘B T 1 ( T—c 2_¢ )w(C) Z() as—c Zlicl
2 n—1 2n—1 2n—2_ .n—1
1ot A@t—ct(ato)(l-a)c" " —(1—c)a ) dat c .
= ﬁ ¢ o (1-a)(1—c)(a? —c) w6n20 a?—c Ztic; ,

forn > 2, and

2n2]3,' o+l dznl 2n2]2dn

J n=2.j
’BZJ 0¢ g4 Ti0 I Lilo Wy z, 2%,

Wan+1 =
. 2n _.n

1=t dznfchgl‘”znﬂk% w1 A=

i—0 1= c a?—c dc
14 a w1 ZO

_ 2,2n—2_ n—1 21 _
17fn+1 S (1716:15 —— Y2 — )) el d“azic dc"
14 as—c wil ZO Z _2

1o+l d(a?—c+(1—a2)c" —(1—c)a") dazn—c”
— g a oo w7y T 24,

for n € IN.
Subcase a> # 1 # ¢, ¢ = a®. In this case we have

2n—2j : n—2 ,2j 2n—2j-3
Z]'-' z;z j— wgznZdZFO a“la da2n—2

Wan = 527;01 @ 0 z7q
B N L A
= ‘31177’222}1 a%(%*(nfl)az”*) 82” g(n—l)aZ”*Z@lzn—z
I R . e RTSs
forn > 2, and
Waps1 = - o g T A Tl o iu)”_zzﬂzgz;z01 azjaznizjizz‘i”;n
_ ‘3171‘172:;2 lx,jz]f_l 21%&]62?2 At 22‘1_,122;1
_ ‘3171,12;1;2“1%(171{2;12727(”71)012"72) waz dna2n=2 d_a22n
_ ﬁlfl,f:;JaWw_zrz gnazn 2 ‘iﬂzzn,

forn > 2.
Subcase a> # 1 = c. In this case we have

n— 1 2n—2j—4 d d ZVI 2 2n—2j-3
1 d
‘BZ s Tt woz, 24

2n—2
2n—2j—3 da® |
ayn- 2 1-a a—s—
— ‘Bﬂ Z 1—a wOZO ac—1 Zd,l
Pl (,1271—271) dauznfz—l
5 a7 (” I-= )wozo 21

d
Z_1

Fi anlJr —1)(1— 2\ _ a2n—2_4
(a (n—1)(1-a%)—a) da T 4

— ﬁ)’la (a—1)2(a+1) wOZO - Z—ll

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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for n > 2, and

2,,2/31 Zn12n2]2d

n n—2
IB):]' oly A5 Yiso w_ 120 2,

Wan+1 =
2n—2j a
dyn-21-a ]~
— an+1 E 1-a w_ ]_ZO Z‘iz
a2 _q

2(ﬂ211727])

= prtlaTe i (1) 129" 2%,

d(a®" —na+n—1) dﬂ22”—1 i
— an-i-l (a—1)2(a+1) w_1z, a?—1 z%,, (319)

for n € N.
Subcase a = —1, ¢ = 1. In this case we have

dyn—2 2n—2j—4 1) d ( 1)2’1*2f*3
_’Bn Z Yico (- )wozo JO Zd—l

21— ( )Zn 2j—-3 _
= pra"E T w2

. GO (3.20)

for n € N, and

2n—2j d2ﬂ71 a2n72j—2
ol dZ Prrna j=0
Wopt1 = ﬁzf w_120 zZ2,

211 2] 3( 1),- dz]{l;l(_l)Zn—Zj—Z d

d
— IBnJrl Z w_1z, 0 z?,

_(_1)2n—2j-2
d n-2 1 (=1
= p" R N w,lzg”z‘fz

= w2827, (3.21)

for n € Ny.
Subcase a = 1, ¢ # 1. In this case, by using formula (2.3), we get

2n—2j—4 Ayn-2c .
Y C’ dyis Il B o F =0 € _dct
Wy = P70 wo Z, z%

1
[ 2n—2i j n d% n—1
—,Blczxz 0 (2n-2j~ >w5z0“z‘iﬁ
n—1

_n—1 1—nc" 1y (n—1)c" 1—¢
et d((@n-1)15 0 2 e
= (1=<) wy Zg z79

_3_(2n— =1, mn n—1
1_eh dZn 3—(2n—1)c+c" 4 n dl=c 1
=Brca (=02 wg'zg ° 2% (3.22)

G

for n > 2, and

2n—2j—3 dz 1ei
Yoo dZ” FIrT c”+1 =0 ¢ _dc"
Wop4+1 = ﬁ /=0 ZU,1 0 A0}

1-ct1 n=2(nu_2i 9\ 1 d
:ﬁ < [xd 0 (2n—2j-2)c w_”1+ ZO dc

1_cn+1 d(znlfcnfl _217n5”71+(n71)c )
= 1-c

1-c (1 —c)?

1_cn+l 2d(n—1-nc+c")

— g lezo 22 (3.23)

for n € N.



Product-type system of difference equations 7

Subcase a = ¢ = 1. In this case we have

n 1 n—2 y2n—2j—4 dz’,':zl
ﬁ j=0 194 Xj=0 Lizo 1wozo =021

n— 2 d(n—1
:5”1x =0 (2n=2j= )wozo(” )z‘il

= Brad(n = o2 4 (3.24)

for n € IN, and

2n—-2j—3 dZn 11
Yo, AT 0l
Wopy1 = P70 =0 Lizo w_1z, 1,

_ 'B”'H ay) 2(2n—2j— )ZU Zdnzd )
_ an—‘rllen(n D ZgnZd ’ (3.25)
for n € INp.

Case d = 0. In this case system (1.2) becomes
Zyi1 = (xz’flwﬁ, Wyt1 = Pws,_q, n € No. (3.26)
The solvability of system (3.26) was proved in [35], hence we will only sketch the proof here.
The second equation in (3.26) yields

o+l

n—1 .j n
Wy = ﬁzf:o C]wf) neN, and wy.q = 52] L 1 (3.27)
for n € INy.
Hence, if ¢ # 1 we have

1— Cn+1 C”'H

wZTl _= ‘B%wgn n E N, al’ld w2n+1 ‘B 1-c Vi n e ]NOI (3‘28)

while, if ¢ = 1, we have
Wy, = B"wy and  wyq = B w1, n € Np. (3.29)
Using (3.27) in the first equation in (3.26) it follows that
Zon :(xﬁh % wbc 12901 (3.30)
Zon41 = (xﬁbzﬂ 0¢ Wi 28, (3.31)

for n € IN.
From (3.30) and (3.31) we get

byl pen by 2c  pen-1 a
Zon = af 0wy (a0 T Wy 25,
14a pb Y 1Cf+ab 2¢l 0 e abye™1_g?
a BT j=0 (w5 wg’ )" 25,0, (3.32)
forn > 2, and
_ o pbYi I e by bc ¢
Zopt1 = &P 0 Twy” (af T Zon_1

n—1 .j n
_ le+aﬁb(1+“)zj=o C](w”_blw(b))c Zgiz_lr (3.33)
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for every n € IN.
By induction it is proved that

k—1 2 k— 1 21 n—i—1 n—i— 2 2j n—j—1
2y = OB P B () (g B g, 63
and
k—1 2 k—1 2i yv-n—i—1 .j k—1 2j n—
Zopil = lx(l-ﬁ-a)z ]’Bb(l—&-a) Yico a7 X5 c]<wa_blw0)Z] o a¥cni gi’f . (3.35)
for every k,n € IN such that n > k.
Choosing k = n in (3.34) and (3.35) it follows that
n—1 _2j n—1 21 n—i—1 n— z 2 n— 1 2j n—j—1 n
23y = al VT ¥ gE TG ¥ (S a2 g pe gy S e (3 5
n—1 n—1 21 n—i— 1 n— 1 2] n
zniy = a T @ PO B LT (gt gy e
n—1 n—1 21 n—i— 1 n—1 _2j n n
D((Hu)z,-:o ,3 b(1+a) ity a* g (w )):J a’lc ](azgwg)az
sivn—i—1_j abY" Xa2ich=i  pyn p2icn=i .
— (L0 g TG @ K g b0 T L0 T gt (3.37)

for every n € IN.

From formulas (3.36), (3.37), by using Lemma 2.1 and some calculations the following
formulas are obtained.

Subcase ¢ # a*> # 1 # c. We have

1_a2n b(c—a?+(a—1)(a+c)c" +(1—c)a®n 1) b b Mg
Zop =& 7 B (1=a)(1=c)(c—a?) (wwy’) 2 zj , (3.38)
2n n+1_,2n+2
Lo+l bt (e—a?+(a® 1)c "+1+<1 Q22 gpetoalt pt e 241
Zonp1 = 1B T-0(-2) () wo Cw, 7z, (3.39)
for every n € IN.
Subcase a> # 1 # ¢, ¢ = a*>. We have
1 g bOona Lo ing?i ) 2 m-2 2n
Zop =& T B (=2 (i+a) (wb® Wil )™ 28" (3.40)
12+l b4 (1= (n+1)a?" +na2112) 2l p(ntl)g2t 2n
Zomp1 = 1B s T T LT (3.41)
for every n € IN.
Subcase a> # 1 = c. In this case, by using (2.3), we have
1_g2n b(n—afna2+a2”+1) b b
Zopy = O 1-a ’B (1-a2)(1—a) (w 17,()6 ) Ta a ZO , n e N, (342)
L2l b(1+a)(n—(n+1)a2+a2”+2) apl=a®" a2n 1-g2n+2 -
Zopp1 =& 1o B 1-a22 w_ll Tw, 28, (3.43)
for every n € INo.
Subcase a = —1, ¢ = 1. In this case we have
b b —b
Zon = P ”(wflwo )"z0, (3.44)

Zopa1 = zxw”{”wg( Dzj, (3.45)
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for every n € IN.
Subcase a = 1 # c. In this case we have

b(2n—1—(2n+1)c+c"+c"1)

1-c"
2y = &" -ey? (w"wg) < zo,
2b(n—(n+1)c+c" 1 b 1—c" 1—cht1
_ o 2n+1 o2 e bee
Zoppr =7 p (079 w_y Wy T zo,

for every n € IN.
Subcase a = ¢ = 1. We have

2n pbn? (

b
Zop =& w_1wo)”"zo,

b(n+1
a2l ﬁbn(n+l)wlin1 wo("+ )

Zn+1 = 20,

for every n € IN.

Case a = 0, bd # 0. In this case system (1.2) becomes

— b _ c d
Zyyl = QW,, Wy = PW5,_1Z,_p, 1 € No.

By using the first equation in (3.50) into the second one is obtained

d b d
Wypt+1 = :BwZ—lzan = ﬁwZ—l <“wn73)

for n > 3, from which it follows that

d bd
W2 (m41)+i = & 5w§m+iwz(m—1)+i/
for every m € N and eachi =0, 1.
Let v := txd,B,

Then (3.51) can be written as

(i) a(i) b(l)
w =Y w)
2m4+1)+i = V' Wop i Wo (1) 44

for every m € N and eachi =0, 1.
Using (3.53) with m — m — 1 into itself we get

(i) af) B0

— AX 1
Wam+1)+i = V" Qo iWo (1) 4i

i) o pt) 20 pt)

x< 1

=7 (7w21(m—1)+iwz(m—2)+i) ' w2](m—1)+i

W gf) agi)agi)+b§i) bgi)a§i)
=7 Wotm—1)+i P2(m—2)+i

=T Wolm—1)+iY2(m—2)+i’

for every m > 2 and each i = 0,1, where

). g0 50 b = 0l ) o0y gl

a,’ =a;’'a; 1 1417, X=X

— o, yw

(3.46)

(3.47)

(3.48)
(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)



10 S. Stevié¢

Assume that for a k € IN we have proved that

Wa(m+1)+i =7 w( —k+1)+zw2(m k)+i” (3.56)

for m > k and each i = 0,1, and that
a]((i) = agi)a,@l + b,({i)l, b() pli )al({)l, x,(ci) = x](ﬁl + a,@l. (3.57)
Then, by using (3.53) with m — m — k into (3.56) we get
(') a(f') b(i>
Wa(m41)+i IY w, ( —k+l)+1w2(m —k)+i
_ xk ‘ZY) bii) a,
= T (YW@ —k—1)+1)"™ Qo) +i
(i), ) D00 @0
=% Tw (k)i ©o(mk—1)+i
(i) (i) pt)

= v"k“wa’EZJ k)+i 2}@1 k—1)+i (3.58)

form > k+1 and each i = 0,1, where

(i) . g0 4 p) ()

Ayiq i= Ay ay PRV bil)a,((), xl({i) = x,({i) + a,((i). (3.59)

+1

From (3.54), (3.55), (3.58), (3.59) and the induction, we see that (3.56) and (3.57) hold for
every k and m such that 2 < k < m for each i = 0,1. In fact, (3.56) holds for 1 < k < m,
because of (3.53).

The first two equations in (3.57) yield

d\) = al0al) b0l k>3, (3.60)
The equalities in (3.57) with k = 1 yield
agi) = agi)a(()i) + b[()i), b( i = pli )a(()), xgi) = x(()i) + aéi). (3.61)

Since bgi) = bd # 0, from the second equation in (3.61) we get a(()i) = 1. This, along with

xgl) = 1 and the other two relations in (3.61) implies b(()l) = x(()l) =0.
From this and (3.57) with k = 0 is obtained

L=l — a0 b0, 0= bl — 00l 0= < 140 @)

Since b # 0, from the second equation in (3.62) we get a )1 = 0. This along with the other
two relatlons in (3.62) implies b(j 1 and le =0.

Using these facts along with the second equation in (3.57) we have that (a,Ei))kZ_l and
(b,gl)) k>—1,1 = 0,1, are solutions to linear equation (3.60) satisfying the initial conditions

a(z‘>1 —0, a(()i) —1, b<i>1 —1, bg’J —0, (3.63)

< =20 —g, £ _1. (3.64)
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Since the initial values in (3.52) are the same for i = 0 and i = 1, and the sequences

a}({o), b}({o)’ x}({o)/ and al(cl), b,(cl), x,El), satisfy the same system, that is, system (3.57), we have that

a,ﬁo) = algl), b,go) = b,gl) and x,EO) = xlgl) for every k > —1. Thus, from now on we will simply
denote these three pairs of sequences, by ay, by and x; respectively.

From (3.56) with m — m — 1 and k = m — 1, we have that

X1y fm—1 b1
Wo i =y " 1wy w " (3.65)

formeNandi=0,1.
Using the relations in (3.57) in (3.65) it follows that

Am—1,_ by—
w2m — ,yxm,lwzm ]wom 1

= (a’B)™ (Buwhat ) twg"

dx,,,,lﬁxm,ﬁ-am,lwgﬂm 1+bm 1 dain 1

= o1 grmgpn 2t (3.66)

for m € IN, and

1. by
w2m+1 — ,)/xm,lwgm 1w1m 1

= (a dﬁ)xm 1(51+c c 1ZCdzzg>am 1w 1Zd z)h'"*l

dxm—lﬁxmfl""(l‘i’c)amfl*’bm—] wczim—]‘f’d’m 1 Cdgm ]+dbm 1 dam 1

_ “dxm 1ﬁxm+1wcainzdu2m gﬂm 1, (367)
for m € IN, from which along with the first equation in (3.50) we have that

Zomal = 1+bdxm 1ﬁbxmwbﬂm bday, 1, (368)

bday,
Zomin = (X].—‘rbde,l‘Bbmer] wlic‘lfmzb_dzamZO Am 1, (369)

for m € IN.
From the third equation in (3.57) and since x; = 1 and a9 = 1, we get

—
Xy = Z aj, me€N. (3.70)
=0

Now note that the characteristic equation associated to difference equation (3.60) is A? —
cA — bd = 0, from which it follows that

c++c2+4bd

Ao =
1,2 D)

Hence if ¢ + 4bd # 0, then
ay = A} + A%,

From this and since a_1 = 0 and 49 = 1, we have that

n—+1 n+1
Al - /\2

"

(3.71)
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which along with the second equation in (3.57) implies

A — A3
MMy

b, = bd (3.72)

Using (3.71) in (3.70) with m = n, for the case when A1 # 1 # A, which is equivalent to
c+bd #1, we get

AM—1 A1

(A=A = (A — 1)A"+1 + A=Ay
(A =1 (A2 =1) (A1 = Ay) ’

n—1 4/+1 _ 4j+1 n_ n__
N Wt S S OV ok SIS
o MM (M —A2)

(3.73)

while if ¢ 4 bd = 1, that is, if one of the characteristic roots is equal to one, say A, which
implies that Ay = —bd, we get

LA 1 AT —1
= 1 = ppa —
W= ) (A1—1)<1/\1—1 "

j=0
AT — (DA +n (=bd)"™ 4 (n+1)bd +n (3.74)
N (A1 —1)2 N (1+bd)? '
If ¢2 + 4bd = 0, then
~ | o~ c\"
a, = (¢1 + can) (5) . (3.75)
Using the facts a_1 = 0 and a9 = 1 in (3.75), we get
c n
ay = (n+1) (E) , (3.76)
which along with the second equation in (3.57) and bd = —c2/4, implies
I n—1 c n+1
b, = bdn(i) - —n<§) : (3.77)
Using (3.76) in (3.70) and employing (2.3), for the case ¢ # 2, we get
= oyl _1=(n+1)(§)" +n(5)"!
Xn = Z(] + 1) ) = 2 2 s ’ (378)
j=0 (2) (1-3)
while if ¢ = 2, we get
=l n(n+1
Y=Y (j+1) = (2) (3.79)

j=0

Case bd # 0. First note that o, € C\ {0} and z_5,z_1,29,w_1,wp € C\ {0} along with
(1.2) and a simple inductive argument shows that z,w, # 0 for n > —1. For such a solution
from the first equation in (1.2) we have

wb =2 e N, (3.80)
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while from the second one it follows that

b b, be . bd
w, 1 = Bw,_1z,~,, n € No.

Using (3.80) into (3.81), we obtain
Znpo = al 7Bl 1252020, e N,

which is a fourth order product-type difference equation.
Let 5 = al—pb,

ayp:=a, by:=c, c¢:=—ac, dy:=0bd, y;:=1
Then equation (3.82) can be written as

d
Znio = 5ylzﬁﬂrlzzlz;1_lzn12, n € N.

Using (3.84) with n — n — 1 into (3.84), we get

_ b o A Nai b oo di
Znt2 = o (5anzn 17~nfzzn73) 1anzn—lzan’

— SYy1+m a4 +bq byay+c1 c1a+dqy diay
=z, Zn-1 Zn-2  Zn-3
da

— SY2,42 by 2
= 0Pzpz? 12,7 52,2 5,

n—1

for n > 2, where
ay :=a1a1 + by, by:=biay+c1, ci=cm+dy, dy:=diay, Yy =y +ar.

Assume that for a k € IN such that 2 < k < n, we have proved that

_ SYk Ak by o Ak
Znt2 = 4 Zn+2—kzn+l—kzn—kzn—k—l’

for n > k, and that

ap = aax—1 + b1, by =biag_q +cxo1, o = a1 +di—,  di = diag_yq,
Yk = Yk—1 + k1.

Using (3.84) with n — n — k into (3.87), we obtain

— SYk (501 by o dq ay ., bx Ak
Znt2 = o (5zn+1—kzn—kzn—k—lzn—k—2) Zn-i—l—kzn—kzn—k—l

— 5yk+akza1ak+hkzh1ak+ck crax+di _dax

n+1—k “n—k Zn—k—l Zn—k—2

— SYk+1 k41 bri1Ck dis1
= oY Zn-i—l—kzn—kzn—k—lzn—k—Z’
for n > k + 1, where

Agy1 = mag + by, by = biag + o, G = o +dy,  digq = daa,

Yi+1 = Yk + k.

13

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)
(3.89)

(3.90)

(3.91)

From (3.85), (3.86), (3.90), (3.91) and the method of induction we get that (3.87), (3.88) and
(3.89) hold for every k and n such that 2 < k < n. Moreover, (3.87) holds also for 1 < k <mn,

because of (3.84).
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By setting k = 1 in (3.87) and using z; = azlw}, zo = a 2Bz 22w, wek, (3.88) and (3.89),
we get

ay by _cn_dy

Znyo = 092y 21" 2" 2"

= (@O (B2 o g (e ez 2y

o “(1—c)y,, (1+a)a,+Dby, leyneranzbdﬂn dn Zg 24, +aby+cy bcanwgbﬂn+bb11
= w_q
— “yn+2—Cynleyn+1zlicl;nZliﬂi1‘1n—lz(u)n+2 Cﬂnwlicilnwgﬂn-%—l, ne IN. (3‘92)

From (3.88) we easily obtain that (ay)xcn satisfies the difference equation
ay = a1ax_1 + biag_p +c1ax_3 + d1ax_s, k>5. (3.93)
From (3.91) with k = 0 we get
a1 = arag + by, by = biag +co, c1 = c1a0 +do, d1 = drag, y1 = Yo + do. (3.94)

Since di = bd # 0, from the fourth equation in (3.94) we get a9 = 1. Using this factand y; =1
in the other equalities in (3.94) we get by = co = dp = yo = 0.
From this and by (3.91) with k = —1 we get

l=ay=a1a_1+b_1, 0=by=bya_1+c_1, 0=co=cra_1+d_4
0=dy=dia_1, 0= Yo=Yy-1+a_q. (3.95)

Since d; # 0, from the fourth equation in (3.95) we get a_; = 0. Using this fact in the other
equalities in (3.95) we getb_; =1,c.1 =d_1=y_1=0.
From this and by (3.91) with k = —2 we get

O=a1=mar+b,y 1=bi=bas+cy O0=cq1=car+d
O=d1=diap 0=y 1=y r+a. (3.96)

Since dy # 0, from the fourth equation in (3.96) we get a_, = 0. Using this fact in the other
equalities in (3.96) we getb_r, =d_, =y, =0and c_, = 1.
From this and by (3.91) with k = —3 we get

O=a,=masz+byz 0=br=baszt+cs l=cor=casz+ds;
O0=do=djas3 0=y =y 3+a_s. (3.97)
Since d; # 0, from the fourth equation in (3.97) we get a_3 = 0. Using this fact in the other
equalities in (3.96) we getb_3 =c_ 3 =y_3=0and d_3 =1.
Hence, (ax)x>_3 is a solution to (3.93) satisfying the next initial conditions

a3=0 a,=0 a1=0 ay=1. (3.98)

Note that by using (3.98) and

;=0 i=0,3, (3.99)
y

we see that (3.92) holds also for n = —2, —1.
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Since difference equation (3.93) is solvable, closed form formula for (ax)x>_3 can be found.
From this, since

k—1 k—1
yk:1+2ﬂ]’:z&l]', ke N, (3.100)
= =0

and since the sums can be calculated it follows that closed form formulas for (yx)xen can be
found too. Using these facts and (3.92) we see that equation (3.82) is solvable too.
From the second equation in (1.2), we have that for every well-defined solution

Wy 41
Zh_p = 7&? - neN, (3.101)
‘-

while from the first one it follows that

zfllﬂ = a2, 1 e N. (3.102)

Using (3.101) into (3.102) we obtain

Wyys = ﬁl’”adw‘fz+3w;+2w;ﬁwﬁd, n € Ny, (3.103)
which is a related equation to (3.82) (with shifted indices forward for two and with a different
coefficient).

Hence, the above presented procedure for getting z, can be repeated and obtained that for
aksuchthatl <k <mn
Wn+a = ’7ykwi@%kdﬂ%k%ﬁ%k”iﬁlfkf nz>k—1, (3.104)
where 7 = B4, sequences (ax)ren, (bx)ken, (ck)ken, (dx)ken satisfy system (3.88) with
initial conditions (3.83), and (yx)ken is given by (3.100). These sequences can be prolonged
for k > —3, so that (3.98) and (3.99) hold.
From (3.104) with k = n + 1 and by using (3.11) we get

dn+1

C
n+1 wo

bn+1
wq

— An+1
wﬂ+4 — 17]/n+1w3n w2

= (B ")t (B w2 2g) e (B ) (Bu 42T5) " w

= ad]/nﬂ IB(l_a)y”“ +(1+c)any1+byy1+cnt wczfn+1 +eepat w(c)an +dyi1

% Z‘id;wrl +dcn+lzd_bln+1 Zgﬂn+l

—_ [Xdy,lﬂﬁyn+4—ay,1+3wi(zn+3*ﬂﬂn+2)wgn+4—aan+3zfi(§n+3*ﬂﬂn+2)
d — d
% Z_(fn+2 aan+1)zoan+l, (3105)

for every n € INy.

From (3.98) and (3.99) it is seen that (3.105) holds also for n = —4, -3, -2, —1.

As above the solvability of equation (3.93) shows that closed form formula for (ay)i>_3
can be found. Using the formula in (3.100) is obtained closed form formula for (y)ken. These
facts along with (3.105) imply that equation (3.103) is solvable too. A direct calculation shows
that the sequences (z,),>_2 in (3.92) and (w;),>_1 in (3.105) are solutions to system (1.2) with
initial values w_1, wo,z—2,z_1,z9. Hence, system (1.2) is also solvable in this case, finishing
the proof of the theorem. O
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From the proof of Theorem 3.1 we obtain the following corollary.

Corollary 3.2. Consider system (1.2) with a,b,c,d € Z. Assume that o, p € C\ {0} and z_5, z_;,
2o, w—_1,wo € C\ {0}. Then the following statements are true.

(@) Ifb=0,a # 1% cand c # a?, then the general solution to system (1.2) is given by (3.3), (3.14)
and (3.15).

(b) Ifb =0, a> # 1 # c and c = a?, then the general solution to system (1.2) is given by (3.3), (3.16)
and (3.17).

(c) Ifb = 0 and a* # 1 = c, then the general solution to system (1.2) is given by (3.3), (3.18) and
(3.19).

(d) Ifb=0,a = —1and c =1, then the general solution to system (1.2) is given by (3.3), (3.20) and
(3.21).

(e) Ifb=0,a=1and c # 1, then the general solution to system (1.2) is given by (3.4), (3.22) and
(3.23).

(f) If b =0, a = c = 1, then the general solution to system (1.2) is given by (3.4), (3.24) and (3.25).

(g) Ifd =0, c # a® # 1 # c, then the general solution to system (1.2) is given by (3.28), (3.38) and
(3.39).

(h) Ifd =0, c = a® # 1 # c, then the general solution to system (1.2) is given by (3.28), (3.40) and
(3.41).

(i) Ifd = 0,a® # 1 = c, then the general solution to system (1.2) is given by (3.29), (3.42) and (3.43).

(G) Ifd =0,a = =1 and c = 1, then the general solution to system (1.2) is given by (3.29), (3.44)
and (3.45).

(k) Ifd =0,a = 1and c # 1, then the general solution to system (1.2) is given by (3.28), (3.46) and
(3.47).

(I) Ifd =0, a = c =1, then the general solution to system (1.2) is given by (3.29), (3.48) and (3.49).

(m) Ifa =0,bd # 0, ¢ +4bd # 0 and ¢ + bd # 1, then the general solution to system (1.2) is given
by (3.66)—(3.69), where sequence (ay)y,>—_1 is given by (3.71) and (X )m>—1 is given by (3.73).

(n) Ifa=0,bd # 0, >+ 4bd # 0 and c + bd = 1, then the general solution to system (1.2) is given
by (3.66)—(3.69), where sequence (ay)m>—_1 is given by (3.71) with Ay = —bd and A, = 1 and
(Xm)m>—1 is given by (3.74).

(0) Ifa =0, bd # 0, ¢ +4bd = 0 and c # 2, then the general solution to system (1.2) is given by
(3.66)—(3.69), where sequence (ay)m>—1 is given by (3.76) and (X, )m>—_1 is given by (3.78).

(p) Ifa = 0, c® +4bd = 0 and ¢ = 2, then the general solution to system (1.2) is given by (3.66)—
(3.69), where sequence (@, )p>—1 is given by (3.76) with ¢ = 2, and (X, )y>—1 is given by (3.79)

(q) If bd # O, then the general solution to system (1.2) is given by (3.92) and (3.105), where the
sequence (ay)x>_3 satisfies difference equation (3.93) with initial conditions in (3.98) and where
(Vi )ken is given by (3.99) and (3.100).
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3.2 Structure of the solutions to system (1.2) in the case bd # 0
Equation (3.93), in the case bd # 0, is solvable since the characteristic polynomial
pa(A) = A* — A% — A% — A —dy, (3.106)

associated to the equation is of the fourth order.
In this case polynomial (3.106) has the following zeros:

4 2V 4 3 24| 2 3

a 1 [a2 2c 1 | a2  4c Q
M=o y/S 42 S T . 1
2= 5\ gt TS to 53 s+4 ——— (3.108)

M (3.107)

a 1
P Y L TP - Y (3.109)
4" 2V4 "3 24/ 2 "3 PN
Aofpl e 2 1 4 o Q (3.110)
732V a3 24/ 2 "3 ’ '

where

— 1 3 2 3 i/ 2 3
s—m<\/A1—\/Al—4AO+ A+ /A2 =43, (3.111)

Ao :=c? + 3a’c — 12bd, (3.112)
A :=18a%c* — 2¢® — 27a%bd — 72bcd, (3.113)
Q := —a® + 4ac. (3.114)

Remark 3.3. Number s defined in (3.111) is a zero of the following third-order polynomial
equation

A% 4 cA? + (4bd — a’c)A + 4bed + a*bd — a*c* = 0, (3.115)

which is a resolvent cubic equation of the quartic one ps(A) = 0. We point out here that a
resolvent cubic equation of a quartic is not always the same, since it depends on the way how
the quartic one is solved. Zeros (3.107)—(3.110) of polynomial (3.106) are obtained here by
writing ps4(A) as follows

2 2 2
(2% i) (%= 2_ (% 5
p4(A)_<A 2A+2> (<4+c+s>A (2+ac>A+bd+4>

and then choosing parameter s such that the following condition is satisfied

ﬁ—|—ch 2—4 é—i—c—i—s bal—i—f
2 o\ 4 4)’

from which is obtained equation (3.115) [3].
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The nature of these zeros depends on the sign of the discriminant

A:= 2%(4A3 —A?), (3.116)
and signs of the following quantities
P := —8c — 3a? (3.117)
and
D := —64bd — 16¢* — 3a*. (3.118)

The following proposition, which was essentially proved in [16], explains the nature of the
zeros of an arbitrary polynomial of the fourth order in terms of the corresponding quantities
A, Ay, D, P and Q (the quantities in (3.112), (3.114), (3.116)—(3.118) are special cases of them
for the case of polynomial (3.106)).

Proposition 3.4. Let
Py(t) = t* + bt +ct? +dt +e,

1
Ao = c* —3bd +12e, Ay =2c® —9bcd + 27b%e + 27d* — 72ce, A = ﬁ(zmg —A?),

P=8c—3V, Q=0>+8d—4bc, D = 64e—16c*+ 16b*c — 16bd — 3b*.

Then the following statements are true.

1° If A < 0, then two zeros of Py are real and different, and two are non-real complex conjugate;
2° If A > 0, then all the zeroes of Py are real or none is. More precisely

2.1° if P < 0and D < 0, then all four zeros of Py are real and different;
2.2° if P> 0or D > 0, then there are two pairs of non-real complex conjugate zeros of Pj.
3° If A = 0, then and only then the polynomial has a multiple zero. The following cases can occur:

3.1° if P <0, D < 0and Ay # O, then two zeros of Py are real end equal and two are real and
simple;

32° if D > 0or (P> 0and (D # 0or Q # 0)), then two zeros of Py are real and equal and
two are complex conjugate;

3.3° if Ag = 0and D # 0, there is a triple zero of Py and one simple, all real;

3.4° if D =0 then

3.4.1° if P < O there are two double real zeros of Py;

3.4.2° if P > 0and Q = O there are two double complex conjugate zeros of Py;
3.4.3° if Ag = 0, then all four zeros of Py are real and equal to —b/4.

Case A # 0. In this case all the zeros A;, i = 1,4 of polynomial (3.106) are mutually
different, and the general solution to equation (3.93) has the following form

ap = A + oAy + azAs +agdy, neN, (3.119)

where «;, i = 1,4, are arbitrary constants.
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If, for example, a = 1, c = 2 and bd = 3, then
ps(A) = AT =A% —2A2 421 -3 (3.120)

and A # 0, which by Proposition 3.4 shows that there are the cases when all the zeros of
polynomial (3.106) are different. Moreover, since p4(1) = —3 none of the zeros of polynomial
(3.120) is equal to one, and since A < 0 two zeros are complex-conjugate, i.e., A; = A, and two
are real and different, i.e., A3, A4 € R and A3 # A4.
Since when d; = bd # 0 the solution to equation (3.93) can be prolonged for nonpositive
indices, we may assume that (3.119) holds for n > —3 (or for every n > —s, for each s € IN).
If we apply Lemma 2.2 to polynomial p4 in (3.106), we have

Al
Z /] =0
=1 p4()\j)
for1 =0,2, and
4 A3
2 /] =1,
j=1 pa(A))

where \;, i = 1,4 are given by (3.107)—(3.110).
From this, since from (3.98) we have a_3 = a_, = a_; = 0 and a9 = 1, and general solution
to equation (3.93) has the form in (3.119), we obtain

4 AMT3 n+3 n+3
a, = Z j _ M + Ay
Sray) (M=) (A=A (A —Ag) - (A2 — A1) (A2 = A3) (A2 — M)
/\31—0—3 /\2+3
+ + , (3121
(A3 = A1) (A3 = A2)(As = Ag) (A — A1) (Aa — A2)(Ag — A3) (G121
forn > —3.
On the other hand, from (3.88) we get
by = a1 — man, cn = Clay—1 +diay—p, dy = dia,_1, (3.122)
forn > —3.
By using (3.121) into (3.122), we get
b, = J___ \n+3 (3.123)
! ]; pa(Aj) 7
4 —acA; +bd
_ ] n+1
Cn = ——A\! (3.124)
R
4 bd
d. = A2 (3.125)
= Loy
forn > —3.
By using (3.121) into (3.100) it follows that
nol4 o A4 A3 )
= iy _Tii o ) 4 eN, (3.126)
= L Loy T LD
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when py(1) # 1, i.e, when A; # 1, i = 1,4. Moreover, a direct calculation along with
Lemma 2.2 shows that formula (3.126) also holds for n = —j, j = 0, 3.

Case A # 0 and one of the zeros is equal to one. The characteristic polynomial (3.106) will have
a zero equal to one if

pa(l)=1—a—c+ac—bd =0,
that is, if
(a—1)(c—1) =10d, (3.127)
so that
ps(A) = A* —aA® —cA? +ach — (a—1)(c—1). (3.128)
If a =2and c =2, then bd = 1 # 0 and consequently
pa(A) =A% =213 202 14X 1= (A —1)(A® = A2 =31 +1).
All the zeros of the polynomial are mutually different and exactly one of them is equal to one,
say Aj.
In this case the general solution has the following form
Ay = N1 + A5 +a3A5 +a4Ay, n €N, (3.129)

where @;, i = 1,4, are arbitrary constants.
In this case formulas (3.121), (3.123), (3.124) and (3.125) also holds but with A; = 1. On the
other hand, we have that

(3.130)

since p)(1) = 4 — 3a — 2c + ac. Moreover, a direct calculation along with Lemma 2.2 shows
that formula (3.130) also holds for n = —j, j =0, 3.

From the above consideration and Corollary 3.2 (g) we have that the following result holds.

Corollary 3.5. Consider system (1.2) with a,b,c,d € Z and bd # 0. Assume that z_», z_1, zo, W_1,
wo € C\ {0} and A # 0. Then the following statements are true.

(a) If none of the zeros of characteristic polynomial (3.106) is equal to one, i.e., if (a —1)(c — 1) # bd,
then the general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence
(an)n>—3 is given by (3.121), while (yn)n>—3 is given by (3.126).

(b) If (exactly) one of the zeros of characteristic polynomial (3.106) is equal to one, say Ay, ie., if
(a—1)(c—1) = bd and 4 — 3a — 2c + ac # 0, then the general solution to system (1.2) is given
by formulas (3.92) and (3.105), where sequence (a,)n>—3 is given by (3.121) with Ay = 1, while
(Yn)n>—3 is given by (3.130).
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Case when there is only one double zero. For a = 4, c = 0 and bd = —27 is obtained
pa(A) = A —4A3 427 = (A =32 (A +14+iV2)(A +1—iV2), (3.131)

(it is easy to check that A =0, Ag # 0 and D > 0). So, polynomial (3.131) has two (real) equal
zeros and two are complex-conjugate, but none of them is equal to one.

In the case when only two zeros are equal, say A; and A, then the general solution has the
following form

an = (11 +72m)Ay + 305 + 1A, n €N, (3.132)

where 7;, i = 1,4, are arbitrary constants.
To find the solution such that a_3 = a_ = a_; = 0and ayp = 1 we will let Ay — A, in
formula (3.121).

We have
An+3 /\n+3
a, = lim < 1 + 2
A — A2 ()\1 — )\2)()\1 — )\3)(/\1 — }\4) ()\2 — )\1)(/\2 — /\3)()\2 — )\4)
)\n+3 /\I/H—S
+ . + 4 >
(A3 = A1) (A3 = A2) (A3 — Ag)  (As— A1) (A — A2)(As — A3)

~ i <A7+3(A2 —A3) (A2 — Ag) = AT (A — A3) (A1 — Ag)
A=Ay (/\1 — }\2) ()\1 — /\3) ()\1 — )\4)()\2 — )\3)(/\2 — /\4)
An+3 /\YH—B
32 + 42 >
A3 —A2)2(A3 — Ag) (Mg —A2)2(Ag — Az)
_ MP((n+3) (A2 — A3) (A2 — Ag) — Aa(242 — As — Ag))
(A2 — A3)2 (A2 — Ay)?
A§+3 )‘Z+3

T

+ + . 3.133
(s = 22205 —A0) T (ha = A2)2(h — a) (G133
From this it follows that in this case
y:Sf(%QW+3NM—MNM—AQ—M@M—Ayﬂhﬁ
=" (2 — a2 — Aa)?
i+3 i+3
+ A + My )
(As = A2)2 (A3 — Ag) (Mg —A2)2 (Mg — A3)
n-1 At nl A2 2\0A5 — 294 + 3A3A
—\3 1'% L2y A2 2A3 24 3A4
2 ]; (A2 —A3) (A2 —Ag) 72 j;() 2 (A= A3)2 (A — Ay)?
1 A A3
+ ¥ (oot )
S\ =222 (A3 —A4) - (A= A2)7(Aa — A3)
_ A -nATP (n = DA (A3 - 2A3A5 — 2324 + BA3AsA) (A5 — 1)
(A2 = A3) (A2 = A4) (1 = Ap)? (A2 = A3)%(A2 — Ag)2 (A2 — 1)
AS(Ar—1 AS(Am —1
N 3(A5 —1) s(Ai—1) (3.134)

(Mo = A2)2(As — A)(As —1) | (ke — A)2(As — A)(As — 1)
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Case one is a double zero. We have already mentioned that polynomial (3.106) has a zero
equal to one if and only if (a —1)(c — 1) = bd. Now, if A = 1 is a double zero then it must
be pj(1) =4—-3a—2c+ac=0or (a —2)(c—3) =2. Since a,b,c,d € Z, and bd # 0 this is
possible only whena =3,c=5,bd =8ora=4,c=4,bd =9o0ra=0,c=2,bd = —1 (case
a = c = 1 is not possible, since it implies that bd = 0).

If a =3, c =25, then

pa(A) = AT =313 50 + 150 —8 = (A — 1)?(A? — A — 8)

and it has a real double zero equal to one and two (real) simple zeros.
If a =4,c=4,then

pa(A) = A* —4A3 —4A% 1160 —9 = (A —1)}(A2 =24 —9)

and it also has a real double zero equal to one and two other (real) simple zeros.
Case a = 0 and ¢ = 2 has been treated in the proof of Theorem 3.1, so it is omitted here.
In this case we have that

. _7’1(1 — /\3)(1 — A4) +3A3A4 —2A3 —2A4 + 1
" (1 —23)2(1 — Ay)?
A§l+3 N )‘Z+3
(A3 —=1)2(A3 —Ag)  (Ag—1)2(Ag — A3)’

n (3.135)

and

" (1= A3)(1— Ag) +3A3Ag — 245 — 244 + 1
(1—A3)2(1 — Ay)?

_|_

AL A
(=120 —Ae) | (ha—1P(ha - A3>)
(n—1)n n(3AzAg —2A3 —2A4 + 1)
20— M)A T A= A1 )2
L M- M -1)
(A3 =1)3(As —As)  (Aa—1)3(As — A3)’

(3.136)

Corollary 3.6. Consider system (1.2) with a,b,c,d € Z and bd # 0. Assume that z_, z_1, zo, W_1,
wy € C\ {0}. Then the following statements are true.

(a) If only one of the zeros of characteristic polynomial (3.106) is double and different from one, then the
general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence (a)y>—3
is given by (3.133), while (Y, )n>—_3 is given by (3.134).

(b) If only double zero of characteristic polynomial (3.106) is equal to one, say Ay = Ay = 1, then the
general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence (a)y>—3
is given by (3.135), while (Y, )n>—3 is given by (3.136).

Remark 3.7. Case one zero is equal to one and there is a double zero different from one seems
to be not simple. From above consideration we see that

psA) = (A-=1D)AP+1-a)A+(1—a—c)A+(a—1)(c—1)), (3.137)
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holds and we should see if the polynomial
p3(A) =34+ (1 —a)A>+(1—a—c)A+(a—1)(c—1)
can have a double zero, which is equivalent to the fact that the discriminant Az = 4A3 + B?is
equal to zero and that A # 0 # B, where
A=2-a—a*—3c and B=—20+15a+ 3a*>+ 24>+ 18c — 18ac.
This is equivalent to
(a—1)%(2a% +5a +20 —18¢c)® = 4((a +2)(a — 1) + 3¢)>. (3.138)

An investigation that we have done along with using computers suggests that equation (3.138)
does not have integer solutions such that a # 1 # c. However, we are not able at the moment
to show this, so we leave this problem for the further study.

Case two pairs of double zeroes both different from one. From Proposition 3.4, we see that in this
case it must be A = D = 0. The characteristic polynomial (3.106), in this case, has two double
zeros, say, A1 = Ay and A3 = A4, so the general solution to equation (3.93) has the following
form

an = (71 +72m)A + (13 +1an)A;, neN, (3.139)

where 7;, i = 1,4, are arbitrary constants.
From D = 0 we get

16¢? + 3a*
= .14
bd a (3.140)
Employing (3.140) in the expressions for Ay and A;, we get
9 3 ,\2
_ 4.2 2. 7 4 _ 22
Ao = 4c +3ac+16a <2c+4a)
21003 4 11 - 24325202 4 3323¢a* + 3440
A = .
64
Hence, A = 0 is equivalent to the relation
(2193 4+ 11 - 2432a2¢% + 3323ca* + 3%a°)2 = 4(23¢ + 34°)°,
from which it follows that
21003 411 24320%c% 4 3%23ca* + 3%a° = £2(2%¢ + 34%)°. (3.141)
By some calculation from (3.141) we get that it must be
a*(4c — a®)?> =0, (3.142)
or
21163 4322419422 4+ 3423ca* + 5. 3%2° = 0. (3.143)

Subcase when (3.142) holds. If a = 0 and ¢ # 0, then bd = —c?/4. Hence

2 2
ot 2. S (2 €
pad) = At —cA?+ 5 (/\ 2).
If ¢ > 0, then clearly
Al,z = \/C/Z and /\3[4 = —V C/Z,
while if ¢ < 0, then

Mp=ivV—c/2 and Ay = —iv—c/2.
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If 4c = a®> # 0, then if t = A/a, we have
2 o

pa(A) = A* —aAd — —/\2+ TR

t2 Pl
44 3 B
—a<t t 4+4+16>

(=2 (=)

ah  a?\?
= (- ——). 144
(25 -%) (3144)
From (3.144) we get that
1 1-—
/\1[2 =a +4\/§ and /\3,4 =a 4\/5

In these cases we have that

A2 (n(Ag — Ag)? + A% — 400 + 3A2)
(A2 — Ag)*
A2 (n(Ag — A2)% + A2 — 4004 + 3A3)
(Ag —Ag)t

ay, =

(3.145)

and

= nl (AJZ'*Z(]'(AZ — Ag)? 4 AZ— 4An0 +3A2)
A (A2 — Ayt
M2 (Mg — A2)2 + A2 — 4AoAy + 3A§))
(Ag—Ap)4

n—1 .y j—1 2 2
3 jAS 5 j A5 —4AAy + 3
_)\227@2_)\4) + A3 ZA (AZ—A4)4

— 4 Ay + 3)\
+ AB 4 _|_/\2 /\]
* ]Z{ (A4 — A2)? Z (/\4 — A2)*
A —nAIt2 4 (n— 1)A§+3 (A —4A304 +3A2A2) (A — 1)
(A2 — Ag)2(1 — Ap)2 (A2 =AM —1)
A3 —nAIT2 4 (= DAL (A =403 +3A3A2) (A — 1)
(A = A2)2(1 — A4)? (As = A2)* (Mg — 1)

(3.146)

Subcase when (3.143) holds. There are two possibilities that the relation in (3.143) holds.
First, if it were 2 = 0 or ¢ = 0 in equation (3.143), then we would get 4 = ¢ = 0 and
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consequently by (3.140) it would follow that bd = 0, which would be a contradiction with the
assumption bd # 0. Hence, the subcase is not possible.
If a # 0 # ¢ in (3.143), then since the polynomial

g3(t) = 21113 432241942 - 3423+ + 5. 33,
has obviously a real zero, say t; (it is shown that tp ~ —1,10331), we get that c = toa®, and
consequently P = —(8ty +3)a? > 0, bd = —(16t3 + 3)a*/64 # 0, Q = a®(4tg — 1) # 0, and
1613 + 3 A

64 '

From Proposition 3.4 we see that conditions P > 0 and Q # 0 cannot hold simultaneously
with conditions A = 0 and D = 0, which guarantee the existence of a double zero. Hence, it
is not possible in this case that polynomial (3.147) has two double zeros.

pa(A) = A — aA3 — 1ga?A? + tgaP A —

(3.147)

Case two pairs od double zeroes, one of them equal to one. The characteristic polynomial (3.106),
in this case, has two double zeros, say, A1 = A2 # 1 and A3 = A4 = 1, so the general solution
to equation (3.93) has the following form

an = (M1 +72n)A; + (Y3 +Yan), n €N, (3.148)

where 7;, i = 1,4, are arbitrary constants.
Ifa=0,¢=2,bd =-1, then

pa(A) = A* =202 1= (A —1)2(A +1)?,

from which it follows that the polynomial has a real double zero equal to 1 and another real
double zero equal to —1.
In this case we have that

A§+2(n(/\2 _ 1)2 + )\% —4M+3)  (n(Ay — 1)2 +1—4A,+ 3)\%)

and
e ¥ (Aé“(fmz —124 A3 -4 +3) | (j(a—12+1-4h+ 3A%>>
= (A2 — 1)4 (A2 —1)*
A3 1y 3/\2 "o 3Ap —
e 2/\] ZAJ M1 Z())HZ
o n+2 _ n+3 3 o 2 n__ _ _
_ A3 —nAy T2+ (n 1))\2 n (/\2 3/\2)(/\2 1) n (n—1)n +n 34— 1 (3.150)
(Ay —1)2 (Ay—1)4 2(Ap —1)2 (Ay—1)3

Corollary 3.8. Consider system (1.2) with a,b,c,d € Z and bd # 0. Assume z_»,z_1, o, W_1, Wy €
C \ {0}. Then the following statements are true.

(a) If characteristic polynomial (3.106) has two pairs of double zeros both different from one, then the
general solution to system (1.2) is given by formulas (3.92) and (3.105), where sequence (a,)n>—3
is given by (3.145), while (Y, )n>—_3 is given by (3.146).

(b) If characteristic polynomial (3.106) has two pairs of double zeros one of them equal to one, say A4
and Aj, then the general solution to system (1.2) is given by formulas (3.92) and (3.105), where
sequence (ay)y>—_3 is given by (3.149), while (v, )n>—_3 is given by (3.150).
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Case at least three zeros are equal. If three zeros of polynomial (3.106) are equal, then it must
be A = Ay = 0, which implies A; = 0. The characteristic polynomial in (3.106) would have
four equal zeros if ps(A) = py(A) = py(A) = py’(A) = 0. Since py’(A) = 24A — 6a, we would
get A = a/4. From p, (%) = pj(§) = 0 it is obtained

(5 "5 0 () -

from which it follows that if 2 = 0 then ¢ = 0, while if 4c = a2 then 54 = 0, which implies
a = 0 and consequently ¢ = 0. Hence, in both cases we have that 2 = ¢ = 0, which implies
that

pa(A) = A* — bd.

However, since bd # 0 polynomial ps would have four different zeros, which would be a
contradiction. Thus, the polynomial (3.106) has at most three equal zeros.
Since Ay = 0 we have that

2 2
bd = % -
Employing (3.151) in A; = 0 we get
Ay = —26 4 18022 - (7T 720)(€ + 3a)
1 12
= — (326" +9ca 1 27a) 0. (3.152)

If it were ¢ = 0, then from (3.151) we would get bd = 0, which would be a contradiction. If
¢ # 0 and 32¢% + 9ca® + 27a* = 0, then since the polynomial 32 + 9t + 27t is always positive
on R we obtain that the last equation does not have a real solution. So, the case A = Ay = 0
is not possible, which implies that polynomial (3.106) cannot have a triple zero.

Hence, the general solution to equation (3.93) cannot have the following forms

ay, = (61 + 6an + 83n* + 3n*)AY,
ty = B AL+ (8, + ban + 84n2)AY, neN, (3.153)

where §; and Xi, i = 1,4, are arbitrary constants.
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